
Achieving Faster Failure Detection in OSPF 
Networks 

Mukul Goyal 
CIS Department 

The Ohio State University 
Columbus, OH, USA 

mukul@cis.ohio-state.edu 

K. K. Ramakrishnan 
Networking Research  

AT&T Labs - Research  
Florham Park, NJ, USA 

kkrama@research.att.com 
 

 
 

Wu-chi Feng 
Dept of Computer Science & Engg 

Oregon Institute of Technology 
Beaverton, OR, USA 
wuchi@cse.ogi.edu

Abstract— With the current default settings of the OSPF 
parameters, the network takes several tens of seconds before 
recovering from a failure. The main component in this delay is 
the time required to detect the failure using Hello protocol. 
Failure detection time can be speeded up by reducing the value of 
HelloInterval. However, too small a value of HelloInterval will 
result in an increased chance of network congestion causing loss 
of several consecutive Hellos, thus leading to false breakdown of 
adjacency between routers.  Such false alarms not only disrupt 
network traffic by causing unnecessary routing changes but also 
increase the processing load on the routers which may potentially 
lead to routing instability. In this paper, we investigate the 
following question - What is the optimal value for the 
HelloInterval that will lead to fast failure detection in the network 
while keeping the false alarm occurrence within acceptable 
limits? We examine the impact of both network congestion and 
the network topology on the optimal HelloInterval value. 
Additionally, we investigate the effectiveness of faster failure 
detection in achieving faster failure recovery in OSPF networks. 
(Abstract) 
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I. INTRODUCTION  

Link state protocols, such as OSPF [1] and IS-IS [2] using 
shortest path first forwarding are the most commonly used 
Interior Gateway Protocols in the Internet today. Each router 
knows the topology of the network, and the associated 
weights, and uses this information to determine the shortest 
paths to different destinations. However, when there is a 
failure in the network (link or node failure), these protocols 
take some time to detect the failure and re-establish a 
consistent view of the new topology. During this transient, the 
data traffic forwarded towards the failed device will be 
dropped. Additionally, routing loops might emerge leading to 
artificial congestion in the network.  

In a carrier’s network, service level assurances (SLA) 
provided to customers potentially limit the number of packets 
that may be lost or are delayed excessively. To ensure that 
SLAs are met, a carrier network often uses lower layer 
transport (or data link) layer failure detection and restoration 
techniques, so that service is not excessively impacted. 
Depending on just the routing layer (and hence OSPF or IS-

IS) for recovery from failures has been typically considered 
unacceptable, because it takes too long to recover from 
failures. However, incorporating protection against failures at 
the transport layer is expensive as it requires significant 
redundant capacity. This motivates us to examine how we can 
optimize the time to recover from failures at the routing layer, 
by examining the mechanisms used within OSPF.  

OSPF has been designed to be generally applicable, and 
the timers and protocols have been designed so that it can be 
deployed in a network of reasonably large scale. However, we 
have observed in practice that service providers generally limit 
the number of routers in a single OSPF area, for a variety of 
reasons. This naturally begs the question of whether we could 
adapt the parameters in the OSPF protocol to achieve faster 
recovery from failures, especially when we know the topology 
of the network. Minimizing the failure recovery time has the 
benefit of a reduced need to depend on transport/data link 
layer recovery and the possibility that a more complete, 
network layer failure recovery mechanism could be put in 
place. 

II. FAILURE DETECTION AND RECOVERY IN OSPF 

In OSPF, two adjacent routers in the same area 
periodically exchange Hello messages to maintain the link 
adjacency. If a router does not receive a Hello message from 
its neighbor within a RouterDeadInterval (typically 40 
seconds or 4 HelloIntervals), it assumes the link between itself 
and the neighbor to be down and generates a new Router LSA 
to reflect the changed topology. All such LSAs, generated by 
the routers affected by the failure, are flooded throughout the 
network and cause the routers in the network to redo the 
shortest path first (SPF) calculation and update the next hop 
information in the forwarding table. Thus, the time required to 
recover from the failure consists of: (1) the failure detection 
time (2) LSA flooding time (3) the time to complete the new 
SPF calculations and update the forwarding tables. With 
HelloInterval value 10 seconds and RouterDeadInterval value 
40 seconds, the failure detection can take anywhere between 
30 to 40 seconds. The LSA flooding times consist of the 
propagation delays and any pacing delays resulting from the 
rate-limiting of LSUpdate packets sent down an interface. 
Once a router receives a new LSA, it schedules an SPF 



calculation. Since SPF calculation using Dijkstra’s algorithm 
[3] constitutes significant processing load, the router waits for 
some time (spfDelay - typically 5 seconds) to let other LSAs 
arrive before doing an SPF calculation. Moreover, the routers 
place a limit on the frequency of SPF calculations (governed 
by spfHoldTime, typically 10 seconds, between successive 
SPF calculations) which can introduce further delays. In Table 
1, we list different standard and vendor introduced delays that 
affect the OSPF operation in networks of popular commercial 
routers. 

In this paper, we focus on reducing the failure detection 
time which is clearly the main component of the overall 
failure recovery time in OSPF based networks. While the 
availability of link layer notifications can help achieve fast 
failure detection, such mechanisms are often not available. 
Hence, the routers use the Hello protocol to detect the loss of 
adjacency with a neighbor. The Hello protocol operates via 
periodic exchange of Hello messages between neighbor 
routers. A router declares its adjacency with a neighbor to be 
down if it does not receive a Hello from the neighbor for more 
than RouterDeadInterval. This can happen if the link between 
the router and the neighbor is down or the neighbor router is 
no longer functional. To avoid a false breakdown of adjacency 
because of congestion related loss of Hello messages, the 
RouterDeadInterval is usually set to be four times the 
HelloInterval – the interval between successive Hello 
messages sent by a router to its neighbor. The failure detection 
via Hello protocol can be substantially speeded up by reducing 
the HelloInterval. However, there is a limit up to which the 
HelloInterval can be safely reduced. As the HelloInterval 
becomes smaller, there is an increased chance that the network 
congestion will lead to loss of several consecutive Hello 
messages and thereby cause false breakdown of adjacency 
between routers even though the routers and the link between 
them are functioning perfectly well. The LSAs generated 
because of a false alarm will lead to new path calculations, 
avoiding the supposedly down link, by all the routers in the 
network. A false alarm is soon corrected by successful Hello 
exchange between the affected routers which causes new set 
of LSAs to be generated and possibly new path calculations to 
be done by the routers in the network. Thus, false alarms 
cause unnecessary processing load on the routers and some 
times lead to temporary changes in the network traffic’s path 
which can have a serious impact on the QOS levels in the 
network. If the false alarms are too frequent, the routers will 
have to spend a lot of time doing unnecessary LSA processing 
and SPF calculations which may significantly delay important 
tasks such as Hello processing, thereby leading to more false 
alarms. Persistent overload on router CPUs will ultimately 
result in complete meltdown of routing operation in the 
network.  

In this paper, our objective is to make a realistic 
assessment regarding how small the HelloInterval can be, to 
achieve faster detection and recovery from network failures 
while limiting the occurrence of false alarms. This assessment 
is done via simulations on the network topologies of 
commercial ISPs [4] using a detailed implementation of OSPF 
protocol in NS2 simulator [5] which models all the protocol 
features as well as various standard and vendor-introduced 

TABLE I. VARIOUS DELAYS AFFECTING THE OPERATION OF OSPF 
PROTOCOL 

Standard Configurable Delays 
RxmtInterval The time delay before an un-acked LSA is 

retransmitted. Usually 5 seconds.  
Hello Interval The time delay between successive Hello packets. 

Usually 10 seconds. 
Router Dead 
Interval 

The time delay since the last Hello before a neighbor is 
declared to be down. Usually 4 times the HelloInterval.  

Vendor-introduced Configurable Delays 
Pacing delay The minimum delay enforced between two successive 

Link State Update packets sent down an interface. 
Observed to be 33ms. Not always configurable. 

spfDelay The delay between the shortest path calculation and the 
first topology change that triggered the calculation. 
Used to avoid frequent shortest path calculations. 
Usually 5 seconds. 

spfHoldTime The minimum delay between successive shortest path 
calculations. Usually 10 seconds. 

Standard Fixed Delays 
LSRefreshTime The maximum time interval before an LSA needs to be 

reflooded. Set to 30 minutes. 
MinLSInterval The minimum time interval before an LSA can be 

reflooded. Set to 5 seconds. 
MinLSArrival The minimum time interval that should elapse before a 

new instance of an LSA can be accepted. Set to 1 
second. 

Router-specific Delays 
Route install delay The delay between shortest path calculation and update 

of forwarding table. Observed to be 0.2 seconds. 
LSA generation 
delay 

The delay before the generation of an LSA after all the 
conditions for the LSA generation have been met. 
Observed to be around 0.5 seconds.  

LSA processing 
delay 

The time required to process an LSA including the time 
required to process the Link State Update packet before 
forwarding the LSA to the OSPF pocess. Observed to 
be less than 1 ms. 

SPF calculation 
delay 

The time required to do shortest path calculation. 
Observed to be 0.00000247x2 + 0.000978 seconds on 
Cisco 3600 series routers; x being the number of nodes 
in the topology. 

 

delays in the functioning of the protocol (Table 1). We 
examine the network wide impact of reducing the 
HelloInterval in terms of number of false alarms under a 
realistic model of network congestion. We quantify the 
detrimental effect of these false alarms in terms of 
unnecessary SPF calculations done by the routers. We 
examine how the network topology influences the occurrence 
of false alarms. Finally, we evaluate how much does the faster 
detection of network failures help in achieving faster recovery 
from these failures in the operation of OSPF networks. 

III. RELATED WORK 

In this section, we briefly survey the existing literature on 
speeding the recovery from network failures in the operation 
of OSPF and IS-IS protocols. First, we discuss the previous 
work on reducing the HelloInterval and the impact of 
congestion in causing false alarms. Alaettinoglu et al. [6] 
proposed reducing the HelloInterval to millisecond range to 
achieve sub-second recovery from network failures but did not 
consider any side effects of HelloInterval reduction. Shaikh et 
al. [7] used Markov Chain based analysis of a simple network 
topology to obtain the expected times before high packet drop 
rates cause a healthy adjacency to be declared down and then 



back up again. However, this work did not study the network 
wide generation of false alarms caused by congestion as the 
HelloInterval is reduced. Basu and Riecke [8] have also 
examined using sub-second HelloIntervals to achieve faster 
recovery from network failures. This work is similar to ours in 
the sense that it also considered the tradeoff between faster 
failure detection and increased frequency of false alarms. It 
reports 275ms to be an optimal value for HelloInterval 
providing fast failure detection while not resulting in too many 
false alarms. However, this work did not consider the impact 
of different levels of network congestion and topology 
characteristics on the optimal HelloInterval value. We believe 
these factors impact the setting of the HelloInterval 
substantially, as we illustrate in this paper.  

False alarms can also be generated if the Hello message 
gets queued behind a huge burst of LSAs and can not be 
processed in time. The possibility of such an event increases 
with reduction in RouterDeadInterval. Large LSA bursts can 
be caused by a number of factors such as simultaneous refresh 
of a large number of LSAs or several routers going 
down/coming up simultaneously. Choudhury et al. [9] studied 
this issue and observed that reducing the HelloInterval lowers 
the threshold (in terms of number of LSAs) at which an LSA 
burst will lead to generation of false alarms. However, the 
probability of such events is quite low. In our experiments 
with more probable events such as the failure of a single 
router, the resulting LSA burst was too small to cause false 
alarms. Similarly, we investigated if frequent update of Traffic 
Engineering LSAs [10] leads to large enough LSA bursts to 
cause false alarms. However, we did not observe any such 
effect even for reasonably high update frequency of such 
LSAs. 

Since the loss and/or delayed processing of Hello 
messages can result in false alarms, recently there have been 
proposals to give such packets prioritized treatment at the 
router interface as well as in the CPU processing queue 
[9][11]. An additional proposal is to consider the receipt of 
any OSPF packet (e.g. an LSA) from a neighbor as an 
indication of the good health of the router’s adjacency with the 
neighbor [11]. This provision can help avoid false loss of 
adjacency in the scenarios where Hello packets get dropped 
because of congestion, caused by a large LSA burst, on the 
control link between two routers. Such mechanisms should 
help mitigate the false alarm problem significantly. However, 
it will take some time before these mechanisms are 
standardized and widely deployed. 

Since SPF calculation using Dijkstra’s algorithm imposes 
significant processing load on the routers, vendors have 
introduced delays (spfDelay and spfHoldTime) that limit the 
frequency of such operations. These delays ultimately result in 
slowing down the failure recovery process. Alaettinoglu et al. 
[12] propose eliminating any restrictions on SPF calculations. 
They argue that the frequency of SPF calculations can be 
reduced by careful filtering of status changes in the 
links/routers and the processing time of an SPF calculation 
can be reduced by using modern algorithms (such as 
[13][14][15]) instead of Dijkstra’s algorithm. In a related 
work, Thorup [16] proposes the use of data structures that will 
help routers make a constant time determination of the next 

hop on the shortest path to a destination avoiding a given 
failed link. This will help in avoiding the routing loops while 
the routers recalculate shortest paths after a link failure.  

IV. EXPERIMENTATION METHODOLOGY  
We implemented substantial extensions to the OSPF routing 

model [17] currently available in NS2 simulator such as the 
Hello protocol, LSA generation and flooding, shortest path 
calculation and adjacency establishment. Our emphasis has 
been to include in the simulation model various standard (i.e., 
as per the OSPF specification [1]) and vendor-implemented 
delays and timers, listed in Table 1, that affect the functioning 
of OSPF protocol in operational networks of commercial 
routers. Some of these delays are configurable, some have a 
fixed value and some depend on the architecture and 
processing capability of the routers. Values for the delays that 
depend on the architecture and processing capability of the 
routers were obtained after extensive experimentation with 
commercial routers [18][19]. In our experimentation, we used 
the standard or the typical values for the different delay 
parameters (except HelloInterval and RouterDeadInterval) as 
listed in Table 1. This enables us to have a higher degree of 
confidence in the applicability of our simulation results to real 
operational networks.  

Rather than using actual packet flows to create congestion, 
we used realistic models to achieve the same effects. This 
choice was driven by the lack of information about realistic 
traffic loads as well as a desire to keep the processing and 
running time of the simulations reasonable. The congestion 
model used in our simulations tries to emulate the behavior of 
Random Early Drop (RED) [20] and droptail buffer 
management policies. In RED, the packet drop probability (p) 
at a router interface increases linearly from a value 0 to max_p 
as the average buffer occupancy qlen (the ratio of the average 
queue length to the total buffer size) increases from min_th to 
max_th. The packet drop probability remains 0 for qlen values 
less than min_th and remains equal to max_p as the qlen 
becomes more than max_th. If qlen exceeds 1, the packet drop 
probability becomes 1, i.e., all the incoming packets are 
dropped. We simulate congestion by assigning random qlen 
values between 0 and max_q to the router interfaces. The 
assigned qlen value determines the packet loss probability for 
the OSPF packets arriving at the interface. The qlen value 
assigned to an interface persists for a random duration with in 
the range {min_pers, max_pers}. This is to emulate the slowly 
varying average queue length, an exponential moving average, 
in RED buffers. The min_th, max_th and max_p values used in 
the RED simulations are 0.25, 0.75 and 0.1 respectively. The 
congestion level in the simulation is controlled by parameter 
max_q and range {min_pers, max_pers}. As the value of 
max_q is increased, higher packet drop rates in the network 
become possible. The range {min_pers, max_pers} will 
determine how long high (and low) packet drop rates persist 
on an interface.  

A similar technique is used to emulate the behavior of 
droptail buffer management. For droptail buffers, qlen 
represents the instantaneous buffer occupancy. A new value is 
assigned to the qlen associated with each router interface 
every time a new OSPF packet arrives. The packet drop 
probability remains 0 unless qlen is greater than 1 in which 



case the packet drop probability is 1. Note that in the droptail 
simulations, max_q value needs to be greater than 1 for packet 
loss to occur and a given max_q value corresponds to the 
packet drop rate of (max_q -1)/max_q.  

The simulations were conducted on a number of topologies 
obtained from [4]. These topologies correspond to real IP 
backbones for several commercial ISPs. Table 2 lists some 
characteristics of these topologies. While most of the 
topologies are irregular, topology A is a pure mesh and 
topology B has a star-like structure.  

V. SIMULATION RESULTS 

The first set of simulation results examines how reducing 
the HelloInterval causes more false alarms to take place and 
how increase in network congestion exacerbates the problem. 
Figure 1 shows the total number of false alarms observed on 
topology C during 1 hour of failure-free operation for different 
HelloInterval values. These numbers were obtained from RED 
simulations assuming that average buffer occupancy persists 
for 100ms to 500ms. Different curves in the figure correspond 
to different congestion levels (modeled by parameter maxQ_). 
As expected, false alarms become more frequent with 
decrease in the HelloInterval value and increase in network 
congestion levels. Further, the impact of increased congestion 
levels seems to be more severe for lower HelloInterval values. 
Clearly, the optimal value of HelloInterval depends on the 
expected congestion levels in the network and an 
understanding of what constitutes an acceptable limit on false 
alarm frequency. Assuming that no more than 20 false alarms 
in an hour can be tolerated and if the average buffer 
occupancy in the router interfaces will rarely rise above 0.5, 
the HelloInterval for topology C can be set to be 250ms. 
However, if the buffer overflows are not uncommon, it will be 
prudent not to reduce HelloInterval below 1.5 seconds. As 
shown in figure 2, if the congestion persists for longer 
durations (200ms to 2s, rather than 100ms to 500ms as in 
figure 1), the number of false alarms observed for a given 
HelloInterval increase further. Again, the increase in false 
alarms is more severe for lower HelloIntervals; hence there is 
a need to be conservative while setting HelloInterval value. 
The results for droptail simulations are shown in figure 3. The 
different curves in figure 3 show results for maxQ_ values 
1.02, 1.05 and 1.1 which correspond to packet drop rates of 
1.96%, 4.76% and 9.09% respectively. Note that with around 
10% overload on the system, any HelloInterval value less than 
10s leads to unacceptable number of false alarms. 

False alarms disrupt traffic in the network and cause 
unnecessary processing load on the routers. The LSAs 
generated as the result of a false alarm will be flooded 
throughout the network and lead to new SPF calculation by 
each router in the network. As the frequency of false alarms 
increases, routers spend more and more time doing 
unnecessary SPF calculations; generally one SPF calculation 
for each false alarm. Some times, for large HelloInterval 
values, a false alarm causes two SPF calculations to be done in 
each router; first one in response to adjacency breakdown and 
second one in response to re-establishment of adjacency 
following successful exchange of Hello messages between the 
routers affected by the false alarm. For smaller HelloInterval 

TABLE II. NETWORK TOPOLOGIES USED IN SIMULATIONS 

Topology Nodes Links Topology Nodes Links 
A 9 72 D 37 88 
B 27 58 E 51 176 
C 27 116 F 116 476 

 

values, a broken adjacency is generally re-established soon 
enough so that only one SPF calculation (scheduled 5 seconds, 
the spfDelay, after receiving the false alarm) is required to 
take care of both changes. Thus, for smaller HelloIntervals, 
since false alarms are corrected soon enough, they may not 
always lead to changes in routing tables and hence re-routing 
of network traffic. Nevertheless, smaller HelloInterval values 
do result in frequent false alarms and thus the processing load 
on the routers because of SPF calculations can become 
significant. Persistent overload on router CPUs can potentially 
lead to total meltdown of routing operation in the network. 
When the frequency of false alarms in the network becomes 
very high, spfDelay and spfHoldTime limit the frequency of 
SPF calculations. This and other previously mentioned effects 
can be seen in figure 4 which shows the average number of 
SPF calculations done by a router in topology C in response to 
false alarms in the simulations whose results regarding false 
alarms were previously shown in figure 1. The LSAs 
generated because of false alarms also impose unnecessary 
processing load on every router since each router may have to 
send and receive an LSA on each one of its interfaces as part 
of flooding of such LSAs. 

Next, we examine the impact of topology characteristics 
on the optimal value of HelloInterval for a network. The 
probability of a false alarm occurring in the network increases 
with the number of links in the network. This trend is clear 
from figures 5 and 6 which show the false alarm occurrence 
during 1 hour for different topologies for congestion levels 
created by maxQ_ values 0.75 and 1 respectively. In figure 7, 
we plot the optimal HelloInterval value for different 
topologies assuming that no more than 20 false alarms per 
hour can be tolerated. It can be seen that the optimal 
HelloInterval value increases with the number of links in the 
topology. Further, as observed earlier, expected congestion 
level in the network plays a significant part in determining the 
optimal value. 

Finally, we examine the impact of lower HelloInterval 
values on the failure detection and recovery times. For this 
purpose, we caused a particular router in topology C to fail 
and observed the failure detection time i.e. the time by when 
all the neighbors of the failed router have detected the failure 
and the failure recovery time i.e. the time by when all the 
routers in the network have finished SPF calculation and 
forwarding table update in response to the failure. The 
simulations used RED packet drop model with maxQ_ value 1 
and average buffer persistency in the range 0.2s to 2s. The 
simulations were conducted for several different seed values 
for the random number generation. In Table 3, we report some 
typical and interesting cases. As expected, the failure detection 
time is within the range 3 to 4 times the HelloInterval. Once a 
neighbor detects the router failure, it generates a new LSA 
about 0.5 seconds after the failure detection. The new LSA is 
flooded throughout the network and will lead to scheduling of 



SPF calculation 5 seconds (spfDelay) after the LSA receipt. 
This is done to allow one SPF calculation to take care of 
several new LSAs. Once the SPF calculation is done, the 
router takes about 200ms more to update the forwarding table. 
After including the LSA propagation and pacing delays, we 
can expect the failure recovery to take place about 6 seconds 
after the ‘earliest’ failure detection by a neighbor router.  

Notice that many entries in Table 3 show the recovery to 
take place much sooner than 6 seconds. This is mainly 
because the reported failure detection times are the ‘latest’ 
ones rather than the ‘earliest’. In one interesting case (seed 2, 
HelloInterval 0.75s), the failure recovery takes place about 2 
seconds after the ‘latest’ failure detection. This happens 
because the SPF calculation scheduled by an earlier false 
alarm takes care of the LSAs generated because of router 
failure. Many times, the failure recovery can be noticed to take 
place much later than 6 seconds after the failure detection 
(notice entries for HelloInterval 0.25s, seeds 1 and 3). Failure 
recovery can be delayed because of several factors. The SPF 
calculation frequency of the routers is limited by spfHoldTime 
(typically 10s) which can delay the new SPF calculation in 
response to the router failure. The delay caused by spfDelay 
has already been explained. Finally, the routers with low 
connectivity may not get the LSAs in the first try because of 
loss due to congestion. Such routers may have to wait for 5 
seconds (RxmtInterval) for the LSAs to be retransmitted. 

The results in Table 3 indicate that a smaller value of 
HelloInterval speeds up the failure detection but is not 
effective in reducing the failure recovery times beyond a limit 
because of other delays like spfDelay, spfHoldTime and 
RxmtInterval. While it may be possible to further speed up the 
failure recovery by reducing the values of these delays, 
eliminating such delays altogether may not be prudent. 
Eliminating spfDelay and spfHoldTime will result in several 
SPF calculations to take place in a router in response to a 
single failure (or false alarm) as different LSAs generated 
because of the failure arrive one by one at the router. The 
resulting overload on the router CPUs may have serious 
consequences for routing stability especially when there are 
several simultaneous changes in the network topology. 
Analyzing how to achieve still faster failure recovery, without 
compromising on routing stability, when failure detection is 
no longer an issue constitutes the logical next step to the work 
presented in this paper. 

VI. CONCLUSION 

 With the current default settings of the OSPF parameters, 
the network takes several tens of seconds before recovering 
from a failure. The main component in this delay is the time 
required to detect the failure using Hello protocol. Failure 
detection time can be speeded up by reducing the value of 
HelloInterval. However, too small a value of HelloInterval 
will lead to too many false alarms in the network which cause 
unnecessary routing changes and may even lead to routing 
instability. In this paper, we explored the optimal value for the 
HelloInterval that will lead to fast failure detection in the 
network while keeping the false alarm occurrence within 
acceptable limits. Our simulation results indicate that the 
optimal value for HelloInterval for a network is strongly 

influenced by the expected congestion levels and the number 
of links in the topology. While the HelloInterval can be much 
lower than current default value of 10s, it is not advisable to 
reduce it to millisecond range as it will lead to too many false 
alarms. Further, it is difficult to prescribe a single 
HelloInterval value that will perform optimally in all cases. 
The network operator should set the HelloInterval 
conservatively taking in account both the expected congestion 
levels as well as the number of links in the network topology. 
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Figure 1 False Alarm Occurence in Topology C For Different HelloInterval 
Values and Congestion Levels. 

Figure 2 Change in False Alarm Frequency As High Drop Rates Persist for 
Longer Durations. 

Figure 3 False Alarm Occurrence in Topology C in Droptail Simulations 

 

 

Figure 4 Average Number of SPF Calculations on a Router in Topology C 
Due to False Alarms Shown in Figure 1. 

Figure 5 False Alarm Occurrence in Different Topologies For Different 
HelloInterval Values; RED Simulations with maxQ_=0.75. 

Figure 6 False Alarm Occurrence in Different Topologies For Different 
HelloInterval Values; RED Simulations with maxQ_= 1. 

 

Topology C, RED Simulations, 
{min_pers, max_pers} = {0.1s, 0.5s}
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Figure 7 Optimal HelloInterval Values for Different Topologies for Different 
Congestion Levels.  

 

TABLE III. FAILURE DETECTION TIME (FDT) AND FAILURE 
RECOVERY TIME (FRT) FOR A ROUTER FAILURE ON TOPOLOGY C WITH 

DIFFERENT HELLOINTERVAL VALUES. (RED SIMULATIONS WITH MAXQ_=1 
AND {MIN_PERS, MAX_PERS} = {0.2S, 2S}) 

Seed 1 Seed 2 Seed 3 Hello 
Intvl 

FDT FRT FDT FRT FDT FRT 

10s 32.08s 36.60s 39.84s 46.37s 33.02s 38.07s 

2s 7.82s 11.68s 7.63s 12.18s 7.79s 12.02s 

1s 3.81s 9.02s 3.80s 8.31s 3.84s 10.11s 

0.75s 2.63s 7.84s 2.97s 5.08s 2.81s 7.82s 

0.5s 1.88s 6.98s 1.82s 6.89s 1.79s 6.85s 

0.25s 0.95s 10.24s 0.84s 6.08s 0.99s 13.41s 

 

 

RED Simulations, 
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