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ABSTRACT

Video-based sensor networks can provide important visud
information in a number of applications including: environmental
monitoring, health care, emergency response, and video security.
This paper describes the Panoptes video-based sensor networking
architecture, including its design, implementation, and
performance. We describe a video sensor platform that can deliver
high-quality video over 802.11 networks with a power requirement
of approximately 5 watts. In addition, we describe the streaming
and prioritization mechanisms that we have designed to alow it to
survive long-periods of disconnected operation. Finaly, we
describe a sample application and bitmapping algorithm that we
have implemented to show the usefulness of our platform. Our
experiments include an in-depth analysis of the bottlenecks within
the system as well as power measurements for the various
components of the system.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: Portable Devices

General Terms
Algorithms, Management, Performance, Design, Security

Keywords
Video Sensors, Video Streaming, Sensors, MPEG, JPEG

1. INTRODUCTION

There are many sensor networking applications that can
significantly benefit from the presence of video information.
These applications can include both video-only sensor
networks or sensor networking applications in which video-
based sensors augment their traditional scalar sensor
counterparts. Examples of such applications include
environmental monitoring, health-care monitoring, emergency
response, robotics, and security/surveillance applications.
Video sensor networks, however, provide a formidable
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challenge to the underlying infrastructure due to the relatively
large computational requirements and the size of the resulting
video data. The amount of video generated can consume the
same bandwidth as potentially thousands of scalar sensors. As
a result, video sensor networks must be carefully designed to
be both low in power consumption as well as flexible enough
to support a broad range of applications and environments.

To understand the flexibility required in the way the video
sensor are configured, we briefly outline three applications. In
environmental observation systems, the tetherless nature of the
application requires video sensors that are entirely self-
sufficient. In particular, the sensors must be equipped with
power that is generated dynamically via solar panels or wind-
powered generators and managed appropriately. In addition,
networking connectivity may be at a premium, including
possibly intermittent or “programmed” network disconnection.
For this application, keeping the sensor continuously running
indefinitely while collecting, storing, and transmitting only the
most important video is the primary goal. For video security
and surveillance applications, the video sensors should filter as
much of the data at the sensor as possible in order to maximize
scalability, minimize the amount of network traffic, and
minimize the storage space required at the archive to hold the
sensor data. The sensors themselves may have heterogeneous
power and networking requirements. In outdoor security
applications, the power may be generated by a solar panel and
may use wireless networking to connect to the archive. For
indoor security applications, the sensors most likely will have
power access and will be connected via wireless or wireline
networks. Finally, for emergency response scenarios, the video
sensors may be required to capture and transmit full-motion
video for a specified period of time (i.e. the duration of the
emergency). The goal in these situations might be to meet a
target operating time with minimal power adaptation, in order
to provide emergency response personnel with the critical
information throughout the incident.

In this paper, we describe the development of the Panoptes
video sensor networking project that is underway at the
Oregon Graduate Institute. In particular, we will describe the
design, implementation, and performance of the Panoptes
sensor node, a low-power video-based sensor. The Panoptes
sensor consists of an Intel StrongARM-based embedded device
that runs at approximately 5 watts of power. For this sensor,
we have implemented an adaptive video delivery mechanism
that can dynamically manage a buffer of data so that it
supports intermittent and disconnected operation. Finally, we
will describe a video sensor application that we have
developed. In this application, we have designed a change
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detection bit-mapping algorithm to allow video data to be
queried efficiently.

In the following section, we provide a description of the
embedded sensor platform, including the software system that
was developed for the sensor. Following the description of the
Panoptes video sensor, we describe a scalable video sensor
application that has been designed to show some of the
features of the video sensors. The experimentation section will
provide an in-depth analysis of the performance of the video
sensor and its subcomponents. In Section 5,we describe some
of the work related to ours and how it differs. Finally, we
conclude with some of our future work and a summary.

Contributions of this paper: We describe the design and
implementation of a low-power, yet high-quality video sensor
platform that can be used for video-based sensor networks.
Then, we describe a dynamic video management and streaming
system for the video sensors that allows the sensor to continue
to operate with intermittent and disconnected operation.
Finally, we propose and demonstrate a bit-mapping algorithm
that allows change detection queries to be accomplished
efficiently.

2. VIDEO SENSOR PLATFORM

In designing a video-sensor platform, we had a number of
design goals that we were trying to accomplish including:

 Low power: Whether power is scarce or available,
minimizing the amount of power required to capture the
video is important. For environments where power is
scarce, minimizing power can significantly increase the
duration of time that the sensors can operate. For
environments where power is plentiful, minimizing power
can significantly increase the number of sensors that can
be economically deployed. For example, in private homes,
owners may be willing to deploy alarge number of 5-waitt
video sensors (equivalent to a night light) while on
vacation. However, they may be unwilling to use
workstation counterparts that could easily consume two
orders of magnitude more power.

« Flexible adaptive buffering techniques: We expect that the
video sensors will need to support avariety of latency and

networking configurations, with a buffer on the sensor
acting as the intermediate store for the data. Of course, the
buffer can hold only a finite amount of data and may need
to have some old data removed to hold new data. The data
that is removed, however, is application dependent. For
some applications, data older than some time prespecified
time may be useless, while in other applications the goal
will be to transmit as much data as possible over the
network no matter how intermittent it is. Two such
applications might include commuter traffic monitoring
for the former case and coastal monitoring for the latter
case. Thus, we require a flexible mechanism by which
applications can specify both latency and a mapping of
priorities for the data that is being captured.

» Power management: A low-power video platform is just
one component of the video sensor. The video sensor also
needs to be able to adapt the amount of video that is being
captured to the amount of power that is available. Just as
in the flexible adaptive buffering techniques, power
management also needs to be flexible. For example, in one

Figure 1. The Panoptes Video Sensor

scenario, the application requirement might be to have the
sensor turn on and capture as much video as it can before
the battery dies. In another scenario, it might be necessary
for the sensor to keep itself alive using only self-generated
power (such as from a solar panel or a wind-powered
generator).

In the following section, we will describe the hardware
platform that serves as the basis of our video sensor
technology. Following that, we will describe the software that
we have developed to help address some of the design
requirements above.

2.1 Panoptes Sensor Hardware

In designing the video sensor, we had a number of options
available to us. The most obvious platform in the beginning
was the StrongARM based Compag IPAQ PDA. This platform
has been used for a number of research projects, including
some at MIT and ISIY. As we will describe in the
experimentation section, we found that the popular Winnov
PC-Card video capture device was slow in capturing video and
also required a large amount of power. The alternative to this
was to find an embedded device, allowing us to move to a
USB-based video camera as well as to remove the LCD video
screen which was unnecessary for the video sensor. The video
sensor that we developed is based on the Intel StrongARM 206
MHz embedded platform. The device is approximately 7
inches long (with the 802.11 card inserted) and approximately
4 inches wide. The sensor has a Logitech 3000 USB-based
video camera, 64 Mbytes of memory, the Linux 2.4.19
operating system kernel, and an 802.11-based networking card.
Note that while 802.11 is currently being used, it is possible to
replace it with a lower-powered, lower frequency RF radio
device. By switching to a USB-based camera platform, we
were able to remove the power required to drive the PC-Card.
The video sensor is shown in Figure 1. The complete device
including the compression and transmission over 802.11
consumes approximately 5.5 Watts of power while capturing
and delivering video of 320x240 resolution at 18-20 fps.

As far as we know, this is the first viable Intel StrongARM-
based video sensor that can capture video at a reasonable frame
rate (i.e. greater than 15 frames per second), while using a
small amount of power. The other platforms that we are aware
of will be described in the related work section.

L http://pads.east.isi.edu/ipag.htm
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Figure 2. Panoptes Sensor Software Components

2.2 Panoptes Sensor Softwar e Ar chitecture

There are a number of options in architecting the software on
the video sensor. The Panoptes video sensor that we have
developed uses the Linux operating system. We chose Linux
because it provides the flexibility necessary to modify parts of
the system to specific applications. The functionality of the
video sensing itself is split into a number of components
including capture, compression, filtering, buffering,
adaptation, and streaming. To connect the components, several
alternatives were considered including a single-threaded
synchronous architecture, a single-threaded asynchronous
architecture, and a multi-threaded architecture with each
component acting as a thread. We chose to use a single-
threaded architecture with asynchronous movement of data
within the system. We felt that this allowed for the most
control over the timing within the system, while allowing the
parts to be specialized for individual applications. The major
components of the system are shown in Figure 2. In the rest of
this section, we will briefly describe the individual
components.

2.2.1 Video Capture

As previously mentioned we chose a USB-based (USB 1.0)
video camera. We are using the Phillips Web Camera interface
with video for Linux. Decompression of the data from the USB
device occurs in the kernel before passing the data to user
space and allows for memory mapped access to decompressed
frames. Polling indicates when a frame is ready to be read and
further processed through a filtering algorithm, a compressor,
or both.

The alternatives we considered were High-Speed USB-based
video devices. These devices, however, are currently not
available in embedded devices. As will be described in the
experimentation section, this has implications on the video
quality that can be captured. The other alternative considered
are the PC-card based cameras such as the Winnov camera.
These cameras, however, typically require higher amounts of
power to operate and deliver lower frame quality and frame
rates than their USB-based counterparts.

2.2.2 Compression

The compression of video frames, both spatially and
temporally, allows for a reduction in the cost of network
transmission. We have currently set up JPEG and differential
JPEG as the compression format on the Panoptes platform.
Although JPEG itself does not allow for temporal compression

of data, it saves on computational cost (relative to MPEG), and
thus power. Compression on the Panoptes sensor is CPU
bound, as a 320X240 4:1:1 YUV frame requires approximately
33 ms of CPU time (StrongARM 206 MHz). As will be shown
in the experimentation section, we have taken advantage of
some of Intel's performance primitives that are available for
the StrongARM processor to make higher frame rates possible.
While low-power video coding techniques are not the focus of
this paper, we expect that other compression technol ogies can
be incorporated into the video sensor relatively easily.

2.2.3 Filtering

The main benefit of a general purpose video sensor is that it
alows for application specific video handling and
transformation to be accomplished. For example, in a video
security application, having the video sensor filter
uninteresting data without compressing or transmitting it
upstream allows the sensor network to be more scalable than if
it just transmitted all data upstream. For environmental
observation, the filter may create a time-elapsed image,
allowing the data to be compressed as it is needed by the
application as well as minimizing the amount that needs to be
transmitted [13]. Finally, in applications that require meta
information about the video (e.g. image tracking), the filtering
component can be set up to run the vision algorithms on the
data.

The filtering subcomponent in our system allows a user to
specify how and what data should be filtered. Because of the
relatively high cost of DCT-based video compression, we
believe that fairly complex filtering algorithms can be run if
they reduce the number of frames that need to be compressed.
For this paper, we have implemented a brute-force, pixel-by-
pixel algorithm that detects whether or not the video has
changed over time. Frames that are similar enough (not
exceeding a certain threshold) can be dropped at this stage if
desired.

2.2.4 Buffering and adaptation

Buffering and dynamic adaptation are important for a number
of reasons. First, we need to be able to manage transmitting
video in the presence of network congestion. Second, for long-
lived, low-power scenarios, the network may be turned off in
order to save precious battery life. In our case, using 802.11
networking accounts for approximately 1/3 of the power
consumption. Finally, in the event that the buffer within the
video sensor fills up, efficient mechanisms need to be in place
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Figure 3. A Dynamic Priority Example

that allow the user to specify which data should be discarded
first.

For our sensor, we employ a priority-based streaming
mechanism to support the video sensor. The algorithm
presented here is different from traditional video streaming
algorithms that have appeared in the literature (e.g. [3],[5]).
The main difference is that in traditional video streaming
algorithms, the video data is known in advance but needs to be
delivered in time for display. For most non-real-time video
sensor applications, the video data is being generated at
potentially varying frame rates to save power and the data
being captured is being generated on the fly.

Priority-Based Adaptation: We have defined a flexible
priority-based streaming mechanism for the buffer
management system. Incoming video data is mapped to a
number of priorities defined by the applications. The priorities
can be used to manage both frame rate and frame quality. The
mapping of the video into priorities is similar to that in [5] or
[8]. The buffer is managed through two main parameters. a
high-water mark and low-water mark. If the buffered data goes
beyond the high-water mark (i.e. the buffer is getting full), the
algorithm starts discarding data from the lowest priority layer
to the highest priority layer until the amount of buffered datais
less than the low-water mark. Within a priority level, data is
dropped in order from the oldest data to the newest. This
allows the video data to be smoothed as much as possible. It is
important to note that the priority mapping can be dynamic
over time. For example, in the environmental monitoring
application, the scientist may be interested in higher quality
video data during low and high tides but may still require video
at other times. The scientist can then incrementally increase
the quality of the video during the important periods by
increasing the priority levels. Figure3 shows one such
dynamic mapping.

Data is sent across the network in priority order (highest
priority, oldest frame first). This allows the sensor to transfer
its highest priority information first. We believe that this is
particularly important for low-power scenarios where the
sensor will disconnect from the network to save power and
scenarios where the network is intermittent. As shown in the
example, the areas labeled (a) and (c) have been given higher
priority than the framesin (b) and (d). Thus, the frames from
the regions labeled (a) and (c) are delivered first. Once the
highest priority data are transmitted, the streaming algorithm
then transmits the frames from regions (a), (c), and (d). Note,

that the buffering and streaming algorithm can accept any
number of priority layers and arbitrary application-specific
mappings from video data to priority levels.

3. THELITTLE SISTER SENSOR
NETWORKING APPLICATION

Video sensor networking technologies must be able to provide
useful information to the applications. Otherwise, they are just
capturing data in futility. In order to demonstrate the
usefulness of video-based sensor networking applications, we
have implemented a scalable video surveillance system using
the Panoptes video sensor. The system allows video sensors to
connect to it automatically and allows the sensors to be
controlled through the user interface. The video surveillance
system consists of a number of components, including the
video sensor, a video aggregating node, and a client interface.
The components of the system are shown in Figure 4 and are
described in the rest of this subsection.

3.1 TheUser Interface

The user interface for the Little Sister Sensor Networking
application that we have deployed in our lab is shown in
Figure 5. In the bottom center of the application window is a
list of the video sensors that are available for the user to see.
Thelist on theright isalist of events that the video sensor has
captured. The cameras are controlled by a number of
parameters which are described in the next section. The video
window on the left allows events to be played back. In
addition, it allows basic queries to be run on the video
database. We will describe the queries that our system can run
in Section 3.3.

3.2 Video sensor software

In this application, the video sensors are fully powered and
employed 802.11 wireless networking to network the sensor to
the aggregating node. To maximize the scalability of the
system, we have implemented a simple change detection
filtering algorithm. The basic goal of the motion filtering is to
identify events of interest and have it capture video for the
event. This algorithm does a pixel by pixel comparison in the
luminance channel. If sufficient pixelswithin amacroblock are
greater than some threshold away from their reference frame,
then the image is marked as different and recording of the
video data begins. The video is then recorded until motion
stops for a user-defined time, event_end time. The
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Figure5. ThelLittle Sister Sensor Networking Application

event_end_time allows us to continue recording in the event
that the object being recorded stops for a while and then
continues movement. For example, a person walking into the
room, sitting down to read a few web pages, and then leaving
may have 5 second periods where no motion is perceived (i.e.
the person isjust reading without moving).

In addition to event recognition component, we propose a
simple bitmapping algorithm for the efficient querying and
access to the stored video data. To accomplish this, we create a
map of the video data as an event that it is recording unfolds.
For each image, a binary bitmap is created where each bit
represents whether or not the luminance block! has changed.
This allows us to create an image bitmap of where the
interesting areas of the video are. Furthermore, as will be
described in the next section, the video aggregation node can
use this to expedite queries for the users.

Upon activation, the sensors read their configuration file to set
up the basic parameters by which they should operate,
including frame rate, video quality, video size, |P address of
the video aggregator, etc. While we statically define the
parameters by which they operate, one can easily imagine
incorporating other techniques for managing the sensors
automatically.

1 8x8 pixel block

3.3 Video Aggregation Software

The video aggregation node is responsible for the storage and
retrieval of the video data for the video sensors and the clients.
It can be at any IP connected facility. There are a number of
components within the video aggregation node. The three
principle parts are the camera manager, the query manager,
and the stream manager.

The camera manager is responsible for dealing with the video
sensors. Upon activation, the video sensors register themselves
with the camera manager. This includes information such as
the name of the video sensor. The camera manager also
handles all the incoming video from the video sensors. In order
to maximize the scalability of the sensor system, multiple
camera managers can be used. One important part of the
camera manager isthat it creates an event_overview_map using
the bit-mapped information that is passed from the video
sensor. The purpose of the event_overview_map is to create an
overview of the entire event to aid in the efficient querying of
the video data. The event_overview_map can be constructed in
a number of ways. In this paper, we describe one relatively
simple technique. Other techniques that track motion over
time and create vectors of motion could also be integrated into
the system.

Union maps take all the image bitmaps for a single event and
combine them together into the event_overview_map using a
bitwise OR. This allows the system to quickly find events of
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interest (e.g. Who took the computer that was sitting here?).
An example of the union map for someone walking through
our lab (Figure 6a) is shown in Figure 6(b).

The query manager is responsible for handling requests from
the clients. Queries are entered into the video window. The
user can left click to highlight 8x8 pixel regions within the
video screen. The user can select any arbitrary shape of regions
of interest. Upon receiving the query, the query manager finds
all events within the system that have one of the regions in its
event_overview_map. The list of matching events is then
returned to the user. As an example, we have shown a sample
query, in which the user highlighted part of the computer at the
bottom of the image (see Figure7). The query manager
responded with only three events. Compared with the large list
of events from the same camera in Figure5, the simple
bitmapping agorithm has reduced the number of events
considerably. Note that the last event on the list is avideo clip
capturing a student moving the computer to his cube.

The stream manager is responsible for streaming events of
interest to the clients. We have implemented the camera,
query, and stream managers as separate components in order to
maximize the scalability of the system. While we have all three
components running on a single host, it is possible to have
them on geographically separated hosts.

4. EXPERIMENTATION

In the first part of this section, we will describe the
experimental results that we obtained from the various
components of the video sensor including metrics such as
power consumption, frame rate, and adaptability to networking
resources.

4.1 USB Performance

One of the interesting limitations of using USB to receive the
video data from the camera is that its internal bandwidth is
limited to 12 megabits per second. This 12 megabits includes
USB packet header overhead so that the actual usable
bandwidth is less. For atypical web camera capturing in 4:2:0
YUV at 320x240 pixel resolution, the theoretical maximum
frame rate sustainable is only 13 frames per second.
Fortunately, or unfortunately, most USB cameras provide
primitive forms of compression over the USB bus using mostly
proprietary algorithms. The alternatives to this are firewire
and USB 2.0. Most of the low-power embedded processors do
not support either technology because the manufacturers feel
that the processors are unable to fully utilize the bandwidth.

When testing the video capture capabilities of the sensor, we
set it up to grab video frames from the camera as quickly as
possible, and then simply discard the data.

For each resolution and USB compression setting, we recorded
the frame rate as well as the amount of load that doing so puts



. . Frame |% System
Image Size | Compression Rate CPU
160x120 0 29.64 4.48
1 29.77 22.29
3 29.88 15.71
320x240 0 4.88 2.85
1 28.72 67.17
3 29.68 44.50
640x480 0 - -
1 14.14 83.66
3 14.73 77.65

Table 1. Effect of USB Compression on Frame Rate
and System Usage

on the sensor. We measured two metrics for a variety of
parameters over 3,000 captured frames: (i) the average frame
rate captured and (ii) the amount of load placed on the system.
To measure frame rate, we took the total frames captured and
divided it by the time required to capture all of the frames.
The latter measurement shows us the load that the driver places
on the system. To measure this, we ran the experiment to
capture 3000 frames and then used the rusage() system call to
find out the user, system, and total time of the experiment. We
then calculated system load by summing the user and system
times and dividing this by the total time.

Table 1 lists the performance of the video sensor using the
various compression settings and frame sizes. The Philip's
based video camera can only be set to three different
resolutions: 160x120, 320x240, and 640x480. As shown in the
table, the sensor is easily able to capture 160x120 video. This
is not unexpected as the total bandwidth required to transmit
160x120 video at 30 frames per second is only 6.9 megabits,
well beneath the USB bus bandwidth limit. For the various
compression levels (1 being a higher quality stream with less
compression and 3 being the lowest quality stream with high
compression), we found that the system load introduced can be
quite significant for the lightweight sensor. At the lowest
compression setting, 22% of the CPU capacity is needed to
decompress the video data from the USB camera. We believe
that much of this time is spent touching memory and moving it
around, rather than running a complex algorithm such as an
IDCT. Using higher compression for the video data from the
USB camera reduces the amount of system load introduced.
We suspect that this is due to the smaller memory footprint of
the compressed frame.

At 320x240, we encounter the Achilles Heel of the USB-based
approach. Using uncompressed data from the camera, we are
only able to achieve a frame rate of 5 frames per second
(similar to the PC-card based approaches). With higher
overhead (i.e. more time for decompression), we can achieve
full frame rate video capture. In addition, we see that the
amount of system load introduced is less than that required for
the 160x120 stream. We suspect that this is again due to 1/0
being relatively slow on the video sensor. At 640x480, the
video camera driver will not let the uncompressed mode be
selected at all. Theoretically, one could achieve about 3
frames per second across the USB bus, but we suspect that if
this mode were available, only 1 frame per second would be
achievable. Using compression, we are able to achieve 14
frames per second, but we pay a significant penalty in having

Image Size IPP ChenDCT
(ms) (ms)
Color 320x240 26.65 73.69
640x480 105.84 291.28
Grayscae 320x240 1941 52.96
640x480 77.42 211.42

Table 2. Standalone Optimized vs. Unoptimized
Softwar e Compression Routines

the video decompressed in the driver.

As an aside, we are currently working on obtaining an NDA
with Philips so that the decompression within the driver can be
optimized as well as possibly alowing us to stay in the
compressed domain.

4.2 Compression Performance

We now focus on the ability of the video sensor to compress
data for transmission across the network. Recall, we are
interested in using general purpose software, so that algorithms
such as filtering or region-of-interest coding can be
accomplished on an application-specific basis. Software
compression also allow us to have control over the algorithms
that are used for compression (e.g. nv, JPEG, H.261, or
MPEG).

To measure the performance of compression on the 206 MHz
Intel StrongARM processor, we measure the performance of an
off-the-shelf JPEG compression algorithm (ChenDCT) and a
JPEG compression algorithm that we implemented to take
advantage of some of Intel's StrongARM Performance
Primitives. In particular, there are some hand-coded assembly
routines that use the architecture to speed up multimedia
algorithms. Among these are algorithms to perform the DCT
algorithm, quantization and Huffman encoding. For test data,
we use a sample image in 4:2:0 YUV planar form taken from
our lab and use it to test just the compression component. For
each test, we compressed the image 300 times in a loop and
averaged the measured compression times.

As shown in Table2, we are able to achieve real-time
compression of 320x240 pixel video using the Intel
Performance Primitives. More importantly, it takes
approximately one third the time using the primitives
compared with using a non-Intel specific software optimized
algorithm.  As shown in the second row of the table,
compressing a larger image scales linearly in the number of
pixels and that we are able to achieve approximately 10 frames
per second using a high-quality image. It should be noted that
the compression times using the IPP are dependent on the
actual video content.

4.3 Component Interaction

Having described the performance of individual video sensor
components, we now focus on how the various components
come together.

Because the capture and compression routines make up a large
portion of the overall computing requirement for the video
sensor, we are interested in understanding the interaction
between them. Table 3 shows the performance of the sensor in
capturing and compressing video data. Interestingly, the
capture and compression with the Intel Performance Primitives
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|mage Size PP ChenDCT

(ms) (ms)
Color 320x240 29.20 80.63
640x480 115.42 319.71
Grayscale 320x240 20.95 57.31
640x480 83.95 228.42

Table 3. Standalone Optimized vs. Unoptimized
Capture and Software Compression Routines

320x240 640x480

(ms) (ms)
PWC Decode 16.96 55.99
JPEG Encode 21.08 85.85
Bitmap Compare 4,05 16.45
Image Copy 1.09 6.29
Msg Create 0.43 1.27
Other 10.35 30.49

Table 4. Average Time per Software Component

results in approximately 4 milliseconds of overhead per frame
captured. This scales linearly as we move to 640x480,
requiring an additional 16 milliseconds per frame. For the
ChenDCT algorithm, using either 320x240 or 640x480 video,
the overhead of capturing data introduces a 24 millisecond
overhead per frame. This seems to indicate that because the
ChenDCT algorithm is unable to keep up the ability to capture
video data that the 1/0O is being amortized during compression.

To fully understand what is going on, we have instrumented a
version of the code to measure the major components of the
system. To do this, we inserted gettimeofday() calls within the
source code and recorded the amount of time spent within each
major code segment over 500 frames. The time spent in each
of these components is shown in Table 4. For the 320x240
pixel images, nearly all the time is spent in the USB
decompression module and compressing the video data. Our
expectation is that with an appropriately optimized USB
decompression module we will be able to achieve near real-
time performance.

For applications where video quality and not video rate is
important, we see that at 640x480 pixel video, we are able to
achieve on the order of 5 frames a second. Finally, we note
that this frame rate is better than previously published results
for 320x240 video data.

4.4 Power Measurements

To determine how much power is being drawn from the video
sensor, we instrumented the sensor with an HP-3458A digital
multimeter connected to a PC. This setup allows us to log the
amount of current (and thus power) being consumed by the
video sensor. To measure the amount of power required for
the various components, we have run the various components
in isolation or layered on top of another subsystem that we
have already measured. The results of these measurements can
be applied to power management algorithms (e.g. [9]).

The results of the experiments are shown in Figure 8. From the
beginning of the trace until about 6 seconds into the trace, the
video sensor is turning on and configuring itself. During this
time, the power being drawn by the sensor is highly variable as
it configures and tests the various hardware components on the
board. Seconds 6 to 10 show the power being drawn by the
system when it is completely idle (approximately 1.5 watts).
Seconds 10-13 show the video camera turned on without
capturing. As shown by the differential from the previous step,
the camera requires approximately 1.5 watts of power to
operate. Seconds 13-16 show the camera sleeping. Thus, over
awatt of power can be saved if the sensor is incorporated with
other low-power video sensor technologies that notify it when
to turn on. In seconds 19-22, we show the power required to
have just the network card on in the system but not
transmitting any data (approximately 2.6 watts). In seconds
22-27, we added the camera back into the system. Here we see
that the power for the various components is pretty much
additive, making it easier to manage power. That is, the jump
in power required to add the camera with and without the
network card in is approximately the same. In seconds 27-38,
we show the entire system running. As one would expect with
awireless network, the amount of power being drawn is fairly
variable over time. Between seconds 38-40, we removed the
camera and the network card, returning the system to idle. We
then ran the CPU in a tight computational loop to show the
power requirements while being fully burdened. Here, we see
that the system by itself draws no more than 2.5 watts of
power. Finally, we put the sensor in sleep mode (seconds 50-
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Figure 9. Dynamic Adaptation Example

System State Power (Watts)
Idle 1.473
CPU Loop 2.287
Camerawith CPU 3.049
Camerain sleep with CPU 1617
Networking on with CPU 2.557
Camera, Networking, CPU 4.280
Capture Running 5.268
Sleep 0.058

Table5. Average Power Requirementsin Watts

55). In the sleep state, the sensor requires very little power
(approximately 0.05 watts of power).

We have summarized the results in Table5. The most
important thing to draw from the experiments is that the power
consumed by the sensor is relatively constant over time. The
only variability comes from the network transmission. As a
result, we expect that the algorithms for power management
that are being worked on by others might fit into this frame
work without much modification.

4.5 Buffering and adaptation

To test the ability of the sensor to deal with disconnected
operation, we have run experiments to show how the video rate
is adapted over time. In these experiments, we have used a
sensor buffer of 4 megabytes with a high and low water mark
of 3.8 and 4 megabytes, respectively.

For these experiments, we first turned on the sensor and had it
capture, compress, and stream data. The experiment then
turned the network card on and off for the times shown in
Figure 9(a). The “on” times are shown as a value of 1 in the
graph, while the “off” state is shown asavalue of 0. Asshown
by Figure 9(b) and (c), the video sensor is able to cope with
large amounts of disconnected time, while managing the video
buffer properly. During down times, we see that the buffer
reaches its high water mark and then runs the algorithm to
remove data, resulting in the sawtooth graph shown in
Figure 9(c). Once reconnected, we see that the buffer begins
to drain with the networking bandwidth becoming more
plentiful relative to the rate at which the video is being
captured. Had the network been constrained, instead of off,
the algorithm would converge to the appropriate level of video.

Larger video sensor buffers behave similarly to the examplein
Figure 9. The only differenceis that a larger buffer allows the
system to be disconnected for longer periods of time.

5. RELATED WORK

There are a number of related technologies to the proposed
system detailed in this paper.

5.1 Video Streaming and Capture Cameras

There are a number of technologies that are available that
capture video data and either store the data to the local hard
disk or stream the data across the network. For example, web
cameras such as the Logitech 3000 camera comes with
software to allow motion-activated capture of video data. The
camera, however, is not programmable and cannot be
networked for storage or retrieval. Other cameras such as the
D-link DCS-1000W are IP streaming video cameras. These
cameras capture data and stream it to the network. They were
designed specifically for video streaming and capture. Thus,
they are not really programmable and would not work for
situations such as environmental monitoring where power is
extremely important.

5.2 Sensor Networking Research

There are a tremendous number of sensor networking
technologies being developed for sensor networking
applications [4]. From the hardware perspective, there are two
important sensors: the Berkeley Mote [7] and the PC-104-
based sensor developed at UCLA [1]. The Berkeley Mote is
perhaps the smallest sensor within the sensor networking
world at the moment. These sensors are extremely low
powered and have avery small networking range. Asaresults
these sensors are really useful for collecting very small
amounts of information. The PC-104-based sensor from
UCLA is the next logical progression in sensor technologies
that provides slightly more compute power. We believe the
Panoptes platform is the next logical platform within the
hierarchy of sensor network platforms. We expect that hybrid
technologies, where Motes and the PC-104-based sensors can
be used to trigger higher-powered sensors such as ours. This
would allow the sensor network's power consumption to be
minimized.

In addition to hardware sensors, there are a large number of
sensor networking technologies that sit on top of the sensors
themselves. These include technologies for ad hoc routing,
location discovery, resource discovery, and naming. Clearly,



advances in these areas can be incorporated into our video
sensor technology.

5.3 Mobile Power Management

Mobile power management is another key problem for long-
lived video sensors. There have been many techniques focused
on overall system power management. Examples include the
work being done by Kravets at UIUC, Noble at Michigan, and
Satyanarayanan at CMU [2][6][9]. We have not yet
implemented power management routines within the video
platform. We expect that the work presented in the literature
can be used to control the frame rate of the video being
captured as well as when the networking should be turned on
and off to save power.

5.4 Video Streaming Technologies

There have been a large number of efforts focused on video
streaming across both reservation-based and best-effort
networks, including our own. As previously mentioned, the
work proposed and developed here is different in that
traditional streaming technologies focus on the continuity
requirements for playback while streaming from video sensors
does not have this restriction.

For video streaming across wireless networks, there have been
a number of efforts focused on maximizing the quality of the
video data in the event of network loss. These schemes are
either retransmission-based approaches (e.g. [12]) or forward
error correction based (e.g. [14]). These techniques can be
directly applied to the Panoptes sensor.
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7. CONCLUSION

In this paper, we have described our initial design and
implementation of the Panoptes video sensor networking
platform. There are a number of significant contributions that
this paper describes. First, we have developed a low-power,
high-quality video capturing platform that can serve as the
basis of video-based sensor networks as well as other
application areas such as virtual reality or robotics. Second, we
have designed a prioritizing buffer management algorithm that
can effectively deal with intermittent network connectivity or
disconnected operation to save power. Third, we have designed
a bit-mapping algorithm for the efficient querying and retrieval
of video data.

Our experiments show that we are able to capture fairly high
quality video running on low amounts of power, approximately
the same amount of power required to run a standard night
light. In addition, we have showed how the buffering and
adaptation algorithms manage to deal with being disconnected
from the network.

While we have made significant strides in creating a viable
video sensor network platform, we are far from done. We are
currently in the process of assembling a sensor with a wind-
powered generator for deployment along the coast of Oregon.

Our objective is to use a directed 802.11 network to have a
remote video sensor capture video data for the oceanographers
at Oregon State. We have an operational goal of having the
sensor stay alive for ayear without power or wireline services.
We are also working on creating an open source platform that
can be used by researchers to include the fruits of their
research. The goal is to have the sensors in use for research
areas such as robotics, computer vision.
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