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CHAPTER 1

INTRODUCTION

‘‘All of the books in the world contain no more information
than is broadcast as video in a single large American city in
a single year. Not all bits have equal value.’’ - Carl Sagan

1.1 Background

Multimedia has a virtually unlimited number of applications that can signifi-

cantly affect the lives of people. Applications such as world-wide-web (WWW) brows-

ers (along with the web-servers they access) allow people to share information in a

multimedia format that includes text, audio, still images, and to an extent, video.

Live-video conferencing and computer supported collaborative work (CSCW) applica-

tions allow physically separated people to interactively discuss and share ideas

through the exchange of multimedia information. Applications such as digital librar-

ies and video-on-demand services promise the retrieval of video for virtually any topic

the user desires. A common thread throughout all these applications is the need for

high quality video within limited resource budgets.

The handling of digital video poses a formidable task to virtually any com-

puter or network system. As an example, a one second 640x480 pixel video clip in 24-

bit mode requires approximately 27.6 Megabytes (MBytes) of data to be handled in

one second. Furthermore, the storage for this uncompressed second of data requires

approximately 150 MBytes. Video compression techniques such as the Motion Pic-

tures Expert Group’s (MPEG) compression standard or Motion-JPEG compression
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greatly reduce the required storage capacity for these videos. These compression

standards, however, result in variable bit rate video and requires additional process-

ing to display. Thus, these video compression techniques result in data that may be

difficult to manage. The difficulty arises from reasons both external and internal to

end host computers. Externally, compressed video data is hard to manage because of

the burstiness that is introduced. From a network point of view, it is difficult to make

guarantees of network resources because at different times, the compressed video

data requires a potentially wide range of different resource requirements. Internally,

compressed video is difficult to handle because of the processing requirements for

decompression and reconstruction.

1.2 Research Objectives

In this dissertation, we take an in-depth look at how burstiness introduced by

compression standards such as MPEG and Motion-JPEG affects the handling of

video data. We concentrate on the handling of bursty prerecorded video data that

may be found in an interactive educational system or an interactive video-on-demand

video delivery system. Our three-fold approach looks at smoothing the requirements

for network data, delivering the video data across networks, and finally how end pro-

cessors can deal with the burstiness.

The use of these video compression techniques can be applied to both live and

stored video applications; however, the handling of the data for these two types of

applications have different requirements. Live video applications are typically con-

strained by the need for network bandwidth scheduling decisions to be made on-line

and the delay between sender and receiver minimized. As a result, handling com-

pressed live-video typically requires that statistical guarantees be made for both net-

work and system resources or adjusting the picture quality to fit within a fixed size

channel. On the other hand, stored video applications have different needs for net-

work and system resources. Because the video is stored, the delay between sender
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and receiver does not necessarily need to be minimized as long as the data is received

by the playback instance. Thus, buffering can be an effective tool for handling of com-

pressed prerecorded video data.

For the delivery of prerecorded video data, we introduce the notion of critical

bandwidth allocation. This bandwidth smoothing technique creates a bandwidth

allocation plan for the delivery of the video data given a priori knowledge of the video

data. The critical bandwidth allocation technique allows for the retrieval of stored

video that does not require any initial prefetching (and hence, delay) and results in a

monotonically decreasing sequence of bandwidth allocations. Given some fixed buffer

size constraint, the critical bandwidth allocation algorithm creates plans for the con-

tinuous playback of stored video that have (1) the minimal number of bandwidth

increases, (2) the smallest peak bandwidth requirement, and (3) the largest mini-

mum bandwidth requirement. We extend this idea into an optimal bandwidth alloca-

tion policy that, in addition to the critical bandwidth algorithm properties, also

minimizes the total number of bandwidth changes required for the continuous play-

back of stored video.

While the use of bandwidth smoothing techniques are effective at removing

the peak bandwidth requirements of networks for a single video stream, smoothing of

bandwidth through the prefetching of data makes the bandwidth plans somewhat

rigid. This, in turn, makes it difficult to support VCR capabilities such as stop, pause,

rewind, and fast-forward. To support these interactive functions, we introduce the

notion of the VCR-window, which allows users to have full-function VCR capabilities

within a limited segment of video around the playback point without having to

change the level of the bandwidth reservations. For accesses outside the VCR-window

re-negotiation of network resource may be necessary. To allow for these accesses, we

show how the use of a “contingency channel” for stored video can be used to resyn-

chronize the delivery of video back with the original bandwidth allocation plan. To
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show the applicability of the VCR-window, we introduce a resource reservation

scheme that can be used in conjunction with the VCR-window.

Once the video has been delivered to the end user’s machine, the video must

be decompressed and played back for the user. We examine the effects that software

decompression of MPEG video has on processor performance. The software decom-

pression of MPEG video typically makes poor utilization of processor caching,

because the information used across frames in MPEG reconstruction does not typi-

cally stay in the cache long enough for the processor to benefit from its reuse. To

examine the issues involved with the software decompression of video data, we exam-

ine two techniques for improving processor caching: 1) reducing the effective working

set size of the decompression algorithm and 2) providing a prefetch instruction and

the associated circuitry to “warm” the cache for data that is anticipated to be

accessed.

To reduce the working-set, we introduce the notions of vertical and horizontal

striping for the decompression of MPEG video. These traversal algorithms visit (and

decompress) the macroblocks of the compressed video stream using a different order

than implied by the MPEG standard. As a result, the macroblocks that may be

needed by other frames have a higher probability of remaining in the cache and being

re-accessed. To keep caches “warm” with macroblock data for video decompression,

we examine the feasibility of prefetching data that is expected to be accessed in the

near future and to prefetch the data before it is needed. Software controlled prefetch-

ing is supported on some current processors.

1.3 Outline of the Dissertation

The structure of the dissertation is as follows. In Chapter 2, we present neces-

sary background for the rest of the chapters. We begin by describing our assumptions

about the structure of the video-on-demand system. We also describe the work that

has been introduced for video servers and for video retrieval techniques. A discussion
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of compression technologies and how burstiness is introduced into video streams is

presented. Finally, we conclude the chapter with a description of a video capture test-

bed that we used to capture over 30 GBytes of video data for use as sample clips in

this dissertation.

Chapter 3 deals with the problem of delivering a single compressed prere-

corded video stream across networks. Specifically, we describe two broad classifica-

tions of smoothing techniques: window-based and non-window-based smoothing

techniques. We present two window-based techniques that smooth bandwidth

requirements based on some maximum delay (window) that each frame must adhere

to. We then present the critical bandwidth allocation algorithm and the optimal

bandwidth allocation algorithm, which do not adhere to a window, allowing bursti-

ness to be smoothed over larger stretches of video. Finally, we compare, contrast, and

summarize the differences between the various algorithms.

In Chapter 4, we focus on the problem of handling multiple video streams.

Specifically, we introduce the VCR-window and describe how burstiness affects the

ability to provide VCR functionality. We then describe a contingency channel mecha-

nism that can be used for accesses outside of the VCR-window, where renegotiation of

network bandwidth may need to be done. To show how the VCR-window can be used

we describe an in-advance resource reservation scheme for scheduling network

resources. Finally, we then use our sample video clips to show the effectiveness of the

VCR-window and its affect on the underlying network manager.

Chapter 5 deals with the software decompression of MPEG video streams. We

describe the following two methods for reducing miss rates of software MPEG video

decompression: 1) reduce the working set size and 2) add a prefetch instruction to

reduce processor cache misses. To reduce the working set size, we introduce the tech-

niques called horizontal and vertical striping, which re-order the traversals during

the reconstruction of macroblocks, making better use of data that resides in the
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cache. We then contrast and compare these algorithms based on cache simulations as

well as an implementation of these algorithms. The alternative to re-ordering of mac-

roblock traversals is the use of a software-controlled prefetch instruction that fetches

data before it is needed. To show the effectiveness of a prefetching instruction for

MPEG video decompression, we examine how two different prefetching strategies can

be used to reduce the memory access penalties.

In Chapter 6, we review the contributions of this dissertation and summarize

some of the key findings of this research. Finally, we present some future directions

for research in these areas.
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CHAPTER 2

PRELIMINARIES

‘‘”The beginning is the most important part of the work.”-
Plato

In this chapter, we present the necessary background for the remaining chap-

ters of this dissertation. We describe the current trends in video-on-demand systems,

highlighting the work on video-on-demand servers and network transportation proto-

cols. In addition, we describe the relevant details of image and video compression

necessary for the understanding of this dissertation.

2.1 Video Retrieval Systems

Video retrieval systems involve two separate layers: the timely retrieval of

information from video-based file systems and the real-time transfer of the data to

end users. In this section, a description of academic and industrial efforts aimed at

providing real-time access to video file systems is given followed by a description of

high level protocols that attempt to reserve bandwidth specifically for video data.

2.1.1 Video-On-Demand Architectures

Video-on-demand (VOD) systems that have been proposed in the literature

typically consist of three main components: a large archive server, an intermediate

cache server, and clients (Figure 2.1). Recent developments in file systems and disk

systems such as RAIDs (Redundant Array of Inexpensive Disks) allow file systems to

achieve greater throughputs, alleviating some potential bottlenecks in the file sys-
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tem. As a result, it is now possible for a single VOD server to handle many clients

simultaneously.

Typically, one or more archive servers reside at the top of the VOD hierarchy.

These servers typically have large tertiary storage devices, such as magnetic tape

jukeboxes for mass storage of video at a relatively low cost[21]. To allow for efficient

transport of video to the caching servers, the archive servers download the requested

data on to large disks on the archive server. The requested data is then transferred in

bulk to the cache servers.

A cache servers consists of several large disks (on the order of 50-100 GBytes)

so that the more popular videos can be cached in their entirety [1,32,47,56], distribut-

ing the load of access requests away from the archive servers. Video requests that are

...
...

...

...
...

...

... Archive Server

Cache Servers

Clients

Figure 2.1: A Sample Video-On-Demand Architecture. This figure shows a
sample hierarchical VOD architecture. The archive server typically
consists of a large tertiary storage such as magnetic tape and large disks
to hold entire movies. The cache servers act as load balancers for the more
popular movies. Clients may consist of either workstations or set top
boxes.
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not present on the cache servers are requested from an archive server. Because the

cache servers have enough buffering to hold on the order of 50-100 movies, the deliv-

ery of the video data from the archive server can be transferred in a large burst of

bandwidth into the caching server’s disk. We expect that a large portion of the video

requests would be handled by the caching servers. One recent study suggests that the

access frequencies for various movies can be modeled by a Zipf distribution model,

and that only 38 movies cover more than 70% of all requests in a single week[12].

Note that the set of clients that a caching server may service is not fixed. A client may

choose one of a number of nearby servers, just as a customer at a video rental store

may go to the next convenient store in the vicinity, if the client cannot find the title of

the movie that they are looking for.

The clients within the VOD architecture consist of either desktop computers

with support for digital video or a set-top-box devoted solely for viewing compressed

video. We assume that clients have some buffering available (either disk or RAM) for

smoothing of network bandwidth requirements, but in order to keep consumer costs

down, we expect that these client boxes do not have large reserves of buffering avail-

able. We also assume that the clients contain enough intelligence to create bandwidth

allocation plans and to interact with the network and servers. Because of these con-

straints, the transportation of video from the cache server to the clients must be mon-

itored so that the clients are not over-run with data or starved of data. In addition,

these interactions must be made such that the underlying link layer can be used as

effectively as possible.

The network provides the pathway between the video servers and their cli-

ents. The only assumption we make about the network is that it can provide network

resource guarantees based either on some rate-based or real-time channel

approach[2,84] and that the network provides some mechanism for in-advance reser-

vations of bandwidth [14,31,83]. The network resource guarantees are necessary to

ensure a quality of service (QOS) level to the users. We assume that the bandwidth
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reserved on these channels will be delivered assuming the channel has already been

admitted. Furthermore, we assume that the admission control and the reservations

for network resources can be done in advance, making network scheduling and load

estimation easier for the network [55].

2.1.2 Video retrieval techniques

The delivery of data to a client can be handled in one of several ways. The sim-

plest approach is to deliver the video in a best-effort fashion, resulting in no guaran-

tees in QOS. As a result, packets may be arbitrarily delayed or dropped. Delivering

high quality video in this environment has been studied in the literature [44]. At the

other end of the spectrum, bandwidth can be reserved at the peak bandwidth require-

ment for the video. Allocating at the peak bandwidth requirements without band-

width smoothing, however, results in very conservative estimates of the actual

resources required. In between these extremes lies two other techniques, statistical

multiplexing and bandwidth smoothing techniques.

Statistical multiplexing has been introduced to take advantage of the law of

large numbers. This technique reserves bandwidth for a video channel very near to

the mean of the video frame sizes expected[68]. Then, during the delivery of data,

each video stream transmits a frame of video every 1/30th of a second, where the var-

ious multiplexed streams approach the sum of all the averages. This method typically

can deliver 95% or more of all packets provided that the channel can deliver a signifi-

cant number of streams, but no guarantees on the delivery of a packet are given. Sta-

tistical multiplexing techniques are suitable for live-video applications, where frames

are being digitized and transmitted in real-time. For stored video applications, the

use of statistical multiplexing implies that the server must transmit one frame every

1/30th of a second. This, however, results in a large amount of burstiness that the

server has to account for in its retrieval off of slower storage devices, leading to scal-

ability problems.
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Unlike statistical multiplexing schemes, bandwidth smoothing techniques

attempt to remove the burstiness of the video by introducing delay so that the band-

width requirements can be reduced. Bandwidth smoothing techniques require buffer-

ing to reduce the variance in necessary bandwidths. For video-on-demand systems,

bandwidth smoothing techniques are useful because they do not require that the time

between video capture and video playback to be minimized. As a result, resource allo-

cation plans can be made before playback begins, resulting in channels that can have

bandwidth guarantees. In addition, bandwidth smoothing techniques allow the load

on the video servers to be smoothed, resulting in a more scalable design.

2.2 Compression Technologies

In order to reduce the sheer amount of data that is required to represent an

image, compression technologies have been developed that have a compression ratio

of roughly 25:1 for still images and 50-100:1 for video. The additional compression

derives from dependencies between frames. In this section, we present a high-level

description of the Joint Photographic Expert’s Group (JPEG) image compression

standard and the Motion Picture Expert’s Group (MPEG) video compression stan-

dard. The JPEG standard, while originally aimed at still-images, forms the basis for

the MPEG video compression standard and is therefore necessary for the under-

standing of the MPEG video standard. Following our discussion of JPEG, we then

give a high-level description of the MPEG motion video compression standard in as

much detail as necessary for the discussions in this dissertation.

2.2.1 JPEG Image Compression

The JPEG image compression standard is a ‘‘lossy’’ image compression tech-

nique that uses knowledge of visual perception of the human eye to allow for a rela-

tively high compression ratio. We refer readers interested in the lower level details to

the JPEG standard and its companion introductory paper [81].
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The JPEG compression standard comprises of four main steps (Figure 2.2).

The compression algorithm operates on 16 pixel by 16 pixel squares called minimum

coding units or macroblocks. For each macroblock, a conversion from the red, green,

blue (RGB) color space into the YUV color space is performed. This transformation

allows the more important luminance component (Y) to be separated from the two

chrominance channels U and V. The luminance component is essentially the bright-

ness of each pixel. The human eye is most sensitive to small changes in the lumi-

nance component, while changes in the chrominance channels must be larger to be

easily perceived by the human eye. Once the YUV transformation is complete, the

luminance component is subdivided into four 8x8 pixel blocks, while the chrominance

components are subsampled from two 16x16 pixels blocks into two 8x8 pixel blocks,

one for the U channel and one for the V channel. As a result this step is somewhat

‘‘lossy’’ in the chrominance channels. Next, these six 8x8 blocks are compressed.

Compression in JPEG takes place in three steps: discrete cosine transforma-

tion (DCT), quantization, and entropy encoding. First, the DCT transforms each of

the 8x8 pixel blocks into the frequency domain. This transformation moves the lower

frequency components into the upper left corner of the block while moving the higher

frequency components into the lower left corner. Thus, the average or DC level of

each block is in the upper left corner. The other 63 coefficients are called the AC val-

ues. In the second step, the coefficients are quantized into discrete levels giving

coarser distinctions for higher frequency components. This is considered the ‘‘lossy’’

YUV
Conversion

DCT Quantization
Entropy

Encoding
RGB
Image

Compressed
Image

Figure 2.2: JPEG Overview. This figure shows the four main steps involved
in compressing an image into the JPEG format. 1) Conversion of RGB
color space to YUV color space, 2) Transformation into frequency domain
via discrete cosine transform (DCT), 3) Quantization of DCT values, and 4)
Entropy encoding (using either Huffman or arithmetic encoding).
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part of the compression standard. The JPEG standard allows for varying qualities by

allowing the coarseness of the quantization matrix to be specified by the user. The

more bits that are used in the quantization (and hence more levels), the closer the

reconstructed picture is to the original. Finally, the run-length encoded coefficients

for each block are compressed with either Huffman or arithmetic encoding. To

retrieve the original image the above process is reversed.

2.2.2 Motion JPEG and MPEG Video Compression

In order to compress video streams, a natural extension of the JPEG still

image standard is to apply it to a stream of successive images for video, resulting in a

stream of JPEG compressed images (Motion-JPEG or MJPEG). While relatively sim-

ple, this compression technique does not take advantage of similarities between

frames. Because of high frame to frame correlation, the similarities between frames

can be used to achieve considerably higher compression rates. The MPEG video com-

pression standard is a layered video compression standard that results in VHS qual-

ity compressed video stream that has a bit rate of approximately 1.5 Mbit/second. To

support future broadcast quality video, the MPEG-2 video standard results in the

compression of 720x480 video at 60 frames per second into a stream of 4 to 10

Mbits[71]. The standard itself specifies a syntax that all MPEG encoded streams

must follow, but within the standard there are many different encoding schemes that

can be used.

At a high level, MPEG video sequences consist of several different layers that

provide the ability to randomly access a video sequence as well as provide a barrier

against corrupted information. The six layers within MPEG are shown in Table 2.1

along with their main functions within the standard.

All MPEG frames are encoded in one of three different ways: Intra-encoded (I-

Frames), Predictive-coded (P-Frames), or Bidirectionally-predictive-coded (B-

Frames). As shown in Figure 2.3, each frame type in an MPEG stream can depend on
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up to two other frames, trading off degree of compression for random access and com-

putation. I-frames are encoded as discrete frames, independent of adjacent frames.

Thus they provide randomly accessible points within the video stream. Because of

this, I-frames have the worst compression ratio of the three frame types. P-frames

are coded with respect to a past I-frame or P-frame. The B-frames require a preceding

and a following frame, which may be either I-frames or P-frames, in order to be

decoded, but they offer the highest degree of compression. To allow for maximal com-

pression and quality of picture, the individual macroblocks within B and P-frames

may also be coded in several ways depending on the correlation of the macroblock to

the frames on which they depend (seeTable 2.2). A macroblock in a B-frame, for

example, can be encoded in one of five ways. All macroblocks can be intra-encoded

MPEG Layer Function

Sequence Layer Random Access Unit: context

Group of Pictures Layer Random Access Unit: video

Picture Layer Primary Coding Unit

Slice Layer Resynchronization Unit (within picture)

Macroblock Layer Motion Compensation Unit Within Slice

Block Layer DCT Unit Within Macroblock

Table 2.1: The MPEG Video Compression Layers

B-frame

P-frame

I-frame

Figure 2.3: MPEG Frame Dependencies. This figure shows the frame
dependencies for the macroblocks within an MPEG encoded video stream.
The actual pattern of these frame types may vary depending on the
amount of random access required.

Frame 0 1 2 3 4 5 6 7 8 9
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(stand-alone) if there is not a high enough correlation with the frames on which they

can be dependent on. Because the B-frames can depend on frames in the future, when

encoding, the MPEG stream is rearranged so that the dependent frames are placed

after the frames that they depend on. Figure 2.4 shows the reordering that occurs for

the sample clip from Figure 2.3. For clarity of discussion, we refer to the frames upon

which the P and B frames depend as key frames.

The Group of Pictures Layer (GOP) allows the user to group together any arbi-

trary number of frames starting with an I-frame. The GOP is a self-contained unit

and therefore can be viewed by itself without looking at the GOPs surrounding it in

the sequence. For MPEG encoded videos with multiple frame types, each GOP is gen-

erally set to start on every I frame. Thus, the example clip shown in Figure 2.3 is gen-

skippedbidirectionalbackwardforwardintra

Types of macroblock encodingsFrame

Type

I

P

B

Table 2.2: MPEG Macroblock Encodings. This table shows the possible
macroblock encodings for different frame types. I frames have no
dependencies and each macroblock must be intra-coded. P frames can
have up to 4 macroblock dependencies with non-zero motion vectors,
while B frames can have up to 8 macroblock dependencies if
bidirectionally encoded.

B-frame

P-frame

I-frame

Frame 0 3 1 2 6 4 4 9 7 8

Figure 2.4: MPEG Encoding Order. This figure shows the actual ordering
of the compressed frames within the MPEG encoded video stream for the
sample clip shown in Figure 2.3.
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erally encoded with 6 frames per GOP. The actual number of frames required by each

GOP, however, can vary and is not fixed by the MPEG standard.

Our research is mainly focused at the picture level for the delivery of com-

pressed video across networks, and at the macroblock level for the reconstruction of

MPEG video in software. To fully understand the lower layers of MPEG encoding, we

refer readers to the MPEG compression standard which provides information down

to bit level of how MPEG is encoded[8]. A higher level description of MPEG can be

found in [54].

2.3 Video Compression and Burstiness

An understanding of how burstiness is introduced into a video stream can pro-

vide insight into the effective handling of compressed video. The MJPEG compression

technique applies the JPEG compression standard to each individual frame within a

video stream. As a result, the burstiness in a MJPEG video stream is purely a result

of differences between frames. Because each macroblock must have an average DC

value, the differences in compression are mainly a result of the difference in the high

frequency components. For video streams that have roughly the same scene content,

such as a typical video conference or lecture, the bit rate generated by MJPEG is

fairly stable. As an example, consider the video sequence shown in Figure 2.5. The

Seminar video consists of a speaker standing in front of an overhead projector pre-

senting a talk. The inverted spikes that occur fairly regularly are a result of the

speaker removing a transparency from the overhead projector, thus eliminating the

need for a lot of high frequency components to represent the words and figures from

the overhead projector. As a result, the difference in the various levels in the Seminar

video are due to the transparencies and not the movement of the speaker. On the

other hand, videos that have many different scenes generally have more burstiness

due to the larger varying amounts of high frequency data. As an example, the movie

Speed (see Figure 2.6) has frame averages that covered a wide range of bit-rates.
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Because MPEG video compression techniques uses the same basic DCT com-

pression algorithm as JPEG, the bit-rates for an all I-encoded video are similar to

those of a MJPEG compressed video. To take advantage of temporal correlation

between frames, MPEG compressed videos usually consist of a fixed pattern of I, P

and B frames. While the use of P and B frames typically cause burstiness within the

pattern, they do not really affect the long-term burstiness of the video data for two

reasons. First, the P and B frames generally require fewer bits to represent, which

results in a smaller variation within each frame type (P and B). Second, the frame

sizes of P and B frames are not correlated with the sizes of their key I frame. This

stems from the fact that good motion compensation techniques remove much of the

high frequency data. As a result most of the bits in the frame are devoted to encoding

vectors that represent the motion of the macroblocks between frames. Figure 2.7
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Figure 2.5: Seminar Example. This figure shows the 3 second frame
averages (in Bytes) for a video recording of a M-JPEG compressed
(320x240 @ 30 fps, 90 quality) seminar. This seminar shows a speaker
presenting the seminar on an overhead projector with transparencies.
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shows how the pattern burstiness introduced by MPEG P and B frames differs from

the long-term burstiness. In particular, note that the B-frames within the MPEG-

encoded clip have a very small variance.

2.4 A Video Capture Testbed

In performing our experiments for this dissertation, we were interested in

how the smoothing of bandwidth requirements for a single video affects the underly-

ing services as well as how the interactions between videos may affect the utilization

of the underlying network. In order to effectively test these, we required a video cap-

ture testbed capable of capturing a large amount of video data. In addition, capturing

large amounts of video allowed us to study the differences that varying subjects of

video had on compression and the burstiness that they introduced into the video

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 20 40 60 80 100 120 140 160 180 200

B
yt

es

Frame Number (x 1000)

  Speed (3 sec averages)

Figure 2.6: Movie Example.This figure shows the 3 second frame averages
(in Bytes) for the movie Speed M-JPEG compressed (320x240 @ 30 fps, 90
quality).
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stream. Using this PC-based test bed, we were able to capture many videos of varying

length and subject material for our video library.

Our PC testbed consists of a Pioneer Laser Disc player, a MiroVideo DC1tv

capture board, and a Pentium 90 processor with 32 MB of memory. The MiroVideo

Capture board is a Motion-JPEG compression board containing the C-Cube Microsys-

tems’ Motion-JPEG chip, the CL550. Because the smoothing algorithms we introduce

are most sensitive to the changes in scene content, we felt the additional (order of

magnitude) cost for a real-time MPEG encoder would not significantly change our

results. Furthermore, because the basic routine for encoding I-frames within an

MPEG video are based on the JPEG compression standard, the frame sizes for our

experimental video data are roughly equivalent to all I-frame encoded MPEG video
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movies. The MiroVideo board digitized the movies at 640x480 and then subsampled

them to 320x240 with guaranteed VHS picture quality.

2.5 A Video Library

Using our PC video capture testbed, we digitized 20 video clips, representing

31 hours of video, which totalled 38.5 GBytes of JPEG-compressed video data. In dig-

itizing the video data, we attempted to capture a variety of different movies in order

to have a fairly representative set of movies that might be handled. The Beauty and

the Beast video is an animated Walt Disney movie, resulting in scenes with a lot of

high frequency components as well as scenes that had large areas of constant color.

The 1993 NCAA Final Four video is a documentary describing the NCAA Final Four

basketball tournament, resulting in many scenes with lots of detail. As a result, the

1993 NCAA Final Four video had the highest average bit rate. In addition, we cap-

tured several seminars and lectures to study the compression of ‘‘educational’’ videos.

Because these videos were single scene videos, they resulted in the smallest variation

in frame sizes. The rest of the movies are a mix of conventional entertainment con-

taining a wide range of scene content, including digital effects and animations. As

can be seen by the statistics for these movies found in Table 2.3, the captured data

resulted in a wide range of compression ratios. Table 2.3 also shows that the bit-rates

for these Motion-JPEG encoded movies were higher than the bit-rate specified for the

MPEG video standard.

The 64 frequency components of the 8x8 block produced by the DCT algorithm

are quantized at a level of coarseness determined by a quantization matrix. This

matrix can be adjusted by scaling an overall picture quality factor. We captured the

movie E.T. - the Extra Terrestrial at three different qualities, 75, 90, and 100. These

numbers do not express linearly the quality that is seen by the user. For our sample

E.T. video, picture qualities of 75, 90, and 100 resulted in bits per pixel measure-

ments of 0.66, 0.94, and 1.64 bits per pixel, respectively. According to an introductory



21

JPEG paper, 0.66 bits per pixel corresponds to ‘‘good to very good’’ quality, 0.94 bits

per pixel corresponds to ‘‘excellent’’ picture quality, and 1.64 bits per pixel corre-

sponds to a quality that is ‘‘usually indistinguishable from the original’’[81].

For comparison of the different movies, we have graphed the 3 second frame

averages for all the movies digitized (Figure 2.8 to Figure 2.27). These graphs show

the pattern of variation within each movie and how the burstiness was introduced.

Note the low variation in the three seminar videos in contrast to the other videos.
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Table 2.3: Video Movie Library Statistics. This table shows the statistics that
were gathered for the video clips in our video movie library.

Title Quality
Total Size
(GBytes)

Length
(min)

Ave. Size
(bytes)

Largest
Frame

Smallest
Frame

Mbps Std. Dev.

Beauty and Beast 90 1.82 80 12661 30367 2701 3.04 3580

Big 90 2.26 102 12346 23485 1503 2.96 2366

Croc. Dundee 90 1.82 94 10773 19439 1263 2.59 2336

E.T. 100 3.11 110 15749 30553 6827 3.78 3294

E.T. 75 1.24 110 6305 14269 1511 1.51 1840

E.T. 90 1.78 110 9022 19961 2333 2.17 2574

Home Alone 2 90 2.35 115 11383 22009 3583 2.73 2480

Honey, I Blew Up the Kid 90 2.12 85 13836 23291 3789 3.32 3183

Hot Shots 2 90 1.92 84 12766 29933 3379 3.06 3240

Jurassic Park 90 2.50 122 11363 23883 1267 2.73 3252

Junior 90 2.71 107 14013 25119 1197 3.36 3188

Rookie of the Year 90 2.22 99 12435 27877 3531 2.98 2731

Seminar 90 0.98 63 8604 10977 7181 2.07 592

Seminar2 90 1.08 68 8835 12309 1103 2.12 608

Seminar3 90 0.88 52 9426 11167 7152 2.26 690

Sister Act 90 2.06 96 11902 24907 1457 2.86 2608

Sleepless in Seattle 90 1.72 101 9477 16617 3207 2.28 2459

Speed 90 2.46 110 12374 29485 2741 2.97 2707

Total Recall 90 2.34 109 11978 24769 2741 2.88 2692

1993 NCAA Final Four 90 1.21 41 16456 29565 2565 3.95 4138
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Figure 2.8: Beauty and the Beast - 3 second frame averages

Figure 2.9: Big - 3 second frame averages

Figure 2.10: Crocodile Dundee - 3 second frame averages
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Figure 2.11: E.T. (Quality 75) - 3 second frame averages

Figure 2.12: E.T. (Quality 90) - 3 second frame averages

Figure 2.13: E.T. (Quality 100) - 3 second frame averages
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Figure 2.14: Home Alone II - 3 second frame averages

Figure 2.15: Honey, I Blew Up the Kid - 3 second frame averages

Figure 2.16: Hot Shots, Part Deux - 3 second frame averages
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Figure 2.17: Jurassic Park - 3 second frame averages

Figure 2.18: Junior - 3 second frame averages

Figure 2.19: Rookie of the Year - 3 second frame averages
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Figure 2.20: Seminar - 3 second frame averages

Figure 2.21: Seminar2 - 3 second frame averages

Figure 2.22: Seminar3 - 3 second frame averages
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Figure 2.23: Sister Act - 3 second frame averages

Figure 2.24: Sleepless in Seattle - 3 second frame averages

Figure 2.25: Speed - 3 second frame averages
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Figure 2.26: Total Recall - 3 second frame averages

Figure 2.27: 1993 NCAA Final Four - 3 second frame averages
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CHAPTER 3

BANDWIDTH SMOOTHING ALGORITHMS

‘‘Never underestimate the bandwidth of a station wagon
full of tapes hurtling down the highway.’’ - Andrew S.

Tanenbaum, Computer Networks, Second Edition, p. 57

3.1 Introduction

In this chapter, we address the issues involved with smoothing the bandwidth

requirements for a single stream of video data. Video applications, such as video-on-

demand services, rely on both high-speed networking and data compression. Data

compression can introduce burstiness into video data streams, which complicates

the problem of network resource management. For live-video applications, the prob-

lem of video delivery is constrained by the requirement that decisions must be

made on-line and that the delay between sender and receiver must be limited. As a

result, live-video applications may have to settle for weakened guarantees of ser-

vice or for some degradation in quality of service. Work on problems raised by the

requirements of live video includes work on statistical multiplexing[11,69], smooth-

ing in exchange for delay[52], jitter control[63,78], and adjusting the quality of ser-

vice to fit the resources available[59,60]. For stored video applications, on the other

hand, the system can take a flexible approach to the latency of data delivery. In par-

ticular, it can make use of buffering to smooth the burstiness introduced by data

compression. Because the entire video stream is known a priori, it is possible to cal-

culate a complete plan for the delivery of the video data that avoids both the loss of
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picture quality and the wasting of network bandwidth through overstatement of

bandwidth requirements.

The utility of prefetching is quite simple to explain. Since the bytes for any

given frame can be supplied either by the network or by a prefetch buffer, the bursti-

ness of the network bandwidth requirement can be compensated for by filling the

prefetch buffer in advance of each burst, by delivering more bytes than needed across

the network, and draining it in the course of the burst. The size of the prefetch buffer

determines the size of burst that can be averaged out in this way. With a small buffer,

only a limited amount of data can be prefetched without overflowing the buffer, so the

bandwidth required of the network may remain relatively bursty. With a larger

buffer, there is the possibility that most of the burstiness of a video clip can be elimi-

nated through prefetching. This, however, requires a plan for prefetching the data

that ensures that the large buffer is filled in advance of bursts that place a high

demand upon the buffer.

In this chapter, we examine how the addition of a smoothing buffer can

smooth the necessary bandwidth requirements from the underlying network for a

single video stream. We present smoothing techniques that fall into two broad

categories: window-based and non-window-based smoothing techniques. We refer to

algorithms that smooth bandwidth based on some maximum number of frames as

window based smoothing algorithms. On the other hand, we refer to algorithms

which make smoothing decisions based on the size of the smoothing buffer alone as

non-window based smoothing techniques. We introduce the notion of critical

bandwidth allocation for the delivery of compressed prerecorded video. This

algorithm minimizes the number of bandwidth increases as well as the peak

bandwidth requirement for the continuous playback of stored video. To the best of our

knowledge, the critical bandwidth allocation approach is the first reported work that

uses non-window based buffering for the delivery of stored video [22]. In addition to

the critical bandwidth algorithm, we present an optimal bandwidth allocation
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algorithm that also minimizes the total number of changes required to play back

stored video.

We present window-based and non-window-based smoothing techniques in

Section 3.2 and Section 3.4, respectively. In these sections we state the theorems that

apply to the use of the critical bandwidth techniques. For clarity of presentation, we

have put all the proofs of these theorems at the end of the chapter. In Section 3.4, we

compare the various smoothing algorithms and demonstrate the key differences

between the algorithms. Finally, we summarize our findings in Section 3.5

3.2 Window-Based Smoothing Algorithms

In this section, we describe two window-based smoothing algorithms for the

delivery of video data. Because these algorithms smooth bandwidth based on some

maximum number of frames (or window size), the maximum amount of prefetch is

determined by both the window size and the size of the buffer used for smoothing.

The window size can be picked to be a multiple of the video encoding pattern for

MPEG compressed video or can be a multiple of the bandwidth allocation unit of the

underlying link layer. Window-based smoothing is particularly suitable for use in live

video conferencing applications because they result in a maximum delay equal to the

window size.

3.2.1 Average Bandwidth Allocation

A simple window-based method for easing bandwidth fluctuations is to group

some number of frames together into a chunk and send the frames across the net-

work at the average bandwidth requirement for the chunk. The use of averaging

algorithms has been proposed for both live and stored video applications [74,52]. By

using this method, clients can guarantee that the bandwidth needed is constant

throughout the chunk. The amount of smoothing, however, is directly related to the

chunk size. Using this constant bandwidth for the entire chunk implies that the end
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user is not guaranteed that local buffer starvation does not occur during the display

of the chunk unless it has buffered at least one chunk ahead. The end user is, how-

ever, guaranteed that the maximum delay between the transmission and playback of

the video is proportional to the chunk size used. For stored video applications, this

maximum delay is twice the size of the chunk. Using bandwidth smoothing with very

large chunk sizes becomes impractical because of this buffering requirement. In addi-

tion, because this algorithm merely groups a fixed number of frames together, no

smoothing occurs across chunks. A sample bandwidth allocation graph using the

average allocation algorithm is shown in Figure 3.1. The pseudo-code for the average

allocation algorithm along with the pseudo-code for all the other algorithms can be

found in the appendix.
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Figure 3.1: Average Bandwidth Allocation vs. Sliding Window Smoothing.
Each line in the graph represents a sample of bandwidth requests from an
18 minute sample from the movie Speed. The video has been M-JPEG
encoded at 30 frames per second. The burstiness is therefore due entirely
to differences in scene content. Each algorithm was run assuming a
maximum buffer size of 2 MBytes. The dotted line shows the average
allocation algorithm for 90 frame chunks. The solid line represents the
sliding window smoothing applied to 45 frame chunks with a window size
of 11 chunks.
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3.2.2 Sliding Window Smoothing

Rather than simply averaging within fixed chunks, a sliding window can be

used to smooth within a larger region. A moving window of n chunks is smoothed by

shifting large bandwidth requirements in a chunk to earlier chunks (within the win-

dow) that stand below the average for the window as a whole. Thus, for a window of

size n chunks, the bandwidth allocation for a chunk i is set to the average of all the

frames in chunk i to chunk i+n-1. For chunk i+1, the bandwidth allocation is set to

the average of all the frames in chunk i+1 to chunk i+n. This averaging has the effect

of causing the data to be prefetched in advance of bursts of large frames. However,

redistribution is limited by the size of the window, so peaks and valleys will still

occur.

Figure 3.2 shows the affect that changing the window size has for the sliding

window smoothing algorithm.The amount of smoothing is determined by the window

size. A window size of 1 yields no smoothing at all and the graphs are equivalent to

the average bandwidth allocation algorithm. With sufficiently large windows consid-

erable smoothing is possible. This smoothing is accomplished through prefetching

and requires buffer space in the receiver, but far less than would be required to

achieve equivalent smoothing with the average allocation algorithm. Figure 3.1

shows a sample sliding window bandwidth allocation plan for the movie Speed com-

pared with the average allocation algorithm.

Sliding window smoothing, however, has some drawbacks for planning band-

width allocation. While the number of adjustments in bandwidth is less than

required for the average allocation algorithm, frequent adjustments are still neces-

sary. Furthermore, rises in bandwidth are generally accomplished in several steps,

each possibly requiring negotiation with the network manager, while drops in band-

width are sharper.
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Figure 3.2: Sliding Window Smoothing Example. This figure shows the
affect that the window size has on the smoothing for the sliding window
smoothing algorithm. The heavy solid lines on the right represent the
bandwidth allocation plans that are made. Note how the window size
(particularly for the window size of 1 and 2) limits the amount of
smoothing to the window.



36

3.3 Non-Window-Based Smoothing Algorithms

While window-based smoothing algorithms are suitable for live-video applica-

tions because they have a maximum delay between transmission and playback, they

may not take full advantage of the buffer available for smoothing. Because the con-

straints between transmission and playback are relaxed for stored-video, creating a

priori bandwidth plans that maximize the usage of the buffer allows the network

management to be made simpler. In this section, we introduce the notion of critical

bandwidth allocation for stored video playback. These algorithms base the band-

width allocation decisions based on the a priori knowledge of the video frames that

are available. By taking advantage of this knowledge, a bandwidth plan for retrieval

that minimizes the range of bandwidth values for playback is possible.

3.3.1 Critical Bandwidth Allocation

The critical bandwidth allocation algorithm without regard to the smoothing

buffer size creates a bandwidth allocation plan for video data which contains no

increases in bandwidth requirements for continuous playback and does not require

any prefetching of data before playback can begin. By calculating such a bandwidth

plan, admission control is greatly simplified. That is, the network manager needs to

only ask - “Is there enough bandwidth to start the flow of data?”. Because the CBA

algorithm only calculates the minimum bandwidths that are necessary for continu-

ous playback, the buffer size requirement for continuous playback, may be fairly sub-

stantial. The buffer size requirement, however, is generally not as large as one

required by a single constant bandwidth allocation for the entire video. Finally, the

CBA algorithms result in a bandwidth plan that (1) does not require prefetching

(and, hence, delay) for playback to begin, and (2) results in a monotonically decreas-

ing sequence of bandwidth allocations. For clarity, we say that a bandwidth allocation

plan consists of runs of constant bandwidth allocations.
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We can describe the intuition behind the CBA algorithm with a geometric

model. Given any map of frame sizes for a particular movie, a graph can be drawn

that has the following function:

This function is the running summation of frame sizes for the movie, and must be a

monotonically increasing function (see Figure 3.3). To avoid buffer underflow, any

correct plan must have the total bandwidth received (TBR) at frame i, such that the

following condition holds for all frames, i, within the movie::

The critical bandwidth allocation algorithm allocates a decreasing sequence of

constant bandwidths at the minimum bandwidths necessary to play back the video

without buffer underflow. This corresponds to creating a convex arc from the begin-

ning of the movie to the end of the movie with each run starting and ending on the

function Fmovie(i), where the slope of each line (run) determines the bandwidth allo-

cation that is required for that run. This is shown in Figure 3.3 as a convex arc

Fmovie i( ) FrameSize j
j 1=

i
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Fmovie(i)

Frame Number

Figure 3.3: Critical Bandwidth Allocation Example. The solid line in the
graph shows a possible graph for Fmovie(i), while the dotted line shows a
plan determined by the CBA algorithm. The dotted set of lines show the
critical bandwidth allocation algorithm’s bandwidth plan that requires 5
decreases in bandwidth, while the squares on the dotted lines show the
junctures between runs. The slope of each dotted line is the bandwidth
requirement for that run. The minimum buffer size is represented by the
maximum vertical distance between the critical bandwidth allocation
plan and the function Fmovie(i).
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around Fmovie(i). While the CBA algorithm does not observe any limits in available

buffer space, it does calculate the minimum necessary buffer to play the video clip

with a single monotically decreasing sequence of bandwidth allocations. The required

buffer size is determined by the maximum vertical distance between the bandwidth

allocation plan and the function Fmovie(i). The magnitude of this minimum buffer size

may vary for the same clip, depending on the encoding scheme used and the long

term burstiness that results. Note that any constant bandwidth allocation plan for

the entire movie must have this minimum buffer size but is typically much larger in

size. This leads to the following theorem which we prove in the appendix.

Theorem 1 : The critical bandwidth allocation algorithm with no buffer limitation

results in a strictly decreasing sequence of bandwidth allocations

Formally, let CB0, CB1, ..., CBk be the runs created by the CBA algorithms,

then the critical bandwidth CB0, in bytes per frame, is defined as

where N is the number of frames in the video clip and framej is the size in bytes of

frame number j. Thus, the critical bandwidth is determined by the frame, i, for which

the average frame size for i and all prior frames in the video clip is maximized. We

call frame i, which sets the critical bandwidth, the critical point in the video clip, or

CP0. In the case where the maximum is achieved multiple times, we choose CP0 to be

the last frame at which it is achieved.

Starting at frame CP0+1, we apply the definition of the critical bandwidth to

the rest of the clip, resulting in CB1 and CP1. The critical bandwidths, CBn, are deter-

mined by a sequence of critical point CPn, where

CB0
max

1 i N≤ ≤

Σ j 1=
i frame j

j
---------------------------------------

 
 
 
 

=

CBn
max

CPn 1– i< N≤

ΣCPn 1– 1+
i frame j

j
-------------------------------------------------

 
 
 
 
 
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The use of the critical bandwidth allocation algorithm is an effective tech-

nique to use for systems that have appropriate amounts of buffering for several rea-

sons. First, the playback of the video can commence immediately. Second, the

admission control algorithm is simple - Is there enough bandwidth to start the chan-

nel? Third, these bandwidths are the minimum constant bandwidth necessary for

continuous playback without requiring an increase in the bandwidth allocation.

Finally, we note that is possible to reduce the beginning bandwidth requirement by

prefetching data for the initial run.

3.3.2 Critical Bandwidth Allocation with Maximum Buffer Constraint

Using the critical bandwidth algorithm results in the calculation of the mini-

mum buffer size necessary to treat the entire video clip as a monotonically decreasing

sequence of bandwidth allocations. In the event that this minimum buffer size

exceeds the buffer space available, then the client must increase the bandwidth in

the middle of the video clip, substituting increased network bandwidth for missing

buffer bandwidth. The critical bandwidth allocation with a maximum buffer con-

straint has the same properties as the CBA algorithm but increases bandwidth only

when necessary. As a result, the CBA algorithm with a maximum buffer constraint

(referred to from now on as the CBA algorithm) results in a plan that:

1) requires no prefetching of data before playback begins
2) has the minimum number of bandwidth increase changes
3) has the smallest peak bandwidth requirement
4) has the largest minimum bandwidth requirement

Using our geometric model, we can graph the functions, Fhi(i) and Flow(i),

where Flow(i) is the same as Fmovie(i) from the last section and Fhi(i) is Flow(i) offset

by the buffer size (see Figure 3.4). Thus.

Fhi i( ) FrameSize j
j 1=

i

∑
 
 
 

BufferSize+=
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and

Any valid plan must have the following condition hold for all frames, i, within

the movie:

Thus, any bandwidth allocation plan must stay between Flow(i) and Fhi(i) to

ensure that the buffer neither overflows nor underflows in the course of playing the

video. In the presence of a maximum buffer constraint, the critical bandwidth alloca-

tion plans must be modified in the runs that violate the buffer limitations.

In our discussion, we modify the definition of critical points and critical band-

widths to work with a maximum buffer constraint. Given some starting point and the

buffer occupancy at the starting point, the critical bandwidth is the bandwidth such

Flow(i)

Fhi(i)

Frame Number

Finish line

Figure 3.4: Critical Bandwidth Allocation with a Maximum Buffer
Constraint. This figure shows a possible graph for Fhi(i) and Flow(i). The
total delivered bandwidth (up to some frame i), must lie between Fhi(i)
and Flow(i) or buffer overflow or underflow will occur. The dotted lines
represent a critical bandwidth allocation plan that does not consider
buffer overflow. Any time the allocation plan goes above Fhi(i), buffer
overflow will occur.
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that the buffer limitations are not violated for the largest number of frames.

Figure 3.5 shows two representative examples of critical points for runs that require

a decrease and increase in bandwidth in the following run. As a result, for a run

which requires a bandwidth increase in the next run, the critical point is determined

by a point on Fhi(i), while for a run which requires a bandwidth decrease in the next

run, the critical point is determined by a point on Flow(i). Finally, as shown in

Figure 3.5, we use the terms hub to refer to the part of the run that precedes the crit-

ical point and frontier to refer to the trajectory of the run past the critical point.

To create a bandwidth plan, the CBA algorithm starts at frame 0 with no ini-

tial buffer and calculates the critical bandwidth and critical point for the next run.

Note we can generally reduce the initially high bandwidth requirement by starting

with an initial buffer size > 0, but it requires that the start playback of video to be

delayed. If the critical point is on Flow(i), then a decrease in bandwidth is required in

the next run and the critical point is used as the starting point for the next run. If the

critical point for the run is on Fhi(i), then an increase in bandwidth is required in the

next run. A search on the frontier of the run is performed for a starting point such

that the next run results in a critical point that is as far out as possible. This search

requires the calculation of an initial buffer occupancy between the maximum buffer

Critical Point

Starting Point

Critical Point

Starting Point

(a) Bandwidth Decrease (b) Bandwidth Increase

Figure 3.5: Critical Bandwidth and Critical Point Example. On the left is
an example calculation of a critical point using the maximum buffer
constraint in which a bandwidth decrease is required in the next run,
while on the right is a similar calculation for the case where a bandwidth
increase is required in the following run.

Furthest Frame
Reachable

Without Overflow

Furthest Frame
Reachable

Without Underflow
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size and 0 because the frontier of the run connects Fhi(i) and Flow(i). Hence, band-

width decreases result in a convex arc around point on Flow(i), while increases involve

a slightly more complicated search.

For a run k+1 that requires an increase in bandwidth from the last run k, the

bandwidth is allocated at a slope such that the run extends as far out in time as pos-

sible. To implement this, a search is performed at the end of run k along the frontier

of run k as shown in Figure 3.6. The actual search algorithm is not of great impor-

tance in the usual case since these searches are relatively infrequent. One can choose

to implement either a linear or binary search. This search results in one of two cases

(if it is not the last run in the movie), either an increase or decrease in the bandwidth

allocation is required for the next run. Examples of these are shown in Figure 3.7 and

Figure 3.6: Bandwidth Increase Search Example. For the calculation of
run k+1 a search is performed on the line connecting Fhi(i) and Flow(j) to
find a starting point such that the critical point for the next run is as far
out in time as possible.

Flow(j)

Fhi(i)

run k

Figure 3.7: Bandwidth Search Example. This figure shows the two
representative cases that arise when the search for run k results in
another bandwidth increase required in run k+1. In (a), Flow(m) lies on the
line created by runk-1. In (b), Flow(m) does not lie on run k-1.

run k

run k-1
run k-1

run k

Flow(m)

Fhi(n)

Flow(m)

Fhi(n)
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Figure 3.8, respectively. This results in the following two properties concerning the

bandwidth increase search for a run k.

Property 1 : For a run k which (1) increases the bandwidth requirement over run k-1

and (2) requires an increase in bandwidth in run k+1, the search for run k results

in a run which is determined by the slope between the points Flow(m) and Fhi(n)

where m < n.

This property essentially says that the search for run k as shown in

Figure 3.7, which results in a bandwidth increase in run k+1, is defined by two

points, one from Flow(i) and the other from Fhi(i). In addition, because run k+1

requires an increase in bandwidth, the frontier of run k must end on a point on

Flow(i).

Property 2 : For a run k which (1) increases the bandwidth requirement over run k-1

and (2) requires an decrease in bandwidth in run k+1, the search for run k results

in a run which is determined by a slope between the points Fhi(m) and Flow(n),

where m < n.

This property is the similar result for bandwidth decreases. That is, the

search in run k is defined by two points, one from Fhi(i) and the other from Flow(i).

Figure 3.9 shows a sample construction using the critical bandwidth algorithm with

maximum buffer constraint.

Flow(n)

Fhi(m)

Flow(n)

Fhi(m)

run k-1 run k-1

run k

run k

Figure 3.8: Bandwidth Search Example. This figure shows the two
representative cases that arise when the search for run k will result in a
bandwidth decrease required in run k+1. In (a), Flow(m) lies on the line
created by runk-1. In (b), Flow(m) does not lie on run k-1.
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To recap, the CBA algorithm then consists of allocating runs at their critical

bandwidths. For bandwidth decreases, the end of the run is set to the critical point

and the next run is started on the next frame. For bandwidth increases, a search is

performed on the frontier of the last run to find a starting point such that the critical

point of the next run is maximized. By searching for a starting point such that the

critical point is as far out in time as possible for bandwidth increases, an important

theorem about the critical bandwidth algorithm can be derived:

Theorem 2 : The critical bandwidth allocation algorithm with a fixed maximum

buffer constraint results in a plan for playback of video without buffer starvation

or buffer overflow with (1) the smallest number of bandwidth increases possible,

(2) the minimum peak bandwidth requirement, and (3) the largest minimum

bandwidth required.

To algebraically calculate the CBA plan requires the allocation of individual

runs. The calculation of a run requires the starting point for the run, Framestart, and

the initial buffer occupancy, Buffinit, at that starting point. To calculate a run starting

from Framestart with initial buffer Buffinit, let

Figure 3.9: Critical Bandwidth Allocation with Maximum Buffer Example.
This figure shows a sample construction of the CBA algorithm with a
maximum buffer constraint. The dotted lines represent the runs within
the bandwidth plan.

Flow(i)

Fhi(i)

Frame Number
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• FrameAvei be the average frame size from the beginning of the run to the

ith frame within the run. This can be defined as:

• MaxBWi be the maximum average bandwidth sustainable from the begin-

ning of the run to the ith frame that does not overflow the buffer. This can

be defined as

Then, the critical bandwidth for a run is defined as a set of k frames such that the fol-

lowing holds for all frames within the run:

and such that

The critical bandwidth for the run is then

To calculate the critical bandwidth plan, we start with the first frame with no

initial buffer and then calculate the critical bandwidth for the first run. If the critical

point for the first run is along Flow(i), then a decrease in bandwidth will be necessary

or the buffer will eventually overflow. The next run is then started at the critical

point with initial buffer 0. If the critical point for the first run is along Fhi(i), then a

bandwidth increase will be necessary in the next run. As described earlier, a search is

then performed at the end of the run for a starting point that maximizes the point

reached by the next run. Note that this search involves a fairly trivial calculation to

find the appropriate initial buffer for the next run.

FrameAvei

j i+

j Framestart=∑ FrameSize j 
  Buf f init–

i
--------------------------------------------------------------------------------------------------------

 
 
 
 
 

=

MaxBwi
min

1 j i≤ ≤
FrameAve j

BufferSize
j

---------------------------+
 
 
 

=

max

1 j k≤ ≤
FrameAve j MaxBWk≤

max

1 j k 1+≤ ≤
FrameAve j MaxBWk 1+

> .

CB max

1 j k≤ ≤
FrameAve j= .
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Using the critical bandwidth algorithm with a fixed size buffer minimizes the

number of bandwidth increases required during the playback of a video clip. In addi-

tion, it also minimizes the peak bandwidth requirements and has the largest mini-

mum bandwidth requirement. An example of critical bandwidth allocation smoothing

can be found in Figure 3.10.

3.3.3 An Optimal Bandwidth Allocation Algorithm

Using the critical bandwidth based algorithm, it is possible to minimize the

total number of bandwidth increases for the continuous playback of video. The CBA

plans, however, may require many adjustments that decrease the bandwidth require-

ment. For networks that place a premium on interacting as little with the clients as

possible, the CBA can be extended to have all the properties from Theorem 2 while

also minimizing the total number of bandwidth changes required. The optimal band-
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Figure 3.10: Critical Bandwidth Allocation vs. Optimal Bandwidth
Allocation. This figure shows the same sample clip from the movie Speed
as in Figure 3.1. The solid line shows the bandwidth allocation plan using
the OBA algorithm and a 2 MB buffer, while the heavier dotted line shows
the CBA algorithm. The main difference between the algorithms is that
the OBA algorithm combines all the bandwidth decreases into a few
request.
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width allocation (OBA) algorithm results in the same number of increases in band-

width, the same smallest peak bandwidth, and the same largest minimum

bandwidth as the CBA algorithm with a maximum buffer constraint. The OBA algo-

rithm differs from the CBA algorithm by not returning bandwidth to the network as

soon as it has passed the critical point that required the bandwidth. Instead, the

OBA algorithm may hold the bandwidth past the critical point in order to reduce the

number of decreases in bandwidth required from the network. As a result of this, the

OBA algorithm has very few changes in bandwidth for a moderately sized buffer. In

the rest of this section, we motivate and describe an optimal bandwidth allocation

strategy. We continue to use the definitions of critical bandwidths and critical points

stated in the last section.

For our geometric model, the OBA algorithm allocates runs by performing a

search on the frontier of each run such that the critical point for the next run is max-

imized. As a result, the OBA algorithm attempts to allocate runs such that each run

maximizes the point reachable. At the end of a particular line (run), there are two

possibilities for the next run, either increase or decrease the bandwidth requirement.

For our discussion, we ignore a run which can reach the end of the movie. The actual

bandwidth used for the last run can be chosen so that it fall within the range of band-

width allocations already used, or it can be chosen in such a way as to minimize the

bandwidth or minimize the allocation time of the channel.

For runs which require a bandwidth increase in the next run, the same search

is performed as in the CBA algorithm, resulting in a search on a line connecting

Fhi(m) and Flow(n) with m < n (see Figure 3.7 and Figure 3.8). For a run which

requires a bandwidth decrease in the next run, a search on the frontier of the current

run results in four other possible outcomes. These representative outcomes, which

are essentially mirror images of the 4 bandwidth increase cases, are shown in

Figure 3.11 and Figure 3.12. Thus, for a run k which decreases the bandwidth from

the last run, a search along a line that touches Flow(m) and Fhi(n), with m < n is per-
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formed to find a starting point for the next run that maximizes the point reachable

for run k. This new line segment maximizes the critical point for the next run, while

providing a transition from the last run to the current run. This leads to two more

properties that are parallel to Property 1 and Property 2:

Property 3 : For a run k which (1) decreases the bandwidth requirement over run k-1

and (2) requires an increase in bandwidth in run k+1, the search for run k results

in a run which is determined by the slope between the points Flow(m) and Fhi(n)

where m < n.

Figure 3.11: Bandwidth Search Example. This figure shows the two
representative cases that may result for run k in which a bandwidth
increase will be required in run k+1.

run k

run k-1run k-1

run k

Flow(m)

Fhi(n)

Flow(m)

Fhi(n)

run k

run k-1run k-1

run kFlow(n)

Fhi(m)

Flow(n)

Fhi(m)

Figure 3.12: Bandwidth Search Example. This figure shows the two
representative cases that arise when the search for run k results in
another bandwidth decrease required in run k+1. In (a), Fhi(m) lies on the
line created by runk-1. In (b), Fhi(m) does not lie on run k-1.
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This property essentially says that the search for run k as shown in

Figure 3.11, which results in a bandwidth increase in run k+1, is defined by two

points, one from Flow(i) and the other from Fhi(i). In addition, because run k+1

requires an increase in bandwidth, the frontier of run k must end on a point on

Flow(i).

Property 4 : For a run k which (1) decreases the bandwidth requirement over run k-1

and (2) requires an decrease in bandwidth in run k+1, the search for run k results

in a run which is determined by a slope between the points Fhi(m) and Flow(n),

where m < n.

This property is the similar result for bandwidth decreases. That is, the

search in run k is defined by two points, one from Fhi(i) and the other from Flow(i). See

Figure 3.12. A sample construction is shown in Figure 3.14. Using this “greedy”

approach in the allocation of each run within the OBA plan results in the following

theorem, which we prove in the appendix:

Theorem 3 : For video playback allocation plans using a fixed size buffer, for which

(a) the bytes deliverable are equal to the aggregate size of the video clip and (b)

where prefetching at the start of the movie are disallowed, the optimal critical

Figure 3.13: Critical Bandwidth Allocation with Maximum Buffer
Example. This figure shows a sample construction of the CBA algorithm
with a maximum buffer constraint. The dotted lines represent the runs
within the bandwidth plan.
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bandwidth algorithm results in (1) smallest peak bandwidth, (2) the largest mini-

mum bandwidth, and (3) the fewest possible bandwidth changes.

To construct the optimal bandwidth allocation plan, we use the same algo-

rithm for finding the critical bandwidth and critical point for a run as defined in

Section 3.3.2. The OBA plan then consists of three types of allocations: the beginning

run, a run that decreases the bandwidth allocation, and a run that increases the

bandwidth allocation.

The beginning run does not have any prefetch in order to minimize the latency

between channel set-up and the beginning of playback. Therefore, the first run, is set

to the critical bandwidth and critical point for the run starting at the beginning of the

movie with an initial buffer of 0. Next, if the critical point for the run lies on Flow(i) a

bandwidth decrease is required in the second run. If the critical point for the run lies

on Fhi(i) a bandwidth increase is required in the second run.

In the calculation of a run that decreases the bandwidth allocation, a search

on the frontier of the previous run is performed to determine how far the bandwidth

Flow(i)

Fhi(i)
Available buffer size

Finish line

End of movie

Frame Number

Start point

Figure 3.14: Optimal Bandwidth Allocation Construction Example. This
figure shows a sample construction of the optimal bandwidth allocation
algorithm. Note, this plan includes only 4 runs while the plan in Figure 3.9
required 6 runs. The heavy solid lines show Fhi(i) and Flow(i), while the
light solid lines show the slopes (bandwidths) selected by the optimal
critical bandwidth allocation algorithm. The dotted lines show the lines
along which the searches were performed to maximize the critical points
of the following runs.
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should be held past the end of the previous run’s critical point (See Figure 3.11 and

Figure 3.12). The search finds a frame, j, such that using the same bandwidth alloca-

tion from the end of the last run results in the critical point in the current run to be

as far out as possible. The bandwidth for the run is then set to the critical bandwidth

of the last run up to, and including, frame j, while the bandwidth from frame j+1 to

the critical point is set to the critical bandwidth for the run starting on frame j+1,

with the appropriate initial buffer.

In the calculation for a run that increases the bandwidth allocation, a search

on the frontier of the previous run is performed to find a frame, k, such that the cur-

rent run extends as far into time as possible. The current run is then started on

frame k and has its bandwidth allocation set to the critical bandwidth starting from

frame k with its critical point determining the end of the run.

For each subsequent run, we apply the same algorithm to determine which of

the calculations to use (whether for increasing or decreasing the bandwidth). A sam-

ple allocation plan is shown in Figure 3.10.

3.4 Evaluation of Algorithms

From the point of view of network management, load estimation, the neces-

sary bandwidth resources, and admission control are crucial to providing guarantees

of service. These can be greatly simplified if all channels exhibit constant behavior. In

the absence of an entirely constant bandwidth allocation, a network manager can

handle the partitioning of its bandwidth in several ways. The network manager can

reserve the bandwidth at the expected peak bandwidth requirement for the channel,

in which case, minimizing the peak bandwidth is important. The network manager

can also let the clients allocate bandwidth as they go along, if it does not have provi-

sions for in-advance bandwidth reservations. In this case, both the number and mag-

nitude of bandwidth increases can be important because the bandwidth increase

requests may be denied. As a result, three measures that influence this performance
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are the frequency of requests for increased bandwidth, the size of these increases,

and the peak bandwidth requirements. The frequency and size of decreases can be

interesting as well if the network management makes some provision for lowering a

bandwidth reservation. We break the evaluation of the algorithms presented in this

chapter into two parts. We first compare and contrast the window-based smoothing

algorithms with the CBA algorithms. We then move into a more in-depth comparison

of the various critical bandwidth allocation based techniques.

3.4.1 Averaging Techniques Versus CBA

To test the effectiveness of the window-based algorithms and the CBA algo-

rithm, each algorithm was run on the digitized movie Speed. Figure 3.15 shows the

results of smoothing using a 10 MByte buffer. This graph shows that the critical
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Figure 3.15: Comparison of Bandwidth Allocation Algorithms. This graph
shows the results of smoothing using the average allocation based and
CBA algorithm with a 10 MByte buffer for smoothing. The data above was
obtained by using the movie Speed. Because the sliding window
smoothing algorithm has two possible parameters, chunk size and
window size, we fixed the chunk size at 90 frames and expanded the
window to take advantage of the buffer (in this case 81 chunk window
size).
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bandwidth approach produces smooth allocation with infrequent adjustments in

bandwidth, requiring only 4 negotiations for increased bandwidth. It is interesting to

note that the critical bandwidth algorithm require increases only after large valleys

of small frame sizes. While the sliding window smoothing technique reduced the peak

bandwidth requirements, it still requires the network to incrementally give band-

width to it as a burst of large frame sizes approaches. Figure 3.16 shows the buffer

utilization for the sliding window smoothing algorithm and the critical bandwidth

allocation algorithm. As shown by the figure, the critical bandwidth algorithm results

in the buffer reaching near capacity several times, while the smoothing window slid-

ing algorithm is set in such a way as to make use of the full buffer in the worst case.

In fact, the critical bandwidth allocation algorithm results in a full buffer at least

once for each increase in bandwidth that occurs within the video. The sliding window
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Figure 3.16: Comparison of Bandwidth Allocation Algorithms. This graph
shows the utilization of a 10 Mbyte buffer for the sliding window
smoothing and the critical bandwidth algorithms. The size of the sliding
window is a constant, set in such a way as to make use of the full buffer in
the worst case. However, the algorithm is only able to use the buffer in the
first part of the video clip. A larger window in the second half of the
segment would have taken better advantage of the buffer. The critical
bandwidth algorithm adjusts its bandwidth to take full advantage of the
buffer whenever necessary.
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smoothing algorithm, on the other hand, would benefit from a larger window in the

second half of the movie.

To avoid overtaxing network resources, bandwidth allocations have to be

tracked and approved by some network manager. Increases in bandwidth are particu-

larly important because they may be denied and some adjustment will have to be

made, such as a change in quality of service, the establishment of an alternative

route, or perhaps the allocation of additional prefetch buffer space.

 Increases in Bandwidth

In Figure 3.17, the total number of bandwidth increases is shown as a func-

tion of buffer size. The sliding window algorithms makes many small bandwidth

increase requests. This stems from the fact that when a large burst of frames first
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Figure 3.17: Bandwidth Increase Requests. The total number of
bandwidth increases represent the number (not magnitude) of bandwidth
increase requests for the 110-minute length movie Speed. Each algorithm
was applied to the movie segment with different buffer capacities. The
average allocation algorithm varied the chunk size in order to make use of
the extra buffer space. The sliding window algorithms chunk sizes were
fixed at 30 and 60 frame chunks and then the window size was varied to
obtain the amount of smoothing given some buffer space. The critical
bandwidth algorithms used the buffer size to determine the bandwidth
requests.
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moves into the sliding window, the window size limits the amount of smoothing that

can be done. Consequently, as the burst continues to move through the window it is

smoothed across many groups, requiring bandwidth increases every 1 to 2 seconds.

The average allocation algorithm uses larger chunks for an equivalent buffer size and

therefore calls for fewer increases in bandwidth than does the sliding window algo-

rithm. Because the smoothing is still limited by the size of the period used, the aver-

age allocation algorithm requires substantially more increases in bandwidth. The

critical bandwidth algorithm makes a low number of increase requests as expected.

As an example, with a 12 MByte buffer, the critical bandwidth algorithm requires

only 3 (including the initial bandwidth request) increases in the bandwidth alloca-

tion. As a result, increases occur on average of every 36 minutes. With a 14 Mbyte

buffer only 2 increases are needed (one in the beginning of the movie) and one in the

middle.

The size of a requested increase can be important, since the larger the

increase, the less likely the network manager will have sufficient bandwidth avail-

able. Critical bandwidth allocation makes adjustments that are larger on average

than does sliding window smoothing. However, this is often because sliding window

smoothing will break a large change in bandwidth into a number of requests. It is,

therefore, useful to examine the total size of increases requested from the different

algorithms.

As Figure 3.18 shows, the average allocation algorithm makes the worst use of

buffer space, requiring large changes in the actual bandwidth allocation require-

ments. The primary limitation of this algorithm lies in its inability to effectively

prefetch data. The only way for the algorithm to obtain a lower increase cost was to

increase the size of the chunks. By using the sliding window smoother, the size of the

chunk can remain relatively small, reducing the amount of buffer space used to store

the next chunk. By using this extra buffer space to prefetch bursts of large frames,

the sliding-window algorithms are more effective in smoothing bandwidth curves
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than the average allocation algorithm. The critical bandwidth algorithm has the

smallest cost because it minimizes the total range of bandwidth requirements as well

as the number of bandwidth increases required within that range.

 Decreases in Bandwidth

A decrease in required bandwidth may require an interaction with the net-

work manager, but will not be disallowed due to contention for resources. Some

approaches to access control assume that bandwidths will be constant, but smoothing

shows that within lengthy segments it may be monotonically decreasing. Thus, there

may be benefits in developing admission control policies that allow reserved band-

width to be released without terminating a channel. The critical bandwidth algo-

rithm does a good job of identifying blocks of bandwidth that can be released in a low

number of requests (see Figure 3.19).
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Figure 3.18: Bandwidth Increase Costs. The total increase cost of each
algorithm is the summation of all bandwidth increase requests for the
movie Speed. While both sliding window smoothing and critical
bandwidth allocation lead to a small cost for large buffers, sliding window
allocation spreads its increases over a much greater number of requests.
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 Peak Bandwidth Requirement

For systems that allocate bandwidth based on the peak bandwidth require-

ments, minimizing the peak bandwidth used as well as the range of bandwidths used

can be helpful with admission control. As shown in Figure 3.20, the average alloca-

tion algorithm does not always lower the peak bandwidth requirement given more

buffer for smoothing. The primary limitation is that the averaging algorithm can only

use larger and larger period sizes to accomplish more smoothing, hence, the bound-

aries for the calculation of averages continue to change as more buffer is added. Fix-

ing the period size and then increasing the window size has the effect of smoothing

the bandwidth requirements as more buffer is added. As more buffer is added, the

additional buffer is used strictly for prefetching bursts of data in the future. The crit-

ical bandwidth algorithm finds the minimum peak and maximum valley bandwidths.

For buffers greater than 17 MBytes, the first run determined the maximum band-

Figure 3.19: Bandwidth Decrease Requests. The total number of
bandwidth decreases represent the number (not magnitude) of bandwidth
decrease requests for the movie Speed. The critical bandwidth algorithm
makes more decrease requests than increase requests. The sliding
window smoothing algorithm on the other hand, makes many fewer
requests to decrease bandwidth than to increase, since increases are
frequently spread across several requests.
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width requirement for the movie. If prefetching is allowed (and the delay is tolera-

ble), the peak bandwidth requirement for buffers greater than 17 MBytes can be

reduced further.

3.4.2 Non-Window Based Smoothing Algorithms

In this section, we compare and contrast the various critical bandwidth based

algorithms. We have graphed the bandwidth allocation plans for the OBA algorithm

using both a 10 and 30 MByte buffer for all the movies. These graphs, located at the

end of this chapter in Figure 3.33 to Figure 3.52, show how the OBA algorithm

smooths the bandwidth requirements for the delivery of video.

 Critical Bandwidth Allocation without Buffer Constraint

When sufficient buffering is available, allocating the bandwidth plan using

the critical bandwidth algorithm without a buffer constraint is useful because in a

system where all streams are using this algorithm, admission control becomes trivial.

The admission control algorithm simply sees if there is enough bandwidth to start
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59

the flow of data. Recall that the critical bandwidth algorithm results in a monotoni-

cally decreasing sequence of bandwidth allocations. In addition, the playback of the

video can start once the video has been accepted to the network.

As shown in Figure 3.21, the amount of buffer required to play back the sam-

ple videos varied quite a bit. The total amount of buffering depends primarily on two

factors, the average size of the frames and the long-term burstiness of the video. If

the movie had a sustained area of smaller frames followed by a sustained area of

larger frames, the amount of buffering tended to be much higher. As examples, the

seminar videos required much smaller buffer sizes because both the size and varia-

tion of frames sizes were small in these videos. The E.T. videos required proportion-

ately larger buffers as the quality was increased. Because these videos exhibited the

same long term burstiness, the differences are due mostly to the increase in the

frame sizes within the videos. Just the average size of frames, however, is not indica-

tive of the minimum buffer requirements. The movie Speed required a larger buffer
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Figure 3.21: Critical Bandwidth Allocation Minimum Buffer Requirement.
This figure shows the maximum buffer requirements for the movies
encoded using the CBA algorithm with no buffer limitation.
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than the E.T. (Quality 100) video even though both the variance in frame sizes and

the average frame sizes were smaller in the Speed video. Thus, the buffer size is pri-

marily due to the long term burstiness, and to a lesser degree, the average frame

sizes within the videos.

 Bandwidth Changes

As Figure 3.22 shows, the OBA algorithm results in a fewer number of band-

width changes than the CBA algorithm for a given buffer size, as expected. As an

example, using the Speed video, a 5 MByte smoothing buffer, and the OBA algorithm

results in 21 bandwidth changes over the 110 minute movie, while the critical band-

width algorithm requires 37 changes in bandwidth. On average the optimal band-

width allocation algorithm requires a bandwidth change approximately every 5

minutes, using only 5 MBytes of buffer. After the initial start of the movie, the Speed

movie using the OBA algorithm had a minimum run length of approximately 1

minute and 45 seconds and a maximum run length of approximately 14 minutes. By
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Figure 3.22: Bandwidth Change Requests. The graphs above show the
total number of required bandwidth allocation change requests for the
movie Speed. The OBA and CBA algorithms were run on the entire video
clip for varying buffer sizes in one MByte increments.
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using a 10 MByte buffer for buffering, the shortest and longest run lengths grow to 13

minutes and 25.5 minutes, respectively. As a result, a moderate amount of buffering

can reduce the number of interactions required from the network to the order of tens

of minutes.

As shown in Figure 3.23, the total number of bandwidth changes required is

relatively small even for a 10 MByte buffer with loosely encoded video. The OBA algo-

rithm results in a large difference in required bandwidth changes. For a 10 MByte

smoothing buffer, the movie E.T. (Quality 100) requires 23 bandwidth changes with

the OBA algorithm, which is the maximum number of changes required for all the

movies using the OBA algorithm. On average, the OBA algorithm results in 73%

fewer bandwidth changes than the CBA algorithm for a 10 MByte smoothing buffer

and 63% fewer bandwidth changes at 30 MBytes. The distinction between increases

and decreases in the bandwidth allocation plan can be useful because the requests for
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Figure 3.23: Bandwidth Changes for All Movies. This graph show the
number of bandwidth changes required for all of the sample movies using
a 10 and 30 MB buffer and the OBA and CBA Algorithms.
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decreases in bandwidth can generally be satisfied, while increases may require fur-

ther negotiations with the network. In addition, it highlights the main differences

between the various algorithms.

 Bandwidth Decrease Requests

As shown in Figure 3.24, the total number of bandwidth decreases for the

Speed video are similar to the total number of bandwidth change graph (Figure 3.22).

This is not entirely unexpected because the CBA and OBA algorithms result in the

minimum number of bandwidth increases necessary for continuous playback. Thus, a

large percentage of the bandwidth changes are due to decreases in bandwidth, which

from a network point of view should be easier to satisfy. In comparing the optimal

bandwidth algorithm with the critical bandwidth algorithm, we see that the main dif-

ference between these algorithms is in the number of bandwidth decreases (as shown

by the same relative differences in total bandwidth changes and total number of

decreases). The critical bandwidth allocation algorithm allocates each run at the min-

imum bandwidth requirement to avoid underflow, while the optimal bandwidth
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Figure 3.24: Bandwidth Decrease Requests. The graphs above show the
total number of bandwidth allocation decrease requests for the movie
Speed. The CBA and OBA algorithms were applied to the movie segment
with different buffer capacities.
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starts each run at the minimum bandwidth requirement but holds the bandwidth

past the critical point of the run to prefetch data for the next run.

 Bandwidth Increase Requests

For bandwidth increases, using the CBA and OBA algorithms result in the

same number of increases across all buffer size constraints for each movie, therefore,

verifying Theorem 2. As shown in Figure 3.26, the number of increases required for

the movie Speed drops to 5 increases for buffers greater than 8 MBytes and drops to

only 2 increases for buffers greater than 14 MBytes. As a result, interactions with the

network will only be required, on average, every 21 and 55 minutes for an 8 and 14

Mbyte smoothing buffer, respectively. As shown in Figure 3.27, all the other movies

exhibited similar behavior to the Speed video. It is interesting to note that all but 4 of

the videos require only one increase in the bandwidth requirement after the initial

bandwidth allocation.
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Figure 3.25: Bandwidth Decreases for All Movies. This graph show the
number of bandwidth decreases required by the OBA and CBA algorithms
for 10 and 30 MB buffers for all the sample movies.
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Figure 3.26: Bandwidth Increase Requests. The graph above shows the
total number of bandwidth allocation increase requests for the movie
Speed. The CBA and OBA algorithms were applied to the video with
different buffer capacities, all resulting in the same number of bandwidth
increases as shown above.

Figure 3.27: Bandwidth Increases for All Movies. This graph shows the
number of bandwidth increases required using the OBA and CBA
algorithms with a 10MB and 30 MB buffer.
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 Bandwidth Increase Magnitude

Requests for increases in bandwidth allocation require interaction with the

network manager for more resources. The frequency and magnitude of these

increases will determine the network’s ability to adapt to changing network load.

Comparison of increases in bandwidth magnitudes are only relevant when the total

number of increase requests is the same. As an example, if one stream requests 1000

bytes/frame more bandwidth and another asks for 100 bytes/frame on ten separate

occasions, no comparison can be made. Because the critical bandwidth based algo-

rithms have the same number of increases for a given movie and both have the mini-

mum-peak and highest-minimum bandwidths, their results are the same. As shown

in Figure 3.28, the critical bandwidth algorithm with prefetching and the optimal

bandwidth allocation algorithm have the same total magnitude of bandwidth

increases.
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Figure 3.28: Bandwidth Increase Costs. The graph above shows the total
sum (magnitude) of all the bandwidth allocation increase requests for the
movie Speed. The CBA and OBA algorithms were applied with different
buffer capacities. The optimal bandwidth allocation algorithm and the
critical bandwidth allocation algorithm result in the same totals.
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 Peak Bandwidth Requirements

For systems that allocate resources based on the peak bandwidth require-

ments, the peak bandwidth requirement can be an important measure. While the

peak bandwidth requirement gives the amount of resources necessary, it does not

give a method for comparing the results of different movies. To show the effects of

smoothing on our sample movies, we have assumed that the peak bandwidth require-

ment are used for the entire movie and then calculate the utilization of the band-

width reserved. The peak bandwidth utilization measurements are shown in

Figure 3.30. From this graph, we see that some movies (particularly the ones with

low utilization) do not improve their utilization of bandwidth between 10MBytes and

30 MBytes of buffering. The main reason for this is that the optimal bandwidth algo-

rithm may have an initially high bandwidth requirement in order to satisfy a low

latency start of the video, however, once this initially high bandwidth requirement is
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Figure 3.29: Bandwidth Increase Requests for All Movies. This figure
shows the total magnitude of all the bandwidth increase requests for the
sample movies using the OBA and CBA algorithms.
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passed, a lower peak bandwidth requirement results for the rest of the movie. To

show this, we have also graphed what we call the tumbling utilization measurement,

which measures the utilization of the bandwidth reserved in the same way as the

peak bandwidth utilization measurement with one exception. Once the peak band-

width requirement has passed for the entire movie, the bandwidth can be reduced to

the peak bandwidth for the rest of the movie. An example of the tumbling bandwidth

utilization calculation is shown in Figure 3.31. As Figure 3.32 shows, the tumbling

bandwidth utilizations are much higher than the peak bandwidth utilization mea-

surements, mostly due to the initially high bandwidth requirement of the optimal

bandwidth allocation plans. The movie Junior has the lowest utilization of all the

movies. This movie has a large burst of frames at the end of the movie, resulting in

the peak bandwidth requirement at the end of the movie, resulting in a lower utiliza-

tion than exhibited by the other movies. With the exception of Junior, it is interesting
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Figure 3.30: Peak Bandwidth Utilization for All Movies. This figure shows
the utilization of resources allocated using the peak bandwidth
requirement and the OBA and CBA algorithms (with no initial prefetching
at the start of the movie).
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CBA Plan = 15 units

Tumbling plan = 21 units

Peak plan = 24 units

Peak Plan

Tumbling Plan

Peak Util = 15/24

Tumbling Util = 15/21

Figure 3.31: Peak Utilization vs. Tumbling Utilization. This figure shows
the difference between the peak and tumbling utilization calculations.
The CBA plan (heavy solid line) requires 15 units of bandwidth
(represented by squares). The tumbling utilization plan always results in
a utilization greater than or equal to the peak utilization.
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Figure 3.32: Tumbling Bandwidth Utilization for All Movies. This figure
shows the tumbling utilization for the OBA and CBA algorithms on the
sample movies. The tumbling utilization is the same as the peak
bandwidth requirement utilization except once the peak bandwidth
requirement is passed, a channel may reduce its peak bandwidth
requirement once the peak has passed.
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to note that the optimal bandwidth algorithm resulted in utilizations between 94%

and 100%, with 10 of the movies having greater than 99% utilization.

3.5 Summary of Bandwidth Smoothing Algorithms

In this chapter, we have examined several bandwidth smoothing algorithms

that can be used for the delivery of compressed video streams. Window-based smooth-

ing algorithms are useful in smoothing bandwidth requirements where the delay

between the receipt and playback of a frame must adhere to some maximum delay.

Thus, window-based smoothing algorithms are particularly suited for live-video

applications.

The non-window-based critical bandwidth allocation algorithms have been

shown to be useful for the delivery of prerecorded compressed video, where the a pri-

ori knowledge of the video is obtainable before the bandwidth reservations are made.

The CBA-based algorithms have been shown to minimize both the peak bandwidth

requirements as well as the number of bandwidth increases required for the delivery

of compressed prerecorded video. In addition, we have shown that the CBA algorithm

can be extended to minimize the total number of changes in bandwidth as well.

For stored video applications, the use of critical bandwidth allocation plans in

admission control can help in the efficient allocation of network resources. For a sys-

tem that has smaller clips such as those in an educational interactive setting, using

the critical bandwidth allocation approach without a maximum buffer constraint

makes admission control easier by having to perform only a single check for admis-

sion control. In addition, with smaller clips which last less than an hour, the amount

of buffering needed is not as great. For video-on-demand movie systems, the use of

the optimal bandwidth allocation algorithm with a maximum buffer constraint can

also simplify admission control because the number of bandwidth changes as well as

the peak bandwidth requirements are minimized. We will examine the use of the

optimal bandwidth allocation algorithm in a general setting in the next chapter.
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Figure 3.33: Beauty and the Beast - OBA Example

Figure 3.34: Big - OBA Example

Figure 3.35: Crocodile Dundee - OBA Example
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Figure 3.36: E.T. (Quality 75) - OBA Example

Figure 3.37: E.T. (Quality 90) - OBA Example

Figure 3.38: E.T. (Quality 100) - OBA Example
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Figure 3.39: Home Alone II - OBA Example

Figure 3.40: Honey, I Blew Up the Kid - OBA Example

Figure 3.41: Hot Shots, Part Deux - OBA Example
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Figure 3.42: Jurassic Park - OBA Example

Figure 3.43: Junior - OBA Example

Figure 3.44: Rookie of the Year - OBA Example
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Figure 3.45: Seminar - OBA Example

Figure 3.46: Seminar2 - OBA Example

Figure 3.47: Seminar3 - OBA Example
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Figure 3.48: Sister Act - OBA Example

Figure 3.49: Sleepless In Seattle - OBA Example

Figure 3.50: Speed - OBA Example
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Figure 3.51: Total Recall - OBA Example

Figure 3.52: 1993 NCAA Final Four - OBA Example
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CHAPTER 4

DELIVERING VIDEO ACROSS NETWORKS

‘‘If you build it, they will interact.’’ - J. Tierney, New York
Times (June 30, 1993)

4.1 Introduction

The delivery of constant quality compressed video requires that the network

adapt to large fluctuations in bandwidth. We have shown that bandwidth smoothing

techniques are effective in removing burstiness, making network resource scheduling

simpler. In this chapter, we describe how critical bandwidth based smoothing tech-

niques affect the underlying services in an interactive video-on-demand service.

As previously mentioned, the benefits of smoothing for live video applications

are constrained by the requirement that latency remain low between video capture

and video playback. Stored video applications, on the other hand, can schedule the

network bandwidth resources well in advance of the playback of the video. The use of

in-advance reservations in such bandwidth smoothing schemes, however, has impli-

cations on the ability to provide users with familiar video cassette recorder (VCR)

functionality such as stop, pause, rewind, and fast forward.

For constant quality video delivery, the video bandwidth requirements can be

smoothed by prefetching data into a buffer, shifting bursts of large frames forward in

time. Depending on the amount of buffering available, a frame may sit in the client’s

smoothing buffer for a shorter or longer time before it is played back. Long buffer res-
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idency times are often required to reduce large peak bandwidth requirements.

Despite these long buffer residency times, the rate of transmission and the rate of

consumption remain coupled. Alterations in the consumption rate that occur with

VCR functions will require alteration in the video delivery plan, lest the buffer over-

flow or underflow. In addition to the goal of high network utilization, a video-on-

demand system must effectively handle the contradictory goals of smoothing versus

responsiveness.

For video-on-demand systems with little or no buffering, the clients and serv-

ers must be tightly coupled. Any change in consumption of video data from the client

must be immediately and continuously handled by the server. With buffering,

changes in consumption still require an adjustment by the server. These adjust-

ments, however, need not be made instantaneously. Many operations can be per-

formed without requiring the delivery of any new data from the server. Larger buffers

allow greater latitude in handling these stops, starts, and rewinds. With excess buff-

ering specifically used for handling variations in consumption rate, it is possible to

further decrease the required disruptions of the server by combining the changes in

consumption into a few requests. The number of disruptions that the servers must

handle is proportional to the buffer size used. If a majority of the rate changes can be

handled by the client machine, then the network and servers can devote their

resources to handling the special cases that may arise instead of handling cases

which can be taken care of with appropriate buffering.

In this chapter, we discuss a framework for providing VCR functionality and

in-advance bandwidth reservations within a bandwidth-smoothing, stored-video

environment. We introduce the notion of VCR-window, the set of buffered frames

within which full-function VCR capabilities are available without requiring changes

to the bandwidth reservations. The size of the VCR-window is determined by the size

of the client buffer. We expect that for reasonable buffer sizes a large proportion of

VCR operations can be handled from the VCR-window, with the remainder requiring
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more involved client and server interactions. For accesses outside the VCR-window,

we describe a strategy for using a contingency channel for users to renegotiate tempo-

rary bandwidth so that their plans can return to the bandwidth originally reserved.

The use of the VCR-window along with the contingency channel affects the way in-

advance reservations can be handled. We discuss the impact of providing VCR func-

tionality on a priori bandwidth reservations and present a reservation system for

interactive video-on-demand systems. Our results show that the VCR-window can be

implemented with a small amount of additional buffering with little modifications

necessary to the bandwidth reservations.

In this chapter, we first describe classes of video-on-demand applications that

require access to stored video. In Section 4.3, we describe the problems associated

with providing VCR function capabilities to users and introduce a solution for provid-

ing limited VCR function capabilities. In Section 4.4, we present an admission control

algorithm for video-on-demand resources. Using this framework, we then describe a

resource reservation mechanism for critical bandwidth allocation based video deliv-

ery systems. Finally, in Section 4.5, we present the experimental simulations used to

evaluate VCR-functionality in bandwidth smoothing environments.

4.2 Motivation

4.2.1 Video Playback Applications

Interactive video-on-demand encompasses a large range of applications.

Because the social and economic impacts of video-on-demand systems are not yet

understood, we can only offer a list of expected applications. As an example, consider

broadcast television programming that is in use today. Television stations solicit com-

panies to pay for commercial slots to generate revenue. If television becomes true

video-on-demand, however, only a few commercials would ever be viewed in their

entirety, thus undermining their purpose. In such a situation, we can probably expect

video-on-demand suppliers to provide ‘‘catalog’’ type services for users who wish to
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browse commercial offerings. Several services that have been talked about in the lit-

erature are shown in Table 4.1. The actual requirements for interactivity and the

load placed on the underlying network depends heavily on the type of application.

Because interactive news consists of many smaller pieces of video, the video server

can expect more variation in access patterns, especially for news items that the cus-

tomer does not find interesting. Movies, on the other hand, are longer running and

are focused on a single theme. As a result, the amount of interaction may not be as

large.

For bandwidth smoothing environments, the size, length, and burstiness of

the video affects the way that VCR functions can be provided. In a server that typi-

cally handles small clips, all the videos may be downloaded to the client and all inter-

actions are then serviced from the buffer. For servers that handle medium length

clips (on the order of 15 to 45 minute length clips), the application of the CBA algo-

rithm results in a single monotonically decreasing sequence of bandwidths for all

clips with small amounts of buffering. In this case, the server can take advantage of

the monotonically decreasing sequences to schedule the network effectively. For

longer running videos, the scheduling of network resources becomes more complex

because scheduling decisions last on the order of hours (and not minutes). The key to

.

Application Description

Movies-on-demand Customers can select and play movies

Video-on-demand Customers can access archived television and sporting events.

Interactive News T.V An interactive newscast in which customers have the ability to define
which stories are selected.

Catalog Browsing Customers view commercials for goods and services.

Distance Learning Customers can view lectures on selected topics of their choice.

Table 4.1: Video Interactivity. This table lists some common
applications of video on demand services that may be used in the
future.
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providing VCR functionality in these videos is the efficient use of the smoothing

buffer.

4.2.2 Buffering Versus Delay

Using the CBA or OBA bandwidth smoothing techniques results in a trade-off

between buffering and delay. To smooth large frame-size peaks such as those found at

the end of the Seminar video (see Figure 4.1), the data in the burst must be

prefetched before the peak is played back. Because VCR functionality is coupled with

the buffering of frames, the burstiness exhibited by the videos impacts the ability to

service VCR interactivity with buffering.

For our discussions, we use the digitized movie Speed and the Seminar video.

As shown in Figure 4.1, the bandwidth allocation plans generated by the OBA algo-

rithm result in very few required bandwidth changes for the playback of the videos.

Note, the bandwidth plans generated by the CBA and OBA algorithms do not require

any prefetching before the playback of the videos begin, hence, a high initial band-

width may be required (as in the Seminar video). If the video request is made in

advance, this initially high bandwidth requirement can be removed by prefetching

data before the start of playback of the video. It is important to recall that the Semi-

nar and Speed videos are Motion-JPEG encoded, thus, they do not take advantage of

temporal similarities between frames. This results in buffering and bandwidth esti-

mates that are conservative for the results shown. In general, using MPEG encoded

video streams instead of Motion-JPEG encoded video streams results in one of two

situations: 1) The actual buffer requirements are smaller than presented (assuming

the same buffer residency times) or 2) The buffer residency times will be much higher

than the numbers presented (assuming the same buffer sizes) because more frames

can be prefetched with the same amount of buffer.With the use of MPEG’s B and P

frame types, the amount of buffering required to achieve the same amount of smooth-

ing can be expected to be 4 to 10 times smaller.
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Because the CBA and OBA algorithms smooth bursts as much as possible

through prefetching, the buffer residency times (the time that a frame sits in the

buffer) can be fairly substantial. The buffer residency times for the videos Speed and

Seminar using the optimal bandwidth allocation plans from Figure 4.1 are shown in

Figure 4.2. As shown by Figure 4.2, the buffer residency times are correlated to the

amount of buffering used for smoothing. That is, the larger the buffer used, the

higher the buffer residency times tend to be. In addition, the variance of buffer resi-

dency times also depends on the long term burstiness of the video. As described in

Figure 4.2, the amount of time a frame spends in the buffer can be on the order of
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Figure 4.1:  Bandwidth Smoothing Examples. This figure shows the plan
created using the optimal bandwidth allocation algorithm with a 20
MByte and 5 MByte buffer for the Motion-JPEG encoded videos Speed and
Seminar. The dashed lines represent the average frame sizes for 15 second
(450 frame) groups within the videos.
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half a minute to a minute for a 20 MB buffer. For the Speed video, there is a larger

variation in frame sizes throughout the movie, resulting in buffer residency times

that also vary more. For the Seminar video, the stream consists of roughly the same

size frames except at the end where a larger bursts of frames occur. As a result, large

buffer residency times are required to smooth out the large frame sizes at the end of

the video. Incidentally, the end of the Seminar video consists of the lights turning on,

a panning of the speaker toward the center of the room, and a short question and

answer session that includes the first row of listeners.

The large buffer residency times introduced by non-window based smoothing

techniques have a direct impact on the ability to provide users with VCR capabilities.

If random access to any point is to be allowed (while keeping the video quality con-

stant), the network may have to contend with a potentially large required burst in

bandwidth above that originally allocated. This large burst of extra bandwidth may

be required to make up for the absence of buffering (and delay) to help reduce the
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Figure 4.2:  Buffer Residency Times. This figure shows the buffer
residency times for the frames in the Motion-JPEG videos Speed and
Seminar using a 5 and 20 MB buffer. For these videos and a 20 MB buffer,
the average buffer residency time was 32.1 and 54.0 seconds for the Speed
and Seminar videos, respectively. Note that for equivalent size buffers the
residency times for MPEG encoded videos would be considerably larger.
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bandwidth requirements. Thus, providing VCR capabilities in a bandwidth smooth-

ing environment can be a difficult task.

4.3 VCR Functionality

Any interactive video-on-demand system must bring together several interre-

lated issues such as scheduling of disk resources at the server, reserving underlying

network bandwidth, and handling rate consumption changes. The support for VCR-

functionality can be handled at several different layers. Most notably, a fair amount

of work is focused on supporting VCR functions such as rewind-scan and fast-for-

ward-scan at the server [9,13,16,74]. These systems assume that the delivery of data

during the use of VCR functions is not buffered and is aimed at providing interactiv-

ity with frames being delivered from the server. While providing VCR functionality

may ultimately require the server to run in this mode, it suffers from scalability prob-

lems from the overhead in the number of changing requests. On the other hand, for

systems that deliver constant quality video and use bandwidth smoothing to reduce

peak bandwidths, the bandwidth allocations (especially if made in advance) are

somewhat rigid to change because of the buffer residency times needed to smooth

bandwidth requirements. In this section, we describe a video-on-demand service that

has several key features: constant quality video delivery and VCR functionality (with

the VCR-window). Before describing the VCR-window, we first describe the type of

interactivity that we expect to see in future video-on-demand systems.

4.3.1 VCR Interactivity

In a bandwidth-smoothing video-on-demand system, providing unconstrained

full-function VCR capabilities can cause problems with the ability to deliver the

required video data due to lack of network resources. By looking at the expected

interactions during the playback of video, the video-on-demand system may be

designed to take advantage of common interactions. For video-on-demand services,
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we believe that video-on-demand users typically change the access pattern during the

playback of a video that fall into one of the four categories:

•Pause/Stop - The user stops the movie for a short time to

answer a phone call, go to the kitchen, etc.

•Rewind - The user rewinds the video to play back part of the

video that was not understand

•Examine - The user stops the VCR to examine more closely a

portion of the video. As an example, a user may be

watching a football game and wants to see a certain

play a couple of times in slow motion to see why it

did or didn’t work.

•Fast forward scan - The user scans past parts of the video such

as commercials in the program.

In the future, we believe that users may also require all of these functions

from a video-on-demand system, although the actual distribution of access patterns

within these categories may change. As an example, consider the operation fast-for-

ward scan, which typically gets used to fast-forward through commercials. As men-

tioned earlier, it is unclear how commercials will play a role in future video-on-

demand systems. Nevertheless, we should not rule out the possibility of fast-forward

scans in our discussion. We expect, however, that many of the accesses will be in a

localized area within the video, thus, providing a limited window of full function VCR

capabilities may suffice for most applications. In addition, by limiting the window

size, the network bandwidth reservation levels may not need to be altered, and the

required interactions with servers and networks may be minimized.

4.3.2 The VCR-window

To allow for VCR functionality, we propose a different model of video delivery

which allows users to have full function VCR controls in a limited window called the

VCR-window. In our model of video transfer, we allow all VCR functions to occur at
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any time within the course of playback but limit the range of accessible data without

having to renegotiate the reserved bandwidth. We define the notion of the point of

play (POP) to be the furthest frame in the video that has been viewed by the user and

the point of transmission (POT) as the furthest frame in the movie that resides in the

client buffer. Our model then consists of viewing the smoothing buffer as a circular

buffer, in which, the POP and POT traverse the circumference in a clock-wise manner

(see Figure 4.3). The distance the POT is ahead of the POP is the amount of buffer

space used for prefetching. The remaining part of the circumference, the rewind area,

is the amount of data that has been played back and is still in the buffer. Thus, when

the buffer is nearly full, the POT is just behind the POP, and when the buffer is

nearly empty, the POP is just behind the POT. Note, if the POT ever passes the POP

or the POP passes the POT, we have buffer overflow and buffer underflow, respec-

tively.

 Using these definitions of the POT and POP, we make the observation that we

can allow the user to have full function VCR capabilities in the area that the POP

leads the POT without changing the bandwidth reservation level. No change in band-

width is required because the data that is being viewed is sitting in the buffer

already. One major drawback of this method is that when the buffer is nearly full the

POP does not lead the POT by any significant amount. To ensure that the rewind

Point of Transmission

Point of Play

Figure 4.3:  Circular Buffer Example. This figure shows the conceptual
model of buffering for video data. The point of play (POP) and the point of
transmission (POT) move clockwise. The solid line represents the rewind
area, while the dashed line represents the amount of buffering that is in
use for prefetching (smoothing)

Rewind Area
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area has some minimum amount of data, we define the rewind buffer to be the closest

distance that the POT can approach the POP. For clarity we still refer to the total dis-

tance that the POP leads the POT as the rewind area (or the VCR-window).

Figure 4.4 shows the resulting two cases when the buffer is full and when the buffer

is empty for the VCR-window.

Formally, we can define the amount of available data in the rewind area on the

ith frame as

where,

•MaxBuff is the maximum buffer size including the Rewind

Buffer.

•BwAlloc(k) is the bandwidth allocation on frame k. Note, we

assume that the bandwidth allocation plan is allo-

cated in bytes/frame.

•FrameSize(k) is the frame size of the kth frame.

This equation takes the difference between the total bandwidth received and

the total bandwidth played back (i.e. the amount of data in the buffer) and subtracts

it from the amount of buffering available. This equation does not, however, calculate

Rewind
Buffer

POT
POP

(a) Buffer empty

Rewind
Buffer

POT POP

(b) Buffer full

Figure 4.4:  Buffer Limit Conditions. Figures (a) and (b) show the cases
that occur during playback when the buffer is empty and full,
respectively. The solid line represents data that has been played back but
not removed from the buffer, while the dashed line represents data that
has been transmitted but not played back.
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the amount of video that is actually available but calculates its aggregate size. We

can calculate the additional amount of rewind buffer needed to have T frames avail-

able in the buffer on the ith frame as

This equation is essentially the size of the T frames needed in the rewind area with

the amount of data already in the rewind area subtracted. If the user requires that

100% of the time the buffer has T frames in it, then the additional amount of buffer-

ing needed is simply the maximum AddBuffReq() over all frames within the movie.

That is, to ensure the buffer always has T frames in the minimum buffer requirement

MinBuffReq(T) is:

To allow for VCR capabilities, when a user starts moving in the rewind area,

the data flow from the server is stopped. The flow is then restarted only when the

playback point reaches the POP again. Thus, only two interactions to the server and

network are required to support the VCR-window, one to stop the data flow, and one

to start the data flow again. Because the delivery of bandwidth starts at exactly the

same point at which the data was stopped, no changes in the bandwidth reservation

level are necessary while allowing for a window of full function VCR capabilities. For

long term bandwidth reservations, the only modification necessary is the extension of

the bandwidth requirement by the amount of time that was spent in the rewind area.

Using this model for VCR functionality, the operations stop/pause, rewind, and exam-

ine can be provided to users with only minimal interaction with the network and

server. As an example, consider the bandwidth allocation plan shown in Figure 4.5.

At time t, the user decides to stop the playback and examine the video that was just
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k max 0 i T–,( )=
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 
 
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played. Suppose that the total time it takes for the user to examine the video and get

back to time t in the video is i time units. We then move all bandwidth allocations

after the time t in the original bandwidth allocation plan to start at time t’, the time

at which playback started again. Note, by shifting the bandwidth allocation plan

after time t by i time units, the resultant bandwidth reservation has been modified.

We discuss how the reservation scheme can be modified to handle this change later in

this chapter.

4.3.3 Access Outside the VCR window

Scans to points outside the VCR window require renegotiations with the net-

work and server. For long fast-forwards, the consumption rate originally anticipated

will now be compressed in time, resulting in the need for more bandwidth than was

originally planned for, assuming all the frames are delivered. We expect that these

interactions may not occur very frequently, nonetheless, they should not be disal-

lowed. For the renegotiation of bandwidth reservations in these cases, we expect that

the notion of contingency channels which reserve part of the network capacity to han-

dle changes in consumption rate are useful [13]. Because the VCR-window filters

many of the interactions that are required through the use of buffering, the contin-

gency channels can be more efficiently allocated to handling the special cases that

may arise during the playback of video.
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Figure 4.5:  VCR-Window Example. This figure shows the adjustment in
the bandwidth allocation plan that is made when a user uses the VCR
controls for i time units (include the time to get pack to the POP that it
was at). The remaining portion of the bandwidth allocation plan is then
shifted by the amount of time spent in the rewind area. In this case, it is
shifted i time units.
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Our work on contingency channels is derived from the work at IBM on batch-

ing of the delivery of video data for clients watching the same movie with the same

approximate playback times [13]. In their work, the authors consider the use of

pause/resume functions for the VCR controls on how multiple channels can be

batched together, hence, the contingency channels are only used to “unbatch” a client

that has paused the video and is not temporally close enough to the channel it was

originally batched with. The “unbatched” client is then re-batched with possibly a dif-

ferent group of clients watching the same movie at about the same playback time.

The actual bandwidth allocation for the movie, however, is not addressed in this work

as well as the use of any buffering that may be used to smooth bandwidth requests.

As a result of this, the contingency channel may be used by a client for a short time or

for a very long time depending on where the playback time of other batched users is.

For our purposes, we use the contingency channel in a slightly different man-

ner. We do not consider batching of movie channels but use the idea of setting aside

bandwidth for the occasional accesses that are made outside of the VCR-window and

only use the contingency channel for providing VCR functionality and not batching.

Therefore, the contingency channel in our work is used by clients for a short amount

of time until their bandwidth requirements reach a level that is within their origi-

nally agreed upon bandwidth reservations.

For accesses outside the VCR-window, it is important to get the bandwidth

consumption rate for the clients back to their original bandwidth reservations as soon

as possible. By returning the system back to its steady state as soon as possible, the

network manager needs to only worry about scheduling the contingency channel part

of the access outside of the VCR-window (as opposed to re-admitting the entire band-

width plan). As an example, consider the optimal bandwidth allocation delivery plan

shown in Figure 4.6 that has a point to be randomly accessed. Ideally, an impulse of

data would be issued at the point of random access and the bandwidth requirements

would then fall below the bandwidth requirements for the entire original bandwidth
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plan immediately. Because impulses of data are not possible, a plan for the use of the

contingency channel must be created. For this random access at point PTaccess, let

BWnew be the critical bandwidth from PTaccess with no bytes in the buffer. In addition,

let Bytesbehind be the difference between Flow(PTaccess) and the buffer occupancy of

the original bandwidth plan at PTaccess. Then, we note that any bandwidth greater

than BWnew does not cause buffer starvation and that once Bytesbehind have been

delivered the contingency channel can then be freed.

For access to random starting points outside of the VCR-window, the critical

bandwidth is generally larger than the original bandwidth allocation at that point. It

is, however, entirely possible that the critical bandwidth from the random starting

point is nearly the same as (or even below) the original bandwidth allocation at the

random point. As an example consider, the two examples shown in Figure 4.7. In

Figure 4.7(a), the critical bandwidth is nearly the same as the original plan. Because

the runs in the optimal bandwidth allocation algorithm can run in the tens of min-

Random Access Point

Figure 4.6:  Random Access and Smoothing. This figure shows the
handling of accesses to a random location within a video delivery plan.
The dashed vertical line shows the necessary amount of data required to
be sent via the contingency channel. The minimum amount of bandwidth
necessary is determined by the critical bandwidth starting from the
random access point with 0 bytes in the buffer. Once the plan reaches the
original allocation, the contingency channel for that client can be freed.

Time

Flow()

Fhi() original bandwidth plan

bytesbehind bwnew
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utes, the actual difference in bandwidth requirement may be very small.

Figure 4.7(b) shows an example where the critical bandwidth is actually below the

bandwidth at the random access point.

In general, the accesses that are made to points outside of the VCR-window

are expected to be in the vicinity of the playback point. As a result, the data in the

buffer may still be usable, thereby reducing the actual bandwidth requirement from

the contingency channel.

 Contingency Channel Allocation - An allocation back-off approach

Implementing the contingency channel poses an interesting problem - how

should the contingency channel bandwidth be allocated? For the random access that

is shown in Figure 4.6 and Figure 4.7, any bandwidth greater than the bwnew will

work. Thus, a trade-off between using all of the bandwidth of the contingency chan-

nel for a shorter period of time, or allocating at the critical bandwidth bwnew and

using the contingency channel for a longer period of time must be made. The former

Figure 4.7:  Critical Bandwidths and Random Starting Points. In these
figures, thin solid lines are the original bandwidth allocations, while the
dashed lines are the critical bandwidths starting from PTrandom_access.
Figure (a) shows an example starting point where the bandwidth
requirement for the contingency channel is nearly the same as the
original bandwidth allocation, while Figure (b) shows an example starting
point where the bandwidth requirement for the random starting point is
less than the actual original bandwidth allocation plan.

PTrandom_access

newbw < orig. bw

PTrandom_accessFlow()

Fhi()

Flow()

Fhi()

(a) newbw ~ original bandwidth (b) newbw < original bandwidth
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allows the contingency channel to be freed as soon as possible, but risks starving

other outstanding requests. The latter approach may not make the best use of band-

width available on the contingency channel. To balance between these goals we pro-

pose an allocation back-off strategy for the allocation of the contingency channel.

The allocation back-off strategy allocates the entire available contingency

channel bandwidth to a single client when no other clients require servicing. When

another request arrives, the network manager picks one (or more) of the users to

decrease its bandwidth requirement either in half or to its critical bandwidth to allow

the new user to use the contingency channel to re-synchronize its bandwidth alloca-

tion plan. When a client is done with its contingency channel allocation, the network

manager then notifies one of the clients to increase its use of the contingency chan-

nel. By allocating the contingency channel in this manner, the network manager can

make the most use of its contingency channel bandwidth, while assuring users a rea-

sonable response time. In the event that the contingency channel is entirely allo-

cated, a user may need to start the retrieval of bandwidth at a smaller rate (thus

delaying the actual start-up of the video). With the filtering provided by the VCR-

window, we expect that the number of times that the contingency channel reaches

capacity and cannot handle other requests will be fairly rare.

4.4 An In-Advance Reservation Scheme

Resource reservations are an important part of network management for both

in-advance and on the fly reservations because the network can then accurately esti-

mate the bandwidth requirements of the clients. For stored video-on-demand ser-

vices, the ability to provide reservations of bandwidth in advance can make the job of

resource allocation easier[56]. Resource reservation schemes have two key compo-

nents that are necessary for resource reservations: the bandwidth requirement and

the duration that the bandwidth requirement is needed [14,32,84]. Without providing

these, resource reservations in-advance then becomes a difficult task. In addition,
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Ferrari, Gupta, and Ventre point out that scheduling of bandwidth based on some

fixed interval reduces the fragmentation that the reservation scheme has to contend

with[32]. Finally, it is commonly agreed upon that advance reservations will consist

of two distinct phases, an admission control phase where the reservation is admitted

and an enforcement phase where the bandwidth allocation is enforced.

Our in-advance reservation model is a slotted reservation scheme with a min-

imum bandwidth allocation slot of 30 seconds. The user machine/set-top-box creates a

bandwidth allocation plan based on the slot boundaries and then passes this plan to

the server and network for admission control. The network managers then compare

the bandwidth requirements of the new channel and compare it to the available

bandwidth allocation plan offered by the user. The example in Figure 4.8 shows sam-

ple requests that may be sent to the network manager. By using 30 second bandwidth

allocation slots, the network manager only needs to evaluate 180 slots for a 90

minute video, reducing the complexity of the admission control algorithm. The net-

work manager then allocates the available resources to the new channel if available.

If the available bandwidth does not exist, then the network manager can either 1)

offer a new starting time which can satisfy the bandwidth allocation plan or 2) create

a different network path to the server which can satisfy the request.

t = 8:00pm

8:00pm 8:01pm 8:02pm

t = 8:00.30

......

t = 8:01pm

Figure 4.8:  Resource Reservation Scheme. This figure shows the
reservation of bandwidth for three sample streams. Bandwidth is
reserved in 30 second intervals to reduce fragmentation of bandwidth.
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Passing bandwidth plans to the network manager as part of admission control

creates rigid schedules. To allow VCR-window functionality, the resource reservation

system must reserve bandwidth based on the maximum amount of ‘‘VCR-time’’ to be

introduced by the viewer. The total time that the video can be delayed must be

declared at admission control. The actual amount of VCR-time delay reserved

depends on the guarantees that the user expects and the quality of service expected if

the delay bounds are exceeded. The amount of VCR-time reserved may be also deter-

mined by economic factors (i.e. how much users are willing to pay for bandwidth that

they may not use). For now, we assume the worst case for this delay, in that, all of the

delay can occur at any interval. Therefore, in the calculation of the bandwidth alloca-

tion plan used for admission control, we create a bandwidth allocation plan that

reserves the data such that at each point within the movie the video can be stopped

for the maximum delay. Let T be the delay (in frames) for VCR functionality that is

required from the user and BwPlan(i) be the bandwidth requirement on frame i.

Then the new bandwidth allocation plan (in bytes/frame) can be defined as

Figure 4.9 shows a sample bandwidth allocation plan calculation that has the

expected VCR-induced delay built into the bandwidth allocation plan.

4.5 Experimentation

The success of the VCR-window concept depends on how much data is avail-

able in the rewind area at any given time as well as the amount of buffering required

for use as the rewind buffer. As the amount of buffering devoted to the rewind buffer

increases, the amount of smoothing available diminishes. The success of the reserva-

tion system depends on the effectiveness of the video-on-demand system to utilize its

bandwidth. In order to fully understand the impact of buffering on the VCR-window

and the associated in-advance reservation system, we have digitized 17 full-length

NewBwPlan i( )
max

i T– j i≤ ≤
BwPlan j( )=
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movies along with 3 seminars that were presented at the University of Michigan. For

the experiments, we used the OBA algorithm with prefetching on the initial run.

4.5.1 VCR-window Experimentation

The success of the VCR-window depends on the amount of rewind buffer

required for the guarantees expected from the user. Using the CBA or OBA algo-

rithms with a reasonably large buffer, the buffer is full only a small number of times.

Thus, very little additional buffering for use as a rewind buffer may be required.

 Figure 4.10 shows for a given amount of time, x, the probability that x

amount of video data is available in the rewind area with the rewind buffer size set to

0. For the Speed video, using a 25 MByte buffer results in over half a minute of video

in the rewind area 53% of the time while using a 50 MByte buffer results in over half

a minute of video in the rewind area 75% of the time. In addition, 15 seconds of video

is available 74% and 91% of the time for the 25 and 50 Mbyte buffers. The Seminar

video exhibits similar numbers to the Speed video. As shown in Figure 4.11, the per-

centage of time that the rewind area contains more than 30 seconds of video for the

2. Reservation Calculation with

1. Bandwidth Plan

3.Bandwidth Plan Passed to Network

Figure 4.9:  Bandwidth Reservation Calculation. 1) Client machine creates
bandwidth allocation plan.  2) Client machine creates second plan that
incorporates ‘‘VCR-Time’’ in the plan. 3) The VCR-time calculated
bandwidth is passed to the network and server as part of admission
control. This plan is denoted by the heavy solid line.

VCR-time Included

VCR-Time
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Figure 4.10:  Buffer Rewind Probabilities. These graphs show for a given
amount of time, x, the probability that x amount of video is available in
the rewind area without renegotiation and with the rewind buffer set to 0.
For 25 and 50 Mbyte buffers, this results in having 30 seconds of video
available 52.8% and 75.3% of the time, respectively, for the video Speed.
Similarly, the Seminar video had 30 seconds of video available 46.9% and
77.9% of the time, respectively.

B
ea

ut
y 

&
 B

ea
st

B
ig

C
ro

c.
 D

un
de

e

E
.T

.

Fi
na

l F
ou

r

H
om

e 
A

lo
ne

 2

H
on

ey
, I

 ..
.

H
ot

 S
ho

ts
 2

Ju
ra

ss
ic

 P
ar

k

Ju
ni

or

R
oo

ki
e 

...

Se
m

in
ar

Si
st

er
 A

ct

Sl
ee

pl
es

s 
...

Sp
ee

d

T
ot

al
 R

ec
al

l

0

10

20

30
40

50

60

70

80
90

100

25 MB

50 MB

Figure 4.11:  Buffer Rewind Times for all Movies. This figure shows the
percentage of time that rewind area contains more than 30 seconds of
video for the 25 and 50 MByte smoothing buffer with the rewind buffer
size set to 0.
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rest of the videos exhibits similar numbers as well. Typically, the 25 and 50 MB buff-

ers results in the rewind area with 30 seconds of video 45-60% and 75-90% of the

time, respectively.

The addition of a rewind buffer shifts the probability curves from Figure 4.10

to the right, thus increasing the amount of time that is available in the rewind area.

Figure 4.12 shows, the amount of buffering needed for the rewind buffer size in order

to have the rewind area contain a certain percentage of video in the rewind buffer

greater than 15 and 30 seconds. Note, these buffer rewind sizes are in addition to the

25 and 50 MByte buffers used for the smoothing of bandwidth requirements. As

expected the lines for the same time (15 and 30 seconds) approach the same required

rewind buffer size because this buffer size is determined by the same point (area)

within the video. In addition, the amount of required rewind buffer space decreases

as the size of the smoothing buffer increases. This is mainly due to the larger buffer

sizes having more rewind area on average. In order to achieve at least 15 seconds of

video in the rewind area 95% of the time, the movie Speed requires only 4 and 2

MBytes of rewind buffer for the 25 and 50 MByte smoothing buffers, respectively. The
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Figure 4.12:  Buffer Rewind Size Requirements. These figures show the
rewind buffer size requirement necessary to ensure that some percentage
of the time, the VCR-window has 15 and 30 seconds of video in it for the
movie Speed. As an example, with a 25 MByte smoothing buffer, in order
to achieve 15 seconds of buffering 90% of the time, roughly 3MBytes of
rewind buffer is required above the 25 MByte smoothing buffer.
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Seminar video approaches the 100% line faster than the Speed video. This is due to

the smaller (and more constant) average bit rate of the Seminar versus the Speed

video. If we take the average frame sizes for the videos and multiply it by the number

of frames in 30 seconds of video (900 frames), the Speed video results in 11.1 MB

while the Seminar video results in 7.7 MB. It is interesting to note that these videos

approach 100% near these values.

Figure 4.13 shows the percentage of time that 30 seconds of movie is available

when using an 8 MByte rewind buffer. The highest bit rate video Final Four results

in the smallest percentage of rewind times greater than 30 seconds, while the 3

smallest bit rate videos (E.T., Crocodile Dundee, and Sleepless in Seattle) result in the

highest percentage of rewind times. This suggests that the rewind size is roughly cor-

related to the average bit rate that the encoded movie has. Thus, we expect that the

use of tighter encoding schemes such as MPEG with B and P frames reduces the

overall requirement of the rewind buffer size.

Figure 4.13:  Buffer Rewind Sizes for All Movies. This figure shows the
percentage of time that 30 seconds of video is available using an 8 MByte
rewind buffer in addition to the 25 and 50 MByte smoothing buffer.
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4.5.2 Accesses Outside the VCR-window

The use of contingency channels to serve requests outside of the VCR-window

should not occur that frequently, however, if a user accesses an area outside of the

VCR-window, the contingency channel needs to provide bandwidth for the client to

return to its originally agreed upon reservation. To show the expected resource

requirements for random accesses outside of the VCR-window, we assume that the

network link layer is a 100 Mbit/sec link and that only 5% of the link (i.e. 5Mbits/sec)

is reserved for the contingency channel. For accesses outside of the VCR-window, we

then graphed the time required for resynchronization using the entire contingency

channel bandwidth. as well as the re-synchronization time at the critical bandwidth.

Because the critical bandwidth can be approximately the same or lower than the orig-

inal bandwidth allocation, we force the minimum contingency allocation to be at least

90 kbytes/sec, which is approximately one quarter the average bit rate of the videos

that we have digitized and approximately 14% of the contingency channel capacity.

This avoids excessively long re-synchronization times due to a very small difference

in the original bandwidth allocation and the critical bandwidth from the starting

point.

Figure 4.14 shows the re-synchronization times for the videos Speed and Sem-

inar. The re-synchronization times using the entire contingency channel are on the

order of half a minute for both movies. For contingency channels that have twice as

much bandwidth, the graph for the contingency channel at the maximum bandwidth

is scaled in half. As shown by the graphs, the contingency times at the minimum are

directly related to the amount of data in the buffer that need to be made up. As a

result, the graphs for the contingency times are very similar to the buffer occupancy

graphs in Figure 4.2.

Accesses just outside of the VCR-window may be able to take advantage of

data that is already sitting in the buffer, thereby, reducing the amount of resources
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required from the contingency channel. The reduction of contingency channel

resources is, of course, directly related to what data is buffered and where the new

point of play is. In Figure 4.15, we have graphed the contingency channel usage for

forward accesses 10 seconds outside of the VCR-window. As shown, by the graphs, the

average amount of time needed to re-synchronize with the original bandwidth alloca-

tions is much smaller than random accesses (as in Figure 4.14). As an example, the

videos Speed and Seminar need, on average, 4 and 6 seconds of the entire contin-

gency channel bandwidth to re-synchronize with the original bandwidth plans. The

sharp peak in the contingency times for the movie speed results from an increase in

bandwidth in the original bandwidth allocation plan. The increase in bandwidth is

almost the same as the critical bandwidth from the starting point, resulting a very

long contingency channel time. Allocating the contingency channel at its maximum

bandwidth, however, removes this spike.
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Figure 4.14:  Random Access Times for Contingency Channel Usage. This
figure shows the resynchronization time required for the bandwidth
usage of a random access to return to the originally allocated bandwidth
(using a 25 MB smoothing buffer and the OBA algorithm). The solid lines
represent the time required for re-synchronization using the entire
bandwidth of a 5Mbit/sec contingency channel. The dotted lines show the
re-synchronization times for allocating the bandwidth of the contingency
channel at the critical bandwidth from the random starting point or at
90kbytes/sec, which ever is higher.
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4.5.3 Bandwidth Reservations

For bandwidth reservations, one of the main concerns is the actual network

utilization versus the amount of bandwidth that was allocated. For example, if the

amount of bandwidth reserved is around 95% but only 50% of the bandwidth is actu-

ally used, then the reservation scheme may need to be modified to be more effective

in utilizing the network. As shown in Figure 4.16, the reservations based on a 30 sec-

ond period with no extra delay built into the reservation plan for VCR functionality

yield reservation utilizations between 99% and 100% of what was reserved. Thus, the

OBA allocation (with prefetching on the first run) yields bandwidth allocation plans

that utilize nearly all the bandwidth reserved based on 30 second periods and suffers

very little internal fragmentation of bandwidth allocations. Furthermore, the utiliza-

tions can be increased by aligning bandwidth change boundaries with the slot bound-
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Figure 4.15:  Contingency Channel Usage for Local Accesses. This figure
shows the resynchronization time required for the bandwidth usage of
accesses that are 10 seconds outside of the VCR-window (using a 25 MB
smoothing buffer and the OBA algorithm). The solid lines represent the
time required for re-synchronization using the entire bandwidth of a
5Mbit/sec contingency channel. The dotted lines show the re-
synchronization times for allocating the bandwidth of the contingency
channel at the critical bandwidth from the random starting point or at
90kbytes/sec, which ever is higher.
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aries. Three trends are worth noting in Figure 4.16. First, for very small buffer sizes

(< 5 MB), the utilization is hurt by two things, more bandwidth changes that are not

aligned with slot boundaries and more bandwidth is reserved due to the limitation of

the prefetch buffer in smoothing bandwidth requests. Second, because the utilization

for the OBA algorithm is quite high, the utilization for the streams reach their limits

fairly quickly. Finally, the Seminar video has lower utilization for the 5 and 10

minute delays because the video is shorter in length, thus, the 5 and 10 minute delay

reservations make up a larger portion of their reservations. With tighter encoding

mechanisms, the utilization can be expected to be higher with no other modifications

to the buffer size or delay for VCR functionality.

The expected overall utilization of the network is not captured by the graphs

in Figure 4.16 because they do not capture the peak reservations which may affect

other bandwidth allocation plans. To establish a “lower bound” on the expected net-

work utilization, we have modified the bandwidth allocation plans to have both the

peak bandwidth reservation for the entire video and the expected VCR induced delay.

A sample graph allocation is shown in Figure 4.17. As a result, the peak bandwidth

allocation makes the reservation for the entire movie as one constant bandwidth res-

SeminarSpeed

Figure 4.16:  Reservation Utilization. These graphs show the reservation
utilization for the video Speed and Seminar with reservations made on a
30 second period and reserved with the maximum additional delay
expected during playback.
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ervation. We then graphed the expected bandwidth utilization based on these peak

bandwidth allocations instead of the bandwidth reservations described in Section 4.4.

As shown by Figure 4.18, we see that the bandwidth utilization has dropped from

those shown in Figure 4.16. The bandwidth utilizations, however, are still reason-

able. Using a 25 MByte smoothing buffer, no rewind buffer, and an extra 5 minutes of

delay in the bandwidth reservations, the movie Speed has a utilization of 90.7% while

the Seminar video has a utilization of 92.7%. Thus, even for peak bandwidth reserva-

tions with 5 extra minutes reserved, we expect that the bandwidth utilization can be

held fairly high. The peak bandwidth reservations do not affect the Seminar video as

Delay

Peak Bandwidth Reservation

Bandwidth Allocation Plan

Delay Induced Bandwidth
Allocation Plan

Figure 4.17:  Peak Bandwidth Reservations. The heavy solid line shows
the creation of a peak bandwidth allocation plan. This bandwidth
allocation plan is used for the advanced reservations made in Figure 4.18.
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Figure 4.18:  Peak Reservation Utilization. These graphs show the peak
reservation utilization for the video Speed and Seminar with reservations
made at the peak bandwidth allocation and with the maximum additional
delay expected during playback.
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much as the Speed video because it has less variation between frame sizes resulting

in smaller peaks when they occur.

Finally, Figure 4.19 and Figure 4.20 show the normal reservation utilizations

and peak reservations utilizations in the same exact way that Figure 4.16 and

Figure 4.18 were made, respectively. In Figure 4.19, the normal reservation scheme

with an additional 5 minute delay for both 25 and 50 MByte buffers are shown for all

movies. They result in utilization ranging from 90% to 95% with the exception of the

Final Four video. This result is expected as the Final Four video is only 41 minutes in

length, thus, the extra 5 minutes accounts for 11% of the video. As expected the peak

utilizations are generally less than the normal reservation method. In addition, the

25MB buffers are affected more because they cannot remove the peak burstiness as

much as with a 50 MB buffer. Nonetheless, they exhibit fairly good utilizations. The

video Beauty and the Beast video is affected the most by using a peak bandwidth res-

ervation. The reason this occurs is that a peak of very large frame sizes could not be
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Figure 4.19:  Reservation Utilization for Other Video Data. This figure
shows the reservation utilization for bandwidth plans that are allocated
in 30 second periods and have 5 minutes of delay added to the
reservations. All utilizations were in the 90% to 95% range with the
exception of the Final Four video.
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overcome with smoothing in a small area within the movie. We expect that these sin-

gular peaks may be scheduled to fit into the valleys of other bandwidth allocation res-

ervations. Some movies exhibit no change in utilization from the reservation

utilization to the peak reservation utilization. In these cases, the amount of buffering

in the reservation utilization is enough to remove almost all of the burstiness and

thus does not get affected as much by using the peak bandwidth requirement. In gen-

eral, however, the overall expected bandwidth utilization of the network can be

expected to be fairly high.

4.6 Conclusion

In this chapter, we have introduced the notion of VCR-window which allows a

user to have full function VCR capabilities within a constrained region that does not

change the bandwidth allocation requirements. We have also shown that providing

30 seconds of video available for 90% of the time can be implemented with a small

amount of additional buffering, even for loosely encoded Motion-JPEG video. We
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Figure 4.20:  Peak Reservation Utilization for Other Video Data. This
figure shows the peak reservation utilization for bandwidth plans that are
allocated in 30 second periods and have 5 minutes of delay added to the
reservations.
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expect that the majority of interactions that occur during the playback of video can be

accounted for by using this technique. For users who want a guarantee of some

amount of video always available in the rewind area, the required rewind buffer size

is determined by a few scenes within the movie. For users who are willing to settle for

lesser guarantees during the examine or scan phases, the VCR functionality can

always be provided by the server which can fit the required video into the reserved

channel capacity. Work on supporting scan operations from the server can be found in

[9,16,74], while modifying compressed video to fit within a specified channel capacity

can be found in [60,61].

We have also presented a slotted, in-advance resource reservation scheme to

be used in conjunction with the VCR-window.   The optimal bandwidth allocation

algorithm results in very high network bandwidth utilization even under periodic

scheduling boundaries. This is mainly due to the optimal bandwidth allocation algo-

rithm minimizing the number of bandwidth changes as well as the peak required

bandwidth. Nonetheless, the total amount of smoothing available depends on the

long-term burstiness of the data itself. Using the advance reservation scheme in con-

junction with the optimal bandwidth allocation algorithm allows users to have 5 to 10

minutes of “VCR-time” without degenerating the utilization. We expect that the

lower bound for network utilization to be at least 80 percent. The 5 to 10 minutes of

extra reserved “VCR-time” can be allocated for users to browse commercials or pre-

views of other movies, assuming that they fit into the bandwidth reservation or are

viewed at a slightly lower quality.

In the event more “random” access patterns are required such as jumps or

scans of more than a couple of minutes in the video are required, renegotiation of

bandwidth most likely is required or the reservation of bandwidth with that is a lot

higher than actually used. The size and magnitude of these contingency channels

depends on the percentage of times that the users in the video-on-demand system

stray from the VCR-window. While we expect that the frequency of these occurrences
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to be quite small, the video-on-demand system should provide this flexibility. Our

results indicate that allocating as little as 5 Mbits/sec of contingency channel can

allow users that make local accesses outside of the VCR-window to re-synchronize

with their original bandwidth allocation plans within a few seconds. These times are

expected to be even smaller with tighter encoding of the video. Finally, for random

accesses, the use of indexing schemes to allow access at distinct points within a video

may allow the bandwidth requirements to be handled in a more efficient manner for

accesses outside the VCR window.
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CHAPTER 5

MPEG SOFTWARE VIDEO DECOMPRESSION

    “The biggest difference between time and space is that
you can’t reuse time” - Merrick Furst

5.1 Introduction

This chapter addresses the issue of delivering data to the user for viewing

using software video decompression. Video compression technologies take advantage

of redundancy within a video stream to reduce the size of the videos. This redundancy

occurs in three directions, in two dimensions between adjacent pixels in a single

frame and in a third dimension between the different frames. By taking advantage of

this redundancy, high compression ratios are possible, however, the reconstruction of

the original frames may be slowed because of the dependencies within these large

data sets. As a result decompression algorithms such as MPEG can be limited by both

the sheer number of instructions required to decompress the video and by the data

rates required from the memory system.

Work has begun on reducing the number of instructions, for example, by com-

bining several byte operations into a single larger operation. Computer manufactur-

ers, such as HP and DEC, will support such operations in hardware by using split

data paths in their future computers [40]. This approach has also been implemented

purely in software to support high-speed video decompression [5,19]. Other work has

used loop-unrolling and other compiler techniques to speed up the decompression

algorithms [64]. Reducing the number of operations executed, however, increases the
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rate of data consumption, requiring greater data bandwidth from the memory sys-

tem.

Data bandwidth for user applications has traditionally been supplied through

high speed cache memories. Applications such as MPEG, however, have been viewed

as naturally cache inefficient because of the amount of data that it uses is large rela-

tive even to secondary cache sizes, which typically range from 64 to 256 Kbytes. This

inefficiency is ironic because video compression such as MPEG is made possible by

using portions of selected frames to predict the contents of other frames. Thus, the

decompression relies on high bandwidth from memory, which is the primary limita-

tion in the performance of a software MPEG [64].

In this chapter, we address the problem of reducing the number of access

required to main memory during software video decompression by decreasing the

cache miss ratios. Decreasing the miss ratios exhibited by MPEG decompression can

be implemented in one of two ways: (1) by reducing the ‘‘working-set’’ of MPEG such

that the key data that dependent macroblocks depend on stay in the cache longer, or

(2) predicting the data to be accessed in the decompression and prefetching the data

before it is needed.

In the next section, we further motivate this problem and provide the neces-

sary background for the discussion of MPEG video decompression in software and

processor caching. In Section 5.3, we describe two ways of reducing the ‘‘working-set’’

of a standard MPEG player as well as provide the experimental results. In

Section 5.4, we describe how software-controlled prefetching for MPEG video decom-

pression impacts the underlying architecture, both from a cache miss rate standpoint

and from a memory bandwidth point.
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5.2 Motivation

Three trends in computer architecture design will increase the importance of

processor caching in future applications such as software video decompression. First,

as Hennesey and Patterson have pointed out [43], processor speed improvements are

far outpacing those for memory speeds, creating larger penalties for processor cache

misses. As an example, current generation machines, with clock speeds near 100MHz

typically have 70ns memory SIMMs, but the next generation DEC Alphas with clock

speeds in excess of 230MHz will still be using 70ns SIMMs [17]. To somewhat allevi-

ate this mismatch in speed, techniques such as expanded caching and prefetching can

be used. Second, in order to achieve high processor clock speeds, on-chip caches have

been made smaller to allow the cache to keep up with the processor. As examples, the

Intel P6 processor has an 8K primary data cache backed by a 256K secondary data

cache, while the Dec Alphas have an 8K primary data cache backed by a 512K data

cache [42,17]. The final trend lies within the nature of the video and audio data.

Video and audio compression and decompression algorithms generally perform many

operations on data that is either 8-bits or 16-bits long. To help support software video

decompression, computer manufacturers such as Hewlett-Packard will provide split

data paths in future architectures to allow parallel computations on data that are

only 8 or 16 bit computations. These future processors will consume data at a much

faster rate than current generation processors. As a result, we expect the differences

in cache performance to make larger and larger differences in the overall perfor-

mance of decompression algorithms.

Decompression of MPEG in software generally is not associated with effective

processor caching because of the large amounts of data that must be accessed. In an

all I-frame encoded movie, no dependencies between frames exist, resulting in all the

data being decompressed, displayed, and then thrown away with no re-access of data

occurring across frames. With encodings that involve dependent P and B frames, the

dependencies between frames generally do not survive long enough in the processor
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cache to be useful in decoding other frames. Consider the decoding of a 640x480

encoded video with two I frames surrounding two B frames that each depend on these

I-frames (that is, IBBI). Each frame, once decompressed, requires 307200 (640x480)

bytes of storage for the luminance channel and 76800 bytes for each of the two

chrominance channels, resulting in up to 1.4 Mbytes of frame data being touched in

the decompression of a single B frame. In comparison to the Intel P6 and the new Dec

Alpha chips, each B frame touches enough data to fill (and empty) the on-chip caches

175 times, while filling the secondary cache 3 to 5 times. This figure does not include

the data required by the application or window manager during its decompression.

As a result, in the decompression of the following B frame, the key data from the I

frames necessary to decode the dependent B frame are flushed out of the cache and

have to be brought into the cache again.

5.3 Improving Processor Caching via Locality

In this section, we investigate the performance gain that may be available to

algorithms using different traversal orders to decompress MPEG streams. We show

that alternative traversals can result in improved decompression speeds and that

these improvements are likely to increase with better instruction-level support for

MPEG. Our goal is not to optimize the MPEG player for a specific architecture.

Instead, we are interested in improving the caching behavior of such an application.

These traversal orders come at the cost of additional overhead, but in some cases this

overhead may well be made up for by improved cache hit rates. The use of markers

within the frames can reduce this overhead considerably, making improved perfor-

mance easier to achieve with a small cost in compression ratio.

To improve processor caching for video, we discuss two methods that allow for

better cache performance for the playback of MPEG video clips. These approaches

change the typical MPEG scanline decompression traversal of frames to improve the

locality exhibited by dependent frames. In addition, we present two different algo-
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rithms that implement these methods depending on whether or not the MPEG video

was coded with markers within the frame. In the following section, some motivation

and background are presented. Section 5.3.1 introduces two possible techniques that

can improve cache miss rates for MPEG video applications. In Section 5.3.3, a com-

parison of the new techniques to an unmodified MPEG player is presented. Finally, a

summary and conclusion about the importance of caching to video applications is pre-

sented.

5.3.1 Vertical and Horizontal Striping

To improve the locality of the MPEG video player, macroblock dependencies in

P and B frames on macroblocks from other frames must be exploited. The use of

dependent macroblocks introduces coherence in 3 directions, between frames and

between macroblocks in a single frame. By decompressing a stream a frame at a time

and in scanline order, the standard decompression method exploits coherence in only

one direction. By taking advantage of coherence in the other two directions, a reduc-

tion in processor cache misses is feasible.

Two methods can be used to take advantage of coherence between lines. The

simplest way to improve locality is to shorten the length of the macroblock scanline

and to reconstruct the frame in several vertical columns. By shortening the scanlines,

the dependent macroblocks used in reconstructing one shortened scanline are more

likely to still be in the cache when decompressing the next scanline. By using short-

ened scanlines, the frame is reconstructed with large vertical stripes. See Figure 5.1.

We call this method vertical striping.

The second method involves grouping several lines into a larger ‘‘scanline’’. To

decompress these scanlines, the MPEG player reconstructs each of the scanlines

within the larger scanline concurrently by decompressing the first macroblock in

each scanline, followed by the second macroblock in each scanline, and so on. The tra-
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versal results in a frame that is reconstructed with large horizontal stripes. This

method is called horizontal striping. An example is shown in Figure 5.2.

To exploit coherence between frames, we then interleave the different frames

while performing either a horizontal or vertical stripe traversal. For example, in

using vertical striping, the first scanline of the first vertical stripe is decompressed,

Figure 5.1: Vertical Striping Example. This figure shows a sample frame of
video that is 15 macroblocks wide and 8 macroblocks high. The vertical
striping traversal shortens all scanlines to improve coherence between
scanlines, leading to large vertical stripes in decompression. Here, each
vertical stripe is 5 macroblocks wide.

Figure 5.2: Horizontal Striping Example. This figure shows a sample frame
of video that is 15 macroblocks wide and 8 macroblocks high. The
horizontal striping traversal combines a few scanlines into a larger
scanline that is decompressed in columns. Here, the traversal algorithm
will multiplex between the 4 macroblock lines that are combined into the
larger scanline.
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after which, all other first scanline-first vertical stripe are decompressed. One tricky

situation with interleaving, however, is that the P and B frames may depend on data

outside of the decoded area due to motion vectors. Consider the example shown in

Figure 5.3. The macroblock i in the P-frame can depend on four other macroblocks

from the I-frame that it depends on. Thus, with interleaving, we must make sure that

the frames that are used in the decoding of other frames have their scanlines offset

by the maximum motion vector. Typically, this offset at most one macroblock and is a

fairly trivial calculation.

5.3.2 Implementing the Traversal Algorithms

Depending on how the MPEG video was encoded, two different algorithms can

be used to implement horizontal and vertical striping. These stem mainly from the

flexibility in the guidelines for encoding videos. Both of the algorithms require two

passes to process the data, otherwise, the ability to change the order of decompres-

sion traversal is not possible. The first pass consists of finding the offsets to the mac-

roblocks at the beginning of each macroblock scanline within the frames in order to

allow different traversal algorithms. The second pass consists of decompressing the

frames in the new traversal order. As an alternative, the MPEG standard could be

i

I-frame P-frame

i

Figure 5.3: Macroblock Dependencies and Frame Interleaving. This figure
shows a sample scenario of interleaving with m macroblocks per line. In the
decompression of the ith P-frame macroblock with interleaving, the
algorithms must make sure the I-frame stays “ahead” of the macroblocks
that will depend on it. Thus, in the decompression of the ith macroblock in
the P-frame, the macroblocks i, i+1, i+m, and i+m+1 in the I-frame will be
already decoded.

i+1

i+m

i+m+1
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rearranged to store the macroblocks in a set order, but this does not allow the MPEG

player to be optimized for all architectures.

 Unconstrained MPEG

The first method, called unconstrained MPEG, does not make any assump-

tions about the MPEG stream and therefore works with any MPEG encoded video

stream. By making no assumptions about the stream, each of the macroblocks within

a frame can potentially start at any bit offset within the frame. Thus, in order to find

the macroblock corresponding to the beginning of each scanline, each macroblock in

the frame must be completely parsed. Without any markers in the middle of the

frame, this is the only alternative as macroblocks have no defining feature to look for.

Because finding the beginning of each line can be costly, the information that is

parsed in the first pass is saved for the second pass. As a result, in the first pass we

store the offset of the beginning of each macroblock within the frame along with the

past dc components and its motion vectors. This step is also required because skipped

macroblocks are grouped and encoded together, thus, in decompression they must be

separated into individually skipped macroblocks.   The advantage of using an uncon-

strained player is that any traversal algorithm can be implemented at the cost of a

more expensive first pass, which includes traversals that begin in the middle of the

frames. The main disadvantage of this approach is that the memory requirements for

storing the past dc components and motion vectors may become prohibitive to

improving processor caching.

 Constrained MPEG

 The second method, called constrained MPEG, constrains the MPEG video to

have a slice defined per line, which allows fast access to the beginning of each line in

each of the frames. By inserting slice headers at the beginning of each line, efficiently

searching for the beginning macroblock on each line is possible because each slice

header introduces a byte aligned marker into the stream. In this algorithm, the first
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pass, then consists of finding all the slice header positions within the frame. Because

these headers are always byte aligned, finding the offsets to the beginning of scan

lines requires very little overhead. Very little additional memory is required to store

the offsets of these slices. In the second step, the horizontal and vertical striping algo-

rithms may be applied to decompress the frames of the GOP. The addition of slice

headers per line compared to a slice per frame results in approximately a 7 percent

increase in the size of the video clip. The additional slice header per line, however,

allows the MPEG video to be more robust in the presence of transmission errors.

5.3.3 Evaluation of Algorithms

To compare these algorithms, we encoded two random clips from Walt Dis-

ney’s Honey, I Blew Up the Kid using the Berkeley MPEG encoder. The videos con-

tained frames that were 640x368 pixels in size and were encoded with one I-frame

between every 11 B-frames. We then took a single GOP of the video (2 I-frames and

11 B-frames) to run the simulations on. These videos then resulted in over 30 million

B-Frame macroblock type Total of type
Forward MB
dependencies

Backward MB
dependencies

I 171

P 2117 7211

B 3499 9958

Bidirectional 4203 14342 14457

Skipped 130

Totals 10120 21553 24415

45968 total dependent MB accesses

Figure 5.4: Distribution of B-frame Macroblocks and Their Dependencies.
This table shows the distribution of the B-frame macroblock types and the
distribution (either forward for P macroblocks, and backward for B
macroblock) of macroblock accesses to dependent frames. As shown by
the table, the distribution of forward and backward accesses was fairly
evenly distributed. It is interesting to note that each bidirectionally
encoded macroblock accessed an average of 6.85 macroblock accesses key
frames.



118

data references to decompress the GOP. Because both the cache simulations and run-

times resulted in nearly identical results, we present only one of the clip’s results

here. The basis of our MPEG player was the Berkeley MPEG player version 2.0. The

breakdown of how the 11 B-frames were encoded are shown in Table 5.4. It is inter-

esting to note that 41% of the B-frame macroblocks were bidirectionally encoded,

each accessing an average of 6.85 dependent macroblocks. In addition, for each B-

frame macroblock that was forward (P) and backward (B) encoded, 3.4 and 2.8 depen-

dent macroblock accesses were made on average, respectively.

To determine what the overhead of implementing a two pass algorithm using

different macroblock traversals, we then modified the standard Berkeley MPEG

player to perform the various decompression traversals. It is important to note that

we made no attempt to optimize the old or new code in terms of the reconstruction of

blocks and the inverse DCT operations. We simply added the traversal algorithms

and optimized only the traversal algorithms. We performed our measurements using

a 99MHz Hewlett-Packard 9000/735 computer with a 64 Kbyte first level cache and

256 Kbyte second-level cache. To obtain the cache measurements and instruction

counts, we used the Ultrix-based tool pixie, which can generate the data addresses

and instruction addresses for the execution of a program. To simulate various cache

sizes, we used the cheetah cache simulator to obtain the cache miss ratios [79]. We

used the same sample clip to generate the address traces and the performance statis-

tics.

 Baseline Decompression

 To show the amount of additional overhead involved with using a 2-pass

MPEG player, we first ran the constrained and unconstrained players in a scan line

at a time traversal. That is, the same traversal that the original MPEG player uses.

We recorded the performance in frames per second of each of the algorithms and also

simulated their cache usage. The performance statistics are listed in Table 5.5.
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The most obvious number in Table 5.5 is the large number of extra instruc-

tions (5.8 million) required to parse a non-slice per line video over the standard

MPEG player. The additional 6% overhead in instructions allows any traversal algo-

rithm to be implemented instead of a scanline traversal. As expected, the perfor-

mance of both 2-pass algorithms is worse than the original MPEG player because

they are doing the same work as the original player with the additional overhead of

passing through the data in the GOP two times. In the case of the constrained player,

the amount of additional overhead to perform two passes is fairly small, and there-

fore without changing the MPEG standard, it is conceivable that the caching gain can

outweigh the extra overhead of an additional pass. The constrained players, however,

must implement traversal algorithms that decompress frames from the left to the

right. As expected, the cache miss ratio is not significantly reduced or increased by

using the same traversal algorithm as the original MPEG player. See Figure 5.6.

 Vertical and Horizontal Striping

With vertical striping, we are able to obtain an increase in performance (in

frames per second) with the vertically striped MPEG player. By simply changing the

ordering of data accesses, the amount of caching improvement outweighs the need to

parse the GOP twice for the constrained MPEG player. Please see Table 5.7.   The

frames/sec (fps) instruction count (millions)

original 9.47 100.0

constrained 9.43 100.7

unconstrained 9.00 105.8

Figure 5.5: Baseline Decompression Statistics. This table shows statistics
obtained from running the sample clip on the constrained and
unconstrained players using a scanline order exactly the same as the
original MPEG player. The fps measurements were obtained by running
the particular MPEG player 12 times on the MPEG clip, throwing out the
low and high, and then averaging the rest. (Note: the frame rates were
typically within 0.03 seconds of each other)
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unconstrained MPEG player, although improved over the scanline order, still suffers

from a large amount of overhead occurred in the first pass. In addition, both players

have additional ‘‘context-switching’’ times to alternate between the various scanlines

within an image and between images.

As shown in Figure 5.8, the cache miss ratios for each of the new MPEG play-

ers are improved. For cache sizes of 64 to 128 Kbytes, an improvement of 7.5% to

Figure 5.6: Scanline Miss Rates. In the graph, each line represents the
cache miss ratio simulation for the different MPEG players using a
scanline order exactly the same as the original MPEG player. These
graphs were obtained by running pixie on the executable and then
generating a data trace and processing it through the cache simulator
cheetah. As expected, the cache miss ratios are not significantly different
when using the same traversal orders.

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 50 100 150 200 250 300 350 400 450 500

M
is

s 
R

at
io

 

Cache Size (Kbytes)

 Original
 Big2pass

 Small2pass

frames/sec (fps) instruction count (millions)

original 9.47 100.0

constrained 9.47 100.5

unconstrained 9.35 106.7

Figure 5.7: Vertical Striping Statistics. This table shows the performance
obtained from vertically striping the constrained and unconstrained
players on the sample clip. These figures were obtained in the same
manner as explained in Table 5.5.
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19.6% is obtained. For the HP 9000 architecture which has a 64 Kbyte primary data

cache and a 256Kbyte level two data cache, a reduction of 7.5% in the miss ratio

allowed us to gain a three tenths per second increase in performance of the player

even though two passes were necessary. Thus, even minor changes in cache perfor-

mance can give a reasonable return in overall performance.

For the horizontally striped MPEG players, the performance (in frames per

second) is worse than the original MPEG player. For caches sizes between 64 and 128

Kbytes, the decrease in cache miss rates range from 10.7% to 20.4%. While these

algorithms exhibit better miss ratios over the vertically striped traversals (See

Figure 5.10), they are unable to overcome the time to perform ‘‘context-switches’’

between the different scanlines. That is, the overhead in changing between the differ-

ent lines in the larger scanline is greater than the time gained from improved cach-

ing. Because the MPEG video standard encodes the macroblocks horizontally by
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Figure 5.8: Vertical Striping Miss Rates. In the graph, each line represents
the cache miss ratio simulation for the constrained and unconstrained
vertically striped traversal. The original scanline MPEG player is also
included for comparison. Each stripe in the traversal consisted of 8
macroblocks. As shown above, for cache sizes of 64 and 128 Kbytes, a
decrease in cache misses of 7.5% and 19.6%, respectively, is obtained.
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scanline, applying an algorithm which makes many vertical macroblock ‘‘context-

switches’’ does not pay off.

Our results also suggest that in systems that have both a primary and second

level cache that the miss rates for the second level cache can be reduced as well.

Using the unconstrained player and a secondary cache size of 256K (as found in the

Intel P6), vertical striping reduces the secondary cache miss rate by 25%, while hori-

frames/sec (fps) instruction count (millions)

original 9.47 100.0

constrained 9.39 100.8

unconstrained 9.18 105.7

Figure 5.9: Horizontal Striping Statistics. This table shows the
performance obtained from horizontally striping the constrained and
unconstrained players on the sample clip. These figures were obtained in
the same manners as explained in Table 5.5.
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Figure 5.10: Horizontal Striping Miss Rates. In the graph, each line
represents the cache miss ratio simulation for the constrained and
unconstrained horizontally striped players. The original scanline MPEG
player graph is shown for comparison purposes. Each stripe in the
traversal consisted of 6 macroblocks. As shown above, for cache sizes of 64
and 128 Kbytes, a decrease in cache misses of 10.7% and 20.4%,
respectively, was obtained.
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zontal striping reduces it by 27%. The constrained player has approximately the

same results. For systems like the Pentium P6, accessing the secondary cache does

not incur as large a penalty as accessing main memory because the secondary cache

is on chip. Thus, using vertical and horizontal striping may also help in other levels of

the caching hierarchy.

 A Look Into The Future

 In future architectures, we expect that the data used in decompression to be

consumed faster with split data paths. Because of this, the cache miss ratios pre-

sented may be deceiving because byte accesses that occur in MPEG result in a single

word being hit multiple times. However, in future architectures with split data paths,

these byte accesses may be combined into a single access causing the data to be con-

sumed at a much faster rate with less hits.

To estimate what cache miss ratios may be in the future, we modified the orig-

inal MPEG player and the constrained MPEG player from the last section and simu-

lated the operations which could be performed in parallel in future architectures with

split data paths. By running these modified MPEG players through pixie and cheetah,

we were able to estimate the miss ratios for split data path computers.

As shown in Figure 5.11, the cache miss ratio for the original MPEG player

can be expected to rise anywhere from 40 to 50% for cache sizes of 64 to 128 Kbytes.

The vertical stripe traversal for the constrained algorithm has a rise in cache miss

ratio from 30 to 40% for cache sizes of 64 to 128 Kbytes. Just as important, the differ-

ence in cache misses for the original MPEG players and the constrained vertical

striped traversal algorithm are magnified under a split data path architectures,

emphasizing the importance of good cache behavior in future architectures.
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5.3.4 Working-Set Summary

In this section, we have described two methods to improve processor caching

for decoding MPEG video in software. Decompressing an MPEG video clip in a scan-

line order as the standard implies results in exploiting coherence in video streams in

only one dimension. By increasing the coherence within a frame and between frames,

a decrease in miss ratios is easily obtainable.

For constrained videos that have slices defined per line, the overhead of pars-

ing the slice headers is small enough that an increase in processor caching can out-

weigh a first pass to find all slice headers. The unconstrained MPEG player suffers

mainly from having to parse the movie bit-by-bit twice. On the machines we sampled,

lower cache miss rates could not compensate for the increase of over 5 million

instructions. With newer processor architectures, however, the cost of a cache miss

may become large enough such that the gain in processor caching can outweigh the

approximately 5% instruction increase from the first pass. Given that the uncon-
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Figure 5.11: Future Architecture Miss Rates. This graph shows the
estimated increase in miss rates for architectures that support split data
paths with parallel operations on its subwords. In future architectures,
the cache misses is estimated to increase from 30% to 40% for cache sizes
of 64 and 128 Kbytes.
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strained MPEG player finds all macroblock addresses, parallelizing the new tra-

versal algorithms becomes possible with each processor working on a smaller area of

the entire video. Parallelization of the constrained MPEG player is feasible but has to

be parallelized in thin strips causing the additional caching performance between

lines to be diminished.

Vertically striping the traversal algorithm tends to provide the best perfor-

mance because the ‘‘context-switches’’ between different scanlines is minimized. Hor-

izontal striping suffers from having to perform many ‘‘context-switches’’ in order to

keep dependent blocks within the cache.

5.4 Improving Processor Caching via Prefetching

Re-ordering the decompression traversal of macroblocks can reduce the work-

ing-set size so that the cache misses are reduced, however, re-ordering the traversal

algorithms can result in additional overhead in both the number of instructions exe-

cuted as well as the amount of memory required. The alternative to this re-ordering

is to anticipate the data accesses and to prefetch the data out of slower secondary

memory before it is needed. For prefetching to be effective, we must be able to 1) pre-

dict probable sequences of memory references, 2) accurately predict the addresses

accessed by those references, and 3) predict these values far enough in advance so

that memory bus contention does not increase. For MPEG video decompression, the

reconstruction of macroblocks exhibits these three characteristics. In particular, in

the reconstruction of macroblocks, the data is accessed in a regular well-known pat-

tern, making MPEG video decompression a good candidate for prefetching of data.

In this section, we investigate the affects that architectural support for

prefetching can have in the caching performance of software MPEG video decompres-

sion. The goal of this research is not to determine the best cache sizes and policies for

MPEG video streams. We are, however, interested in showing how a prefetching

instruction can be beneficial in software video decompression. As a result, our experi-
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ments are aimed at showing the applicability of prefetching for video decompression

and not at the overall improvement in performance speed.

In the rest of this section, we describe both hardware and software mecha-

nisms for prefetching that have been introduced in the literature. We then present

our experimental results on how MPEG video decompression in software can be

impacted by having a prefetch instruction in software.

5.4.1 Data Prefetching

The prefetching of data from main memory into the processor cache hierarchy

can be either hardware or software-controlled. Hardware-controlled prefetching tech-

niques typically involve prefetching data based on either an access or miss for data in

the cache. As an example, on a cache miss, the prefetch hardware, in addition to

fetching the line that missed in the cache, may fetch the following line as well in

anticipation of a sequential access. Software-controlled techniques require hardware

support for executing the prefetch instruction in addition to either compiler inserted

or user inserted prefetch instructions into the code itself.

One of the earliest proposed uses of hardware-controlled prefetching was

introduced by A.J. Smith [76]. In his research, Smith identified three possible tech-

niques for prefetching: (1) always prefetch, (2) prefetch on misses, and (3) tagged

prefetches. On an access to cache line i, the always prefetch technique always

prefetches the next cache line, i+1. The prefetch on misses technique prefetches cache

line i+1 only if the access to cache line i missed the cache. Finally, the tagged prefetch

technique is an extension of prefetch on misses, except the prefetch of cache line i+1

is delayed until cache line i is accessed again, increasing the probability that cache

line i+1 will be needed. In related work, Jouppi extended Smith’s work to prefetch

data into FIFO stream buffers that are separate from the cache hierarchy [46]. On a

cache miss, these FIFO queues are then filled sequentially from the missed cache

line. Jouppi found that this technique is much more effective at removing instruction
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references than data references because instructions tend to be accessed more

sequentially than data.

Hardware techniques that base prefetching on data cache misses have limited

application because of irregular patterns of access. To increase the accuracy of

prefetching, additional hardware in the form of a table must be used. Fu and Patel

have shown data prediction tables to be useful for vector applications, where data

may be accessed in non-unit stride lengths [33]. Data prediction tables have also been

shown effective at limiting unnecessary prefetching [3]. The use of prediction tables

for video applications has also been proposed. Zucker, Flynn, and Lee focus their

work on the comparison of hardware prefetching techniques for multimedia applica-

tions [86]. In their work, they propose the use of a stride prediction table (SPT) for

predicting data accesses to main memory. Using the stride prediction table of 128

entries and with larger sized cache, the SPT mechanism can remove 70 to 90% of

misses that would have otherwise occurred with the same size cache and associativ-

ity. Their work does not address the potential problem that the memory bandwidth

bottleneck may have on the amount of prefetched data that can be retrieved.

The alternative to hardware-controlled prefetching is to add support for

explicit prefetching operations, such as loads with no target register. These instruc-

tions can be added by the compiler or, in the case of important application code, by

hand. In the present work, we do not address how these instructions are introduced

into the MPEG decoder implementation. Porterfield showed that software-controlled

prefetching can be more effective than the simpler hardware mechanisms [65].

Klaiber and Levy have also showed that software-controlled prefetching can be useful

in reducing the cost of memory references by using a software-controlled prefetching

into a separate prefetch buffer [50].
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5.4.2 Prefetching and MPEG Video Decompression

Among the steps in the decompression of a single 16x16 pixel macroblock are

the inverse DCT on each block within the macroblock and the reconstruction of the

blocks. The inverse DCT of each block within a macroblock requires a fairly small

amount of data, exhibiting a very low miss rate in even a small cache. On the other

hand, the reconstruction of the macroblocks requires a large amount of data to be

accessed, resulting in high miss rates. The reconstruction of dependent B frame mac-

roblocks, however, accesses data in a regular pattern once the motion-vectors have

been decoded. Thus, the accesses that are made in the reconstruction of macroblocks

are key in reducing the memory access times.

 For the blocks that are dependent on other key frames, accesses to the key

frame data follow a very regular pattern. Typically, each block accesses 8 bytes from

the key frames for each line within the block. Two possibilities exist for prefetching of

this data. The first method, aggressive prefetching assumes that the 8 bytes accessed

can cross the cache line boundaries, hence, the data for two cache lines are prefetched

from memory. As a result, aggressive prefetching brings in a potentially large amount

of data that may not be used. The second method, conservative prefetching assumes

that the data is completely on the line that is prefetched. While conservative prefetch-

ing only fetches the line that is going to be accessed, a possibility exists that the data

needed crosses the cache line boundaries, and that some necessary data will not have

been prefetched.

5.4.3 Architectural Model

The implementation of a prefetch instruction in hardware can be accom-

plished in many different ways. Our baseline system is a load/store architecture with

a two-level cache subsystem similar to the Intel Pentium P6 [42]. The Intel P6 chip

consists of an 8 kbyte, 2-way set-associative, 32 byte per line primary data cache and

an 8 kbyte, 2-way set-associative, 32 byte per line primary instruction cache. These
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caches are backed by a unified secondary cache that is a 256 kbyte, 4-way set-associa-

tive, 32-byte-per-line cache. In order to simplify the analysis of our data, we assume

for our model that the secondary cache is a split instruction and data cache, each of

size 128 kbytes. Figure 5.12 shows the architecture that we are assuming.

To access the cache hierarchy, we assume that a cache hit in the primary cache

takes 1 cycle, while a miss in the primary cache with a hit in the secondary cache

requires 3 cycles as in the Pentium P6 chip. We also assume that there is an 8-entry

write buffer. We assume that the write buffer asynchronously writes data back to

main memory. In the event that the write buffer is full, we assume that the processor

stalls until an entry in the write buffer is freed, thus, in times when many writes are

outstanding, the write buffer appears to be synchronous.

5.4.4 Experimental Set-up

To study the possible effectiveness of prefetching for MPEG video decompres-

sion we captured randomly chosen scenes from the Walt Disney Movie Honey, I Blew

Up the Kid (selected on the basis of its low rental price) and MPEG encoded the vid-

8 K Data Cache

2-way set associative

128 K Data Cache

4-way set associative

Figure 5.12: Simulated Data Cache Hierarchy. This figure shows the
Pentium P6 based data cache hierarchy that we assume for our
measurements. The prefetch buffer and logic is separate from the data
cache and is accessed on a cache miss for prefetched data.

1-cycle access

Main Memory

3-cycle access
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eos using the Berkeley MPEG encoder. The videos contained frames that were

640x368 pixels in size and were encoded with one I-frame between every 11 B-

frames. We then took a 13-frame sequence from the video (2 I-frames and 11 B-

frames for each sequence) to run the simulations on. (A small number of other

sequences have produced very similar simulation results.)

The Berkeley MPEG player (version 1.2) compiled for a DEC Alpha AXP was

used as the software MPEG video decompression implementation. We used the

address generation tool ATOM to obtain the data addresses for the software decom-

pressing the sample clips [20,77]. ATOM allows for the generation and analysis of

data addresses concurrently, removing the need to store large address traces on disk.

Using ATOM, we instrumented the MPEG player code and analyzed the data refer-

ences that were made for the decompression of the sample clips. For our simulations,

we have removed the initialization code from the miss rate statistics in order to

obtain a more accurate evaluation of the steady-state performance of the MPEG

player. In addition, we ran the MPEG code with the “-no_display” option, which

removes the contribution of displaying the video frames to the screen. We expect that

the display of the video frames will benefit from prefetching as well because the

uncompressed frame of video needs to be copied to the frame buffer or video RAM.

5.4.5 Experimentation

From our simulations, we were interested in determining several key factors

in the performance of a software-controlled prefetching instruction. We are interested

in the performance trade-offs of placing data in a prefetch buffer versus placing the

data directly in the cache, and the effectiveness of prefetching (how much data that is

prefetched is actually used). We are also interested in examining the main memory

access time and whether or not enough memory bandwidth exists to satisfy the

prefetch requests.
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 Baseline Decompression

Using ATOM, we generated the data reference misses that occur in the

8kbyte/128kbyte cache hierarchy for our sample clip and calculated the overall con-

tribution towards the miss rate of the separate decompression steps. We did not gen-

erate the data references for the initialization code or for the dithering or X window

code.

The results of these simulations for our cache hierarchy for the first scene are

shown in Figure 5.13. For the 11B encoded video clip, the inverse DCT operations

refs
(millions)

% of all
refs

%miss
rate

% of all
misses

I mblock reconstruction 3.3 7.29 1.53 4.35

P mblock reconstruction 3.8 8.31 2.68 8.70

B mblock reconstruction 5.6 12.14 2.73 12.93

Bi mblock reconstruction 8.2 17.84 4.43 30.79

Skipped mblock recon. 0.3 0.67 2.47 0.65

Inverse DCT 10.4 22.73 0.32 2.86

Parsing of recon. block 6.3 13.71 3.67 19.60

Other 7.9 17.31 2.98 20.12

Figure 5.13: Baseline Cache Statistics. This figure shows the cache
statistics gathered from running our sample MPEG encoded video clip on
an 8k, 2-way set associative primary cache and a 128k, 4-way set-
associative secondary cache.

Primary Cache Miss Rate 2.565

refs to L2
(thousands)

% of all
refs to L2

%miss
rate

% of all L2
misses

I mblock reconstruction 51.1 4.35 46.98 5.63

P mblock reconstruction 102.3 8.70 57.92 13.89

B mblock reconstruction 152.0 12.93 57.73 20.57

Bi mblock reconstruction 362.0 30.79 54.02 45.84

Skipped mblock recon. 7.5 0.64 37.13 0.66

Inverse DCT 33.6 2.86 14.12 1.11

Parsing of recon. block 230.4 19.60 5.08 2.75

Other 236.5 20.12 17.2 9.54

Secondary Cache Miss Rate: 36.28



132

account for 22% of the data references generated during playback, but with a miss

ratio of 0.32%, contribute only 3% of the total misses in the primary data cache. On

the other hand, the reconstruction of macroblocks accounts for 46% of the references,

and because of higher miss rates, contributes to 57% of the total primary data cache

misses. At the secondary cache level, the reconstruction misses that account for 57%

of the primary cache misses, miss the secondary cache more than 50% of the time!

The misses in the secondary cache from the reconstruction of macroblocks contribute

to 88% of the secondary cache misses. Thus, when a data reference for reconstruction

misses the primary cache, it is very likely to also miss in the secondary cache. Note

that the inverse DCT had a very low miss ratio even in the secondary cache. These

results suggest two things. First, the working set of the inverse DCT is fairly small

and as a result, exhibits a high cache hit rate. Second, the reconstruction of macrob-

locks that depend on other frames results in a high miss rate, mainly due to the vol-

ume of key data continually brought into the cache.

 Prefetchability

One important factor in determining the usefulness of a compiler supported

prefetch instruction is whether or not the data that is to be accessed can be deter-

mined in advance enough to start the prefetching. For the decompression of MPEG

encoded video, the merging of data in dependent frames from key frames makes well

known accesses once the motion-vectors to the key frames have been parsed. To test

the prefetchability of the MPEG encoded video clips, we determined where in the

MPEG decompression code the motion vectors were parsed for each of the various

macroblock types. Once the motion vectors are determined, the data accesses for the

reconstruction of the macroblock can then start to be prefetched. To find out how

much time (in number of instructions) is available during the reconstruction of the

macroblocks, we mark all the data that is expected to be used in the reconstruction
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(i.e. the data we expect to prefetch) and then start a timer. When the data is accessed,

we then simply mark the time when it is first accessed.

Figure 5.14 shows the results of the prefetchability tests for the sample

MPEG clip. As shown by this graph, the percentage of data that is available even 100

instructions before it is used is quite high. For example, 85% of the data accesses for

reconstruction are known at least 20 cycles in advance, while 75% of the data

accesses are known at least 100 cycles in advance. Another interesting trend on the

graph is the stepping down of the prefetchability graph. These 8 steps essentially cor-

respond to the 8 rows that are accessed for the reconstruction of the 8x8 blocks within

a macroblock.

 Effects of Prefetching on Secondary Cache Miss Rate

To show the effect that prefetching can have on the secondary cache miss rate,

we have simulated our base cache hierarchy with various secondary cache sizes. In

Figure 5.15, we have graphed the miss ratios for the secondary cache for the original

MPEG decompression algorithm and for the MPEG algorithm using prefetching, both
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Figure 5.14: Prefetchability of MPEG video. This figure shows the
percentage of data that will be accessed for reconstruction and the
number of instructions the data to be accessed is known ahead of time.
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into the secondary cache and into a separate prefetch buffer. Figure 5.16 shows the

percentage of secondary cache misses due to reconstruction of macroblocks with and

without prefetching.
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Figure 5.15: Cache Performance with Prefetching. This figure shows the
miss ratios for conservative and aggressive prefetching for MPEG video
decompression into either the level 2 cache (L2) directly or into a separate
prefetch buffer.
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Figure 5.16: Cache Misses Due to Reconstruction of Macroblocks. This
figure shows the percentage of secondary cache misses due to the
reconstruction of macroblocks.
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Several observations can be made from these graphs. First, prefetching

directly into the secondary cache and prefetching into a separate buffer result in

approximately the same cache miss ratios for the secondary cache. This suggests that

prefetching directly into the secondary cache adds little additional cache pollution.

Secondly, the miss ratio reduction across the various caches sizes is fairly constant.

The conservative prefetching algorithm reduces the secondary cache miss ratio by

approximately 55%, while the aggressive prefetching algorithm results in a reduction

of over 80%. As Figure 5.15 shows, without prefetching, approximately 80% to 90% of

the secondary cache misses are due to the data accesses during the reconstruction of

macroblocks. With conservative prefetching, the number of cache misses is reduced

on the order of 15 to 25%, while the reduction in cache misses with aggressive

prefetching is much larger. As an example, with aggressive prefetching the recon-

struction of macroblocks can be reduced from 86% to only 4.2% using our baseline 8

Kbyte/ 128 Kbyte cache hierarchy. This results in a 97% reduction in the reconstruc-

tion contribution towards the L2 Miss rate!

Aggressively prefetching data can remove a large percentage of main memory

accesses; however, several concerns arise from aggressively prefetching data. First,

prefetching can impose an overhead to load unused data in. Second, prefetching will

not be effective if insufficient memory bandwidth is available.

 Effects of Prefetching on Data Utilization

To measure the utilization of prefetched data, we tagged all the prefetched

data that was brought into the cache hierarchy and measured the number of words

within the cache line that were accessed before the tagged cache line was evicted

from the cache. Using the different prefetching styles (aggressive and conservative)

and the different areas to place prefetched data (in the secondary cache or into a sep-

arate buffer), we graphed the utilizations for differing cache sizes. The results are

shown in Figure 5.17. As shown by the graph, all the different prefetching methods
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result in cache line utilizations greater than 80%. The conservative prefetching

schemes perform better than their counterpart aggressive prefetching scheme. Con-

servative prefetching achieves higher utilizations because the prefetched data tends

to pollute the cache less. Aggressive prefetching into the L2 cache benefits from a

larger cache size. For small cache sizes, aggressively prefetching data tends to pollute

the cache more than with larger cache sizes that have more room for the prefetched

data. In addition, prefetching into a separate prefetch buffer results in higher utiliza-

tions than their counterpart algorithms that prefetch directly into the L2 cache. This

result is not unexpected because having separate prefetching buffers increases the

“effective” size of the cache. As the graph shows, both approaches achieve high utili-

zations.

In Figure 5.18, we have graphed the utilization of cache lines for different

cache line sizes, keeping the secondary cache size constant at 128 kbytes. The larger

cache lines result in lower utilizations because, with a constant cache size, more

cache lines are evicted earlier. As expected, prefetching into a separate prefetch

0

5

10

15

20

25

65536 131072 262144

U
na

cc
es

se
d 

%
 o

f c
ac

he
 li

ne

Line size (bytes)

 Aggressive - L2
 Aggressive - PF

 Conserv. - L2
 Conserv. - PF

Figure 5.17: Utilization of Prefetched Data. This graph shows the
utilization of cache lines for the various prefetching methods. The
utilizations are based on the number of words accessed per cache-line
with the utilization of a cache line being calculated when it is evicted
from the cache hierarchy.
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buffer results in slightly higher cache utilizations because the “effective” size of the

cache is increased. In addition, aggressive prefetching has a slightly lower cache line

utilization because it pollutes the cache less. As the figure shows, the prefetching

algorithms exhibit high cache line utilizations across the various cache line sizes.

 Effects of Prefetching on Memory Bandwidth

Any application that has a large data consumption to instruction ratio may

not have enough opportunity to prefetch effectively. To examine the memory band-

width requirement, we have simulated the main memory bus and the reads, writes,

and prefetches that are needed. Recall that for our simulations we have ignored the

contribution of the instruction fetches. For our simulations, we use the cycles per

instruction (CPI) due to data access penalty as found in previous cache work [10]. The

CPIdata_access can be defined as:
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Figure 5.18: Utilization of Prefetched Data. This graph shows the utilization of cache
lines for the various prefetching methods using a 128 kbyte secondary cache with varying
line sizes. The utilizations are based on the number of words accessed per cache-line with
the utilization of a cache line being calculated when it is evicted from the cache hierarchy.

CPIdata_access
total data access penalty

number of instructions executed
------------------------------------------------------------------------------=
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For our simulations, the number of instructions executed was very nearly con-

stant. As a result, the graphs show the relative number of stall cycles that each of the

various prefetching routines incurred. We then graphed the CPIdata_access for the

original MPEG code for various main memory access penalties. In addition we

graphed the conservative and aggressive prefetching algorithms for prefetching into

both the secondary cache and a separate prefetch buffer.

As shown in Figure 5.19., the prefetching algorithms reduces the number of

stall cycles during the reconstruction of the macroblocks. Several interesting observa-

tions can be made from the graph. First, because the data that is to be prefetched is

known well ahead of time, the prefetching of data is always beneficial for the recon-

struction of macroblocks. Second, the conservative CPIdata_access for prefetching into

the secondary cache directly or prefetching into a separate prefetch buffer results in

similar CPIdata_access penalties. The high utilization of data in the prefetch buffer

tends to eliminate any distinction on levels of pollution. This suggests that prefetch-
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Figure 5.19: Prefetching Bandwidth. This figure shows the CPIdata_access
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ing directly into the secondary cache can be effective for MPEG decompression with-

out the need for additional prefetch buffers. Finally, the aggressive prefetch

algorithm results in lower CPIdata_access penalties, even though the aggressive algo-

rithm prefetches more data than the conservative algorithm prefetches. The reason

for this is the high probability that data accesses for the next macroblock make to the

prefetched data for the current block. Because of this, aggressive prefetching has an

initially high number of cycle stalls for the initial macroblock prefetches of each line.

After this initially high number, however, the aggressive prefetching prefetches data

for the next macroblock and not the current macroblock, resulting in data that has

longer period of time between prefetch and data access. With the time between mac-

roblocks having a large number of instructions between them, there is ample time

between macroblocks to fetch data, resulting in very low CPIdata_access penalties.

Figure 5.19 shows conservative prefetching either into the secondary cache directly

or into a separate prefetch buffer reduces the CPIdata_access by roughly 25%. The

aggressive prefetching results in a reduction in CPIdata_access of approximately 50%.

These results suggest that enough memory bandwidth exists during the decompres-

sion of MPEG video to allow for effective software prefetching.

As previously mentioned, future architectures will provide support for video

decompression by allowing multiple byte operations in a single word to be handled in

one instruction. As a result, the memory bandwidth may become more of a critical

issue in prefetching. For the reconstruction of macroblocks in MPEG, this results in

the combining of data from key frames to occur more rapidly, placing a higher

demand on the memory subsystem. As a result, prefetching may not be as feasible.

We simulated the operations which could be performed in parallel in future architec-

tures with split data paths, allowing us to estimate the potential rise in CPIdata_access.

For all the algorithms, the expected rise in CPIdata_access is expected to be approxi-

mately 50% across all the algorithms, suggesting that prefetching in future processor

may also result in low cache miss rates. See Figure 5.20.
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5.4.6 Software-Controlled Prefetching Summary

In this section, we have examined the utility of prefetching for the software

decompression of MPEG encoded video. The software decompression of an MPEG

encoded clip results in poor cache utilization for the reconstruction of macroblocks.

By prefetching data accesses for the reconstruction of these macroblocks, the number

of cache misses, and hence stalls due to main memory access, can be drastically

reduced.

The effective use of prefetching requires that the prefetch algorithm knows

when to initiate a prefetch and what data is to be accessed [76]. For MPEG encoded

video, both of these criteria are met. Because the prefetching of data for the recon-

struction of macroblocks occurs with different stride lengths, the use of a prefetch

instruction at the programming level or compiler level can help in the optimization of

the performance of MPEG decompression in software.
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5.5 Summary

In this chapter, we have examined the effect that burstiness has on the decom-

pression of MPEG encoded video on processor caches. Because the memory bottleneck

from processor stall will be the limiting factor in the software decompression of

MPEG video [64], minimizing the on-demand accesses to main memory is critical in

future architectures. In order to reduce the data cache misses that occur, we have

examined two approaches for reducing cache misses.

The first approach of reducing the working-set size through the re-ordering of

macroblock traversals is a purely software approach to reducing data cache misses.

While this method is flexible, it requires two passes to be performed; the first pass is

required to find the offsets to the beginning of macroblock scanlines, while the second

pass does the actual decompression. Using either vertical or horizontal striping of the

traversal algorithms leads to better cache performance. In the vertical striping case,

using a current generation Hewlett-Packard, we were even able to better perfor-

mance, even though it had an overhead of 1.5% more instructions over the standard

traversal algorithms. Horizontal striping suffers from the requirement of context

switching between multiple scanlines.

The second approach of keeping the cache warm by prefetching data that will

be accessed is a solution that requires both hardware and software support for

prefetching. Prefetching is an attractive alternative because the overhead in issuing

a prefetch instruction is not that large, but the benefits of prefetching can reduce the

large number of stall cycles that are required on a required access to main memory.

As processor speeds and memory speeds continue to diverge, the timely

retrieval of information from main memory will be the bottleneck of these processors.

One of the key factors in the performance of application will be processor cache per-

formance.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

‘‘The best thing about the future is that it comes one
day at a time’’ - Abraham Lincoln

6.1 Research Contributions

In this dissertation, we have focused on the problem of handling burstiness

introduced by video compression standards from both an external and internal point

of view. From an external point of view, our work has focused on the efficient handling

of variable-bit-rate video for the delivery of stored video across networks. From an

internal point of view, our work has focused on how to effectively decompress video.

For the external handling of video, the work presented here is (to our knowl-

edge) the first of its kind. We have introduced the notion of critical bandwidth alloca-

tion for the delivery of compressed prerecorded video. Our first paper is the first

paper that identifies the different network requirements of live and stored video

applications [22]. The CBA algorithm produces bandwidth plans that are monotoni-

cally decreasing. For systems where retrievals all follow these monotonically decreas-

ing bandwidth plans, admission control is made simpler. That is, the network

manager need only ask - Is there enough bandwidth to start the flow of data? For lim-

ited buffer sizes, the CBA algorithm produces plans for the continuous playback of

video that (1) have the fewest number of bandwidth increases, (2) have the smallest

peak bandwidth requirements, and (3) have the largest minimum bandwidth require-

ments. This work has been modified by other institutions in similar algorithms. An
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effort at the University of Massachusetts creates bandwidth plans by always starting

each run at the last run’s critical point. For our CBA algorithm, this has the result of

breaking the bandwidth increases into smaller steps, while the decreases in band-

width are the same. These bandwidth plans have the same smallest peak bandwidth,

but also minimizes the variability in bandwidths. Their plans, however, require many

more bandwidth changes, requiring more interaction and overhead in the network.

Because the range of bandwidth values is fixed by only two runs within the movie, it

is important to limit the number of changes in the areas outside of these runs.

We have extended the critical bandwidth allocation technique and have intro-

duced an optimal bandwidth allocation technique. The optimal bandwidth allocation

algorithm, in addition to the three properties of the CBA algorithm, also minimizes

the number of bandwidth changes required for the continuous playback of video. As a

result, the OBA plans require very few changes in bandwidth for relatively small

amounts of buffering.

The use of smoothing for the delivery of stored video, implies that the plan

may be inflexible to change. We have introduced the VCR-window technique which

allows for full-function VCR capabilities within a small locality without requiring a

change in the bandwidth reservations that were made. In the event that access is

required outside of the VCR-window, a renegotiation of network bandwidth will be

required. We have shown how contingency channels can be used for accesses outside

of the VCR-window. Because contingency channels cannot always be guaranteed, the

VCR-window is useful in minimizing the number of occurrences when the contin-

gency channel will be used.

For the display of compressed video, we have investigated how software

MPEG decompression affects processor data caching. A lot of efforts have focused on

optimizing the code in software with such techniques as combining byte operations

and loop-unrolling. While these works improve the performance of the MPEG play-
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ers, they are still limited by the memory bottleneck that occurs with software decom-

pression. Our work considers the impact that decompression has at the architectural

level and what changes are necessary to alleviate the memory bottleneck. We have

introduced horizontal and vertical striping for the re-ordering of the MPEG macrob-

lock traversal. By re-ordering the macroblock traversals, the effective “working-set”

is reduced, allowing macroblock data from key frames to survive longer in the cache.

This technique, however, requires additional instruction overhead to implement. For

software-controlled prefetching, we have examined how software-controlled prefetch-

ing can reduce the number of stalls that are required during the decompression of

MPEG video. We have shown that the processor miss rates can be reduced by approx-

imately 80% and that enough memory bandwidth exists to support prefetching of the

video data.

6.2 Future Directions

The work presented in this thesis is a first step towards the efficient imple-

mentation of video-on-demand playback systems. The CBA and OBA algorithms

allow for high utilization of bandwidth plans. The use of these techniques in imple-

menting an end-to-end system are still not completely understood. From the video

server side, the bandwidth allocation plans are more constant than those delivered

from a statistically multiplexed server. As a result, we expect that because the CBA

and OBA plans have very constant bandwidth allocations that the current work in

video-on-demand servers is applicable. One assumption that this work has made is

that the buffer size for smoothing remains constant. For set-top-boxes, that consist of

a dedicated disk, the bandwidth plans can be made based on the size of the disk. For

systems that use the smoothing buffer for other purposes, more or less buffer may be

available during the playback of video. Changing bandwidth plans in light of this

may prove to be interesting.

The VCR-window and the use of the contingency channel are a step towards
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implementing a true interactive video-on-demand system, however, the interactivity

aspect is still not completely understood. The size required for the VCR-window

depends on the encoding of the video as well as the interactivity that users require. If

most users have very minor adjustments to their bandwidth plans, then the VCR-

window can filter many adjustments through buffering. The size requirement for the

contingency channel is also dependent on the actual usage patterns in the video-on-

demand system. These buffer requirements and contingency channel requirements

probably will require an iterative refinement through implementation and experi-

mentation.

The effects of software video decompression on hardware are still not fully

understood. Because of the many interactions between the decompression code, the

operating system, and the actual hardware, a more in-depth analysis of these depen-

dencies may allow for decompression to be handled more efficiently. In our work, we

have ignored the effects that other processes in the system have on cache pollution.

For a single user system, the operating system interference will probably be mini-

mized due to the user devoting his or her attention to the video being played back.

For systems that must handle video in addition to other tasks, the context switching

times and the effects this has on cache pollution may require a more in-depth analy-

sis. Finally, we have examined the impact that MPEG video decompression has on

processor caching. As video compression standards continue to evolve, the impact

that the standards have on the architecture may change.
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APPENDIX A

PSEUDO-CODE FOR BANDWIDTH SMOOTHING ALGORITHMS

This appendix contains the pseudo-code for the various bandwidth smoothing

algorithms presented in this dissertation. The implementation and optimization

details have been omitted.

 Average Allocation Algorithm

1 num_groups = num_frames/group_size;
2 for(i=0; i < num_groups; i++) {
3 group_ave = average of frames in group i;
4 allocation[i] = group_ave;
5 }
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 Sliding Window Smoothing

Let average(x,y,extra) be the average of all frames in the groups x to y

(inclusive) subtracting “extra” bytes from the total sum (before the calculation of the

average). Then, the sliding window smoothing pseudo-code can be given as:

1 extra = 0;
2 for(i=0; i < num_groups; i++) {
3 max_average = 0;
4 group_ave = average(i , i, extra)
5 max_average = group_ave;
6
7 /**** Find maximum average within window ****/
8 for(j=1; j < groups_in_win ;j++) {
9 ave = average(i , i+j, extra)
10 if (ave > max_average)
11 max_average = ave;
12 }
13
14 /**** set bandwidth for group to max_average ****/
15 allocation[i] = max_average;
16 extra = group_size*(max_average-group_ave);
17 }

Starting at the beginning of the ith group, for a window size of N groups, the

sliding window smoothing algorithm calculates the average bandwidth allocation for

the first group within the window (lines 3-4). In this case, this is just the average

frame size for the ith group. It then compares this with the average of the next group,

the next 2 groups, up to the next N-1 groups (lines 5-10). The allocation for the group

is then set to the maximum average found within the window, effectively prefetching

large bursts of frames (line 12). Line 13 calculates the extra data that will be

prefetched as a result of this increased bandwidth allocation and is then applied to

the next window of groups.



149

 Critical Bandwidth Allocation
1 max_ave(start,stop)
2 {
3 Find maximum average from start to stop
4 Set c_bw to the maximum average and c_pt
5 the point that caused this average
6 }
7
8 CALCULATE_CBA()
9 {
10 i = 0;
11 while (i <= end) {
12 max_ave(i,end);
13 set bandwidth from i to c_pt to c_bw;
14 i = c_pt + 1;
15 }
16 }

The critical bandwidth allocation algorithm uses the subroutine max_ave in

lies 2 through 6 to find the maximum running frame average from the starting point

that was passed in to the end of the movie. Thus, the critical bandwidth allocation

algorithm consists of
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 Critical Bandwidth Allocation with Maximum Buffer Constraint
1 int doONE_CBA(start,stop)
2 {
3 Find maximum average from start to stop
4 such that buffer does not underflow or overflow
5 Set c_bw to the maximum average and c_pt
6 the point that caused this average
7 Set point_reached to the point that using
8 c_bw and C_pt will reach
9 (point_reached is the end of the frontier)
10 Set next_type to INCREASE, END, or DECREASE
11 depending on whether the next run will require
12 an increase or decrease. Set to END if stop
13 is reached.
14 }
15 CALCULATE_CBA()
16 {
17 i = 0;
18 while (i <= end) {
19 nt = doONE_CBA(i,end);
20 run_end = c_pt;
21 if (nt == INCREASE) {
22 search between c_pt and point_reached
23 (using doONE_CBA) to find starting point
24 for next run such that the point reached
25 in the next run is maximized.
26 set run_end = starting point
27 }
28 set bandwidth from i to run_end to c_bw;
29 i = run_end + 1;
30 }
31 }
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 Optimal Bandwidth Allocation with Maximum Buffer Constraint
1 int doONE_CBA(start,stop)
2 {
3 Find maximum average from start to stop
4 such that buffer does not underflow or overflow
5 Set c_bw to the maximum average and c_pt
6 the point that caused this average
7 Set point_reached to the point that using
8 c_bw and C_pt will reach
9 (point_reached is the end of the frontier)
10 Set next_type to INCREASE, END, or DECREASE
11 depending on whether the next run will require
12 an increase or decrease. Set to END if stop
13 is reached.
14 }
15
16 CALCULATE_CBA()
17 {
18 i = 0;
19 while (i <= end) {
20 nt = doONE_CBA(i,end);
21 run_end = c_pt;
22 if (nt != END) {
23 search between c_pt and point_reached
24 (using doONE_CBA) to find starting point
25 for next run such that the point reached
26 in the next run is maximized.
27 set run_end = starting point
28 }
29 set bandwidth from i to run_end to c_bw;
30 i = run_end + 1;
31 }
32 }
33
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APPENDIX B

THEOREMS

Theorem 1 : The critical bandwidth allocation algorithm with no buffer limitation

results in a strictly decreasing sequence of bandwidth allocations

Proof: To prove this theorem, we start by proving that the critical bandwidth

following the first critical point CP0 must have a bandwidth CB less than the

first critical bandwidth CB0. To see that the run following CP0 must have a

critical bandwidth less than CP0, assume that this run has a critical band-

width CB determined by a critical point CP. By the definition of critical band-

width, CBO must be greater than the average frame size from frame 1 to

frame CP. This requires the following inequality to be true

That is, CB0 must be greater than the average of all frames from 0 to CP

by definition. We then rewrite CP0 as [CP - (CP - CP0)] and substitute it in the

first term, leaving

Then by rearrangement, this requires

to hold. Since CP is greater than CP0, CB must be less than CB0.

By recursively re-applying this to the remaining portion after CP0, we see

that the critical bandwidth algorithm must result in a monotonically

decreasing sequence of bandwidth requirements.//

CB0

CP0 CB0⋅( ) CP CP0–( )CB+

CP
-------------------------------------------------------------------------->

CB0

CP CB0⋅ CP CP0–( )CB0–( ) CP CP0–( )CB+

CP
---------------------------------------------------------------------------------------------------------------------->

CB0 CB0

CP CP0–( ) CB CB0–( )
CP

-----------------------------------------------------------+>
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Theorem 2 : The critical bandwidth allocation algorithm with a fixed maximum

buffer constraint results in a plan for playback of video without buffer starvation

or buffer overflow with (1) the smallest number of bandwidth increases possible,

(2) the minimum peak bandwidth requirement, and (3) the largest minimum

bandwidth required.

Proof: Let the CBA plan consist of n runs, each with a constant bandwidth

allocation. We prove the above theorem by showing that all other plans must

have (1) at least as many bandwidth increases, (2) cannot have a smaller peak

bandwidth, and (3) cannot have a larger minimum bandwidth.

We first break the n runs into sets of consecutive runs which increase the

bandwidth requirements from previous runs in the CBA plan. Let run i be the

first run in each set, and let each set be numbered from i to k, i<k. Because

runi is the first run in a set of bandwidth increases, run i-1 must have

decreased the bandwidth over run i-2. This implies that run i-2 was

determined by a critical point on Flow(i) and that run i-1 starts on Flow(i). In

addition, the critical point for run i-1 must be on Fhi(i). This situation is

shown in the figure below:.

We now note that because run i-1 connect Flow(i) and Fhi(i), any other

bandwidth plan not co-linear with run i-1 must have a run that has a slope

less than that chosen by run i-1. By showing this for all the sets of consecutive

bandwidth increases, part 3 of the proof is shown. That is, any other

bandwidth plan cannot have a higher minimum bandwidth than the CBA

plan.

To show part 1 of the theorem (CBA results in the minimum number of

bandwidth increases), we first consider run i-1. We note that any other plan

...
CPi-1

CPi-2

B
yt

es

Frame Number

runi-1

runi-2
Flow(i)

Fhi(i)
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not co-linear with run i-1 must have a run that crosses run i-1 with a lower

bandwidth requirement (smaller slope) because run i-1 connects Flow(i) and

Fhi(i). As a result, any other plan CANNOT have a run that starts on or

behind the hub of run i-1 and cross the frontier for run i-1. Thus, any other

bandwidth plan must also increase the bandwidth requirement before

crossing the frontier of run i-1 (see the figure on page 153). In the search for a

run i, the CBA plan maximizes the distance reachable by run i by performing

a search along the frontier of run i-1. Because any other bandwidth plan must

increase its bandwidth before crossing the frontier of run i-1, it CANNOT

cross the frontier created by run i, otherwise, the CBA algorithm would have

found the same run in its search along the frontier of run i-1. Because at each

step the other bandwidth plans also require an increase in bandwidth and can

never pass the frontier created by that of the CBA plan, the set of consecutive

increases is minimum. Applying this to all the sets of consecutive increases

allows us to prove part 1 of the theorem. That is, the CBA plan results in the

minimum number of bandwidth increases.

Finally, to show that the CBA results in the minimum peak bandwidth

requirement, let us examine run k of each set of consecutive bandwidth

increases. Because the set of runs are grouped into runs that consecutively

increase the bandwidth requirements, run k+1 must decrease the bandwidth

requirement from run k. Using Property 2 from Chapter 3, we note that in the

search for run k is performed along the frontier of run k-1, and that run k

connects Fhi(m) and Flow(n) for some m < n. Because this run connect Fhi(i)

and Flow(i), any other bandwidth plan no co-linear with run k must have a

higher slope which crosses run k. By showing for each set of consecutive runs

that other plans cannot have a minimum peak bandwidth less than the CBA

plan, the CBA plan results in the minimum peak bandwidth requirement,

thus, proving part 2 of the theorem. //
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Theorem 3 : For video playback allocation plans using a fixed size buffer, for which

(a) the bytes deliverable are equal to the aggregate size of the video clip and (b)

where prefetching at the start of the movie are disallowed, the optimal critical

bandwidth algorithm results in (1) smallest peak bandwidth, (2) the largest mini-

mum bandwidth, and (3) the fewest possible bandwidth changes.

Proof: To prove this theorem, we use the notation

[inc, inc] - for a run which increases the bandwidth from the last run
and requires an increase in bandwidth in the next run

[inc, dec] - for a run which increases the bandwidth from the last run
and requires a decrease in bandwidth in the next run

[dec, inc] - for a run which decreases the bandwidth from the last run
and requires an increase in bandwidth in the next run

[dec, dec] - for a run which decreases the bandwidth from the last run
and requires a decrease in bandwidth in the next run

To prove part 1 of the theorem (smallest peak bandwidth), let us consider

all of the [inc, dec] runs within the OBA plan. Let the [inc, dec] run be run i.

By Property 2 from Chapter 3, run i is determined by a hub that runs from

Fhi(m) to Flow(n) for some m < n. We then note that any other plan that is not

co-linear with run i, must have a run that crosses the hub of run i. Because

this slope must be greater than that from Fhi(m) to Flow(n) in order to cross it,

no other run can have a smaller bandwidth requirement that crosses the hub

of run i.

To prove part 2 of the theorem, the mirror of part 1 is used. Let us consider

all of the [dec, inc] runs within the OBA plan. Let the [dec, inc] run be run i.

By Property 3 from Chapter 3, run i is determined by a hub that runs from

Flow(m) to Fhi(n) for some m < n. We then note that any other plan that is not

co-linear with run i, must have a run that crosses the hub of run i. Because

this slope must be smaller than that from Flow(m) to Fhi(n) in order to cross it,

no other run can have a larger bandwidth requirement that crosses the hub of

run i.

To prove part 3 of the theorem, we show by contradiction that the OBA

algorithm results in the minimum number of bandwidth changes. Suppose the

OBA algorithm creates a bandwidth plan, planopt, that has X bandwidth
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changes in it. Further, suppose that his plan is not optimal in the number of

bandwidth changes. Therefore, another plan, planbetter, must exist that has

fewer than X bandwidth changes in it. As a result, there must exist at least

one run in planbetter that spans greater than one run from planopt. As will be

shown, this cannot happen.

For algorithms that do not allow prefetching, both bandwidth plans must

start on the first frame and have nothing in the smoothing buffer. As a result,

planopt, whether it requires an increase or decrease in bandwidth in the next

run, will result in a plan that has a critical point greater than or equal to the

first run in planbetter. If an increase in bandwidth is required in the next run,

planopt picks the bandwidth such that any more bandwidth would result in

buffer overflow. Any bandwidth higher results in buffer overflow before the

critical point of the first run in planopt. Any less bandwidth results in a critical

point that is before the critical point of the first run in planopt. If a decrease in

bandwidth is required in the next run, then by definition, planopt has chosen

the minimal bandwidth necessary without overflow resulting in the furthest

critical point possible. Thus, planbetter cannot have a critical point that is

further out than planopt for the first run, and hence, cannot cross the frontier

of the first run in planopt in the first run.

For each run after the first run, planopt starts by examining the frontier of

the last run and finds a starting frame that will maximize the critical point of

the current run. This search is always performed a line connecting Flow(i) and

Fhi(i) OR Fhi(i) and Flow(i). Because this search is on a line that connects Fhi

and Flow which planbetter must cross, planbetter cannot pick a next run that is

longer than the one chosen by planopt. Otherwise, planopt would have found it

in its search. We continue this process for all runs within the planopt. Because

every ith run in planbetter cannot have a critical point further than the ith run

in planopt, planbetter must have at least as many runs as planopt. Therefore,

planopt results in the fewest number of bandwidth changes.//
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