
Database as a Service

Database as a Service (DBaaS)

 Fully managed, NoOps, database services that

automatically scale

 Many backend databases, many DBaaS

 Flavors
 SQL
 Cloud SQL

 NoSQL
 Cloud Datastore, Cloud BigTable

 NewSQL
 Cloud Spanner

 Block-chain*

Portland State University CS 410/510 Internet, Web, and Cloud Systems

SQL vs. NoSQL

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 SQL

 Relational structured

data

 Complex querying using

relations

 Schema (statically typed

data)

 Strict transactional

consistency

 Vertical scaling

 NoSQL

 Non-realational,

unstructured data

 Simple, fast key-value

lookup

 Schemaless (dynamically

typed data)

 Loose eventual

consistency

 Horizontal scaling

What explains the last two design patterns?

CAP Theorem (Fox/Brewer 2000)

 Can not have strong consistency in the wake of network
outages with high availability

 Any networked system can have at most two of three
desirable properties
 C = consistency
 A = availability
 P = partition-tolerance

 Two consistency options for networked databases
 ACID (atomicity, consistency, isolation, durability)
 To achieve strong consistency, lose “A” availability in the face of a

network partition “P”
 Can not perform transactions until all* replicas fully on-line
 Cloud SQL* & Cloud Spanner

 BASE (basically available, soft state, eventual consistency)
 To achieve high availability, lose “C” in the face of a network partition

“P”
 Cloud BigTable & Cloud Datastore

 Portland State University CS 410/510 Internet, Web, and Cloud Systems

Application drives consistency model

 Bank accounts
 Require strong consistency

 High-score updates in a game?
 Can survive with just eventual consistency

 Different implementations of databases (and DBaaS)

to support

Portland State University CS 410/510 Internet, Web, and Cloud Systems

AWS RDS (Relational Database Service)

Azure SQL Database

Cloud SQL

Recall

 Fully-managed, drop-in replacement for MySQL (or

Postgres) relational database

 Uses pre-configured VMs on demand
 Vertical scaling (read and write)

 Horizontal scaling only for reads via replicas

 Accessed via standard drivers on App Engine, SQL

Alchemy, etc.

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Summary

Transactions No Yes No Yes

Complex

queries

No No No Yes

Capacity Petabytes+ Terabytes+ Petabytes+ Up to 500GB

Portland State University CS 410/510 Internet, Web, and Cloud Systems

AWS DynamoDB

Azure Cosmos DB

Cloud Datastore (NoSQL)

Cloud Datastore

 Distributed, managed NoSQL database optimized for

reading
 Schemaless, key-value store
 Store entities and objects given a unique key

 Stored object can be modified without conforming to some

database schema

 Limited querying (mostly gets and puts)

 Like Cloud SQL: NoOps
 Autoscaled and managed, no configuration

 Data automatically stored across multiple zones for availability

 Programming API from App Engine for many languages

Portland State University CS 410/510 Internet, Web, and Cloud Systems

"NewSQL"

Cloud Spanner

Cloud Spanner (2017)

 Managed, horizontally scalable, relational ACID

database

 Best of SQL
 SQL queries, JOINs

 Schemas, strong types

 Strong consistency

 Indexes, strong secondary keys

 Best of NoSQL
 Horizontal scaling

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Spanner and the CAP theorem

 C (consistency) over A (availability) just like ACID

 Scale via synchronous replicas (unlike Cloud

Datastore)
 3 copies by default

 But, when partitions happen, go into partition mode
 Replicas use consensus mechanism to manage partitions

 Replicas on the “majority” side of partition continue, those

in minority lose availability

 Engineer against P (partitions) via Google’s network to

get 5 9s reliability

 Good for scaling OLTP (On-Line Transaction

Processing) applications

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://static.googleusercontent.com/media/research.google.com/en//pub

s/archive/45855.pdf

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45855.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45855.pdf

Cloud Spanner

 Multiple ways for accessing as with Cloud SQL and

Cloud Datastore
 REST API, Java/Go/Python/NodeJS libraries, SQL JDBC

 Cloud SQL vs Cloud Spanner
 If data fits in single server, Cloud SQL (cheaper)

 When vertical scaling via Cloud SQL not enough, Cloud

Spanner (due to horizontal scaling ability)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Example use cases

 Require SQL with ACID at massive scale
 Initially, manually-sharded MySQL
 Columns and tables of each database split across multiple nodes
 Resharding a multi-year process
 Moved to Cloud Spanner
 F1 paper: "A Distributed SQL Database that Scales"

https://research.google.com/pubs/pub41344.html

 From sharded MySQL to Spanner
 https://quizlet.com/blog/quizlet-cloud-spanner

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://research.google.com/pubs/pub41344.html
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner

Blockchain-as-a-Service

Azure Blockchain Workbench (2018)

What is it?

 Immutable ledger (transaction log)
 Recall CRUD (create, read, update, delete)

 Block-chain (append, read)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Data stored in linked lists of blocks
 1 MB for original Bitcoin

 Organized as a tree, rooted at initial entry (called the base)
 Append operation protected via proof-of-work computation

to prevent tampering (on public block-chains)
 New blocks stored with a cryptographic hash, derived from

base, through individual lists of blocks to support
immutability

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Transactions point to records on the block-chain that

trace up to the "root" (i.e. base)
 Merkle tree of hash-chains

 Applied to blocks to give block-chains their name

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Entire block-chain replicated amongst a large number

of independent machines for durability and

immutability
 BTC ledger @ ~150GB, 1MB every 10 min

 Consensus agreement to prevent tampering (exactly

like Spanner!)

 Public-key cryptography for authenticating transactions
 For block-chains handling financial data

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Classes of applications

 Auditing for compliance and provenance
 Leverages immutability of published data onto a common

data store
 Supply-chain tracking, medical history and records, fraud

detection
 All on the ledger instead of siloed in legacy databases

 Removal of trusted third party for non-repudiation
 Block-chain acts as a "witness"
 Leverages agreement amongst nodes via consensus

protocol
 Anywhere that a notary or escrow is needed, replace with

a public block-chain
 Currency transactions, ownership validation, social media

posts, etc.

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Types of block-chains

 Can be used to commit data and/or code
 e.g. web transactions, smart contracts

 Can be public
 Global crypto-currency transactions (e.g. Bitcoin)

 Can be private
 Secure and durable audits for compliance

 Supply-chain tracking

 Medical history and records

 Can do without the proof-of-work and financial incentives

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in health-care…

 Unified, tamper-resistant storage of medical records

 Tracking prescription drug abuse

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in consumer fraud…

 Good-bye knock-offs

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in asset-backed

securities…
 Prove and transfer ownership of arbitrary assets
 e.g. real-estate, fine art, equity, investment funds

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Coming to Oregon?

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Services

 Hyperledger
 https://www.hyperledger.org/

 Azure
 https://azure.microsoft.com/en-us/solutions/blockchain/

 IBM
 https://www.ibm.com/blockchain/

 AWS
 https://aws.amazon.com/partners/blockchain/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://www.hyperledger.org/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.ibm.com/blockchain/
https://aws.amazon.com/partners/blockchain/

Labs

Cloud Datastore Lab #1

 Bookshelf Python/Flask app running on App Engine via

managed, DBaaS NoSQL backend (Cloud Datastore)

(45 min)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Run within your class project (not cp100)

 On, navigation pane go straight to “Source

Repositories => Repositories"
 Create a new repository named "default"

 Note the options for populating your repository
 We will be doing this via command-line

 Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Cloud Shell, populate the repository

 Then go back to Web UI and view the files in "Source

Repositories"

Portland State University CS 410/510 Internet, Web, and Cloud Systems

mkdir cp100

cd cp100

gcloud equivalent to git clone <name_of_repo>

for GCP source repositories

gcloud source repos clone default

cd default

pull the bookshelf code from Github

git pull https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf

then upload it back to the GCP source repository you just created

git push origin master

https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf
https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf
https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf

 Bookshelf code
 Has versions for multiple cloud architectures
 app-engine

 PaaS (App Engine)
 cloud-storage

 PaaS with static content (App Engine w/ Cloud Storage)
 compute-engine

 IaaS (Compute Engine)
 container-engine

 Containers (Container Engine)

 Done via simple MVC framework to separate model

(database code) so that it is easily pluggable

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Within app-engine

 app.yaml configures app and routes requests to it
 All routes go to main.app

 Database implementation
 Set in config.py (not needed in Homework #6)
There are two different ways to store the data in the application.

You can choose 'datastore', or 'cloudsql'. Be sure to

configure the respective settings for the one you choose below.

You do not have to configure the other data backend. If unsure, choose

'datastore' as it does not require any additional configuration.

DATA_BACKEND = 'datastore'

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 main.py

 Code mostly in bookshelf class

 Imports config.py for model configuration

 Note that bookshelf is imported as a directory

 By default, Python will look for __init__.py for its

implementation

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 bookshelf/__init__.py

 Initializes app and configures model based on config
 (e.g. Cloud SQL vs Cloud Datastore)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 crud.py routes for
 list()-ing all

books
 read()-ing a single

book by ID
 create()-ing a

book
 delete()-ing a

book
 edit()-ing a book
 Note use of
get_model()
throughout to
abstract out which
backend database is
used

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Each model implements same 5 methods
 Database implementation in model_datastore.py

 Implementation for managed NoSQL (Cloud Datastore)

 Recall key-value storage abstraction
 Key is a unique integer

 Google’s ndb Python client library for interfacing with

Cloud Datastore

 Note the restricted interface to backend datastore
 get()

 put()

 delete()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Cloud Datastore model
 Kind = similar to table in SQL, categorizes entities for

queries

 Entities = similar to a row in SQL, but not all entities of a

Kind have the same properties. Has a unique key.

 Properties = similar to columns in SQL

Portland State University CS 410/510 Internet, Web, and Cloud Systems

from google.appengine.datastore.datastore_query import Cursor

from google.appengine.ext import ndb

Creates a Book "Kind" from base Datastore model class

class Book(ndb.Model):

 author = ndb.StringProperty()

 description = ndb.StringProperty(indexed=False)

 publishedDate = ndb.StringProperty()

 title = ndb.StringProperty()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

from google.appengine.datastore.datastore_query import Cursor

from google.appengine.ext import ndb

Creates a derived class from base Datastore model class

class Book(ndb.Model):

 author = ndb.StringProperty()

 description = ndb.StringProperty(indexed=False)

 publishedDate = ndb.StringProperty()

 title = ndb.StringProperty()

Lookup key based on Kind 'Book' and id (given as a string)

get() a Book Entity by ID, conver to a Python dictionary

def read(id):

 book_key = ndb.Key('Book', int(id))

 results = book_key.get()

 return from_datastore(results)

Translates datastore Entity to a Python dict for application.

Datastore format: [Entity{key: (kind, id), prop: val, ...}]

Returns: {id: id, prop: val, ...}

def from_datastore(entity):

 …

 book = {}

 book['id'] = entity.key.id()

 book['author'] = entity.author

 …

 return book
Portland State University CS 410/510 Internet, Web, and Cloud Systems

If ID given, get() Book entity otherwise create new Book entity

then set fields based on data, before put()

def update(data, id=None):

 if id:

 key = ndb.Key('Book', int(id))

 book = key.get()

 else:

 book = Book()

 book.author = data['author']

 book.description = data['description']

 book.publishedDate = data['publishedDate']

 book.title = data['title']

 book.put()

 return from_datastore(book)

def delete(id):

 key = ndb.Key('Book', int(id))

 key.delete()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Alternate database implementation in
model_cloudsql.py

 Implementation for managed SQL (Cloud SQL)
 SQLAlchemy (Python support for writing to SQL backends)
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy() # [START read]

def read(id):

 result = Book.query.get(id)

 if not result:

 return None

 return from_sql(result)

[END read]

def delete(id):

 Book.query.filter_by(id=id).delete()

 db.session.commit()

[END delete]

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bookshelf code
 Python modules specified in requirements.txt

 Install packages in requirements.txt in lib directory

 appengine_config.py then loads lib directory

packages when app deployed

Portland State University CS 410/510 Internet, Web, and Cloud Systems

cd ~/cp100/default/app-engine

pip install –r requirements.txt –t lib

Flask==0.11.1

gunicorn==19.6.0

 Then, deploy the app

 Visit the web application after deployed
 Add the book as described in the walkthrough

 Turn in
 Submit a book to your app

 Then, go to Storage => Datastore => Entities to show the

book added

 Add a book via this interface and return to the web app

 Show both books

 Remove the app from App Engine (see prior lab)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

gcloud app deploy

Cloud Datastore Lab #1

 PaaS+DBaaS
 Bookshelf Python/Flask app running on App Engine via

managed, DBaaS NoSQL backend (Cloud Datastore) (45

min)

 Link to lab
 https://codelabs.developers.google.com/codelabs/cp100-

app-engine

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine

Homework #6 (510 only)

 Adapt your app from Homework #3 to work on App

Engine using App Engine's Datastore
 Leave it up for the instructor to test

 Commit your code to Bitbucket under directory hw6

 Place all code and configuration files in repo
 Submit a a file called url.txt repository containing the

URL that points to your running instance

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Spanner Lab #1

 Getting Started with Cloud Spanner in Python
 Uses multiple methods for accessing

 Enable API
 Use us-west1 region

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Cloud Shell, set up authentication and authorization

(if needed)

gcloud config set project <Project_ID>

gcloud auth application-default login

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Setup

 Clone the sample app repository (not necessary)

 Set up a local Python virtual environment and install

Spanner dependencies

 Create a 1-node Cloud Spanner instance in us-west1

Creating instance...done.

git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

cd python-docs-samples/spanner/cloud-client

virtualenv env

source env/bin/activate

pip install -r requirements.txt

gcloud spanner instances create test-instance \

 --config=regional-us-west1 \

 --description="Test Instance" --nodes=1

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python code for creating database

(SQL)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

python snippets.py test-instance --database-id example-db

create_database

Spanner database client (SQL)

 Client class used to interact with Spanner database

cd spanner/cloud-client/

python quickstart.py

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python client for inserting data

 Via a Batch object

 Container for mutation operations (create/insert, update,

delete) to be applied atomically to a set of rows/tables

 Run snippets.py with insert_data as argument

Inserted data.

python snippets.py test-instance --database-id

example-db insert_data

Portland State University CS 410/510 Internet, Web, and Cloud Systems

CLI for querying data

 Via command line, execute arbitrary SQL on Spanner

instance to read values columns from the Albums table

 Show the results

gcloud spanner databases execute-sql example-db

 --instance=test-instance

 --sql='SELECT SingerId, AlbumId, AlbumTitle FROM Albums'

SingerId AlbumId AlbumTitle

1 1 Total Junk

1 2 Go, Go, Go

2 1 Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python client for querying data (SQL)

 query_data to get album information via SQL

 Run snippets.py using the query_data argument

 Show results

python snippets.py test-instance --database-id

example-db query_data

SingerId: 2, AlbumId: 2, AlbumTitle: Forever Hold Your Peace

SingerId: 1, AlbumId: 2, AlbumTitle: Go, Go, Go

SingerId: 2, AlbumId: 1, AlbumTitle: Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Reading data via Python

 read_data to get album information via Spanner API

 Run script using the read_data argument

 Show results

python snippets.py test-instance --database-id

example-db read_data

SingerId: 1, AlbumId: 1, AlbumTitle: Total Junk

SingerId: 1, AlbumId: 2, AlbumTitle: Go, Go, Go

SingerId: 2, AlbumId: 1, AlbumTitle: Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Cloud Spanner Lab #1

 Only do the first two bullets of the walk-through
 https://cloud.google.com/spanner/docs/getting-

started/python/

 Note, you may do the entire lab on Cloud Shell

 (i.e stop at "Update the database schema" section)

 Remember to delete everything when done
 $$$

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/spanner/docs/getting-started/python/
https://cloud.google.com/spanner/docs/getting-started/python/
https://cloud.google.com/spanner/docs/getting-started/python/

Extra

Portland State University CS 410/510 Internet, Web, and Cloud Systems

PaaS+DBaaS+Cloud Storage Lab #1

 Add integration with Google Cloud Storage (35 min)
 https://codelabs.developers.google.com/codelabs/cp100-

cloud-storage/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Run within your class project (not cp100)
 Via gcloud SDK (access via Google Cloud Shell or via

linuxlab)
gsutil mb -l <location> gs://$DEVSHELL_PROJECT_ID

 gsutil (Google Cloud Storage utility) command
 mb = make bucket
 Use <location> of us-west1
 gs://
 URI for all buckets (must be globally unique)
 Use <Project ID> to uniquely label bucket

 Note: you can use any name that is unique but the instructions
assume you’ve named your bucket after your project ID

 Get Project ID in Google Cloud Shell via
 echo $DEVSHELL_PROJECT_ID

 Verify in console that bucket has been created
 Allow global read access to bucket

gsutil defacl ch -u AllUsers:R gs://$DEVSHELL_PROJECT_ID
gsutil defacl set public-read gs://$DEVSHELL_PROJECT_ID

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 App located in source repository from previous lab
within cloud-storage directory
 Examine config.py to see bucket name configuration

and allowed filename extensions for image uploads

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/storage.py to see code for writing to bucket
 Cloud Storage URI is returned so database can set imageUrl property

 Filename created with timestamped to avoid naming conflicts

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/crud.py to see code for uploading and

setting imageUrl property for book

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/templates/list.html to see code for

displaying book when given a dict of books from model code

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Console, cd ~/cp100/default/cloud-storage and edit

config.py and edit it to point to your storage bucket

(<projectID>)
 Or use the sed command, but use
sed -i s/your-bucket-name/$DEVSHELL_PROJECT_ID/ config.py

 Note that GCS libraries now needed in requirements.txt

 Install requirements and deploy (see walkthrough)

 Download images and create book as instructed

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Turn in
 Show book that is added in section 6 of walkthrough

(CPD200..)

 Show time-stamped image of book cover used in storage

bucket via console

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bookshelf app on Compute Engine (30 min)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IaaS+DBaaS+Cloud Storage Lab #1

 Changes
 Uses Cloud Datastore and Cloud Storage directly

(instead of from App Engine)

 Small changes in client library to migrate from App

Engine PaaS to unmanaged version on an IaaS model

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bring up instance in Cloud Shell
 Set zone to us-west1-b
 Run command
 Run command

gcloud compute instances create bookshelf \

 --image-family=debian-8 --image-project=debian-cloud \

 --machine-type=g1-small \

 --scopes userinfo-email,cloud-platform \

 --metadata-from-file startup-script=startup-scripts/startup-

script.sh \

 --tags http-server

 Image type to debian, machine type to small, binds owner
of instance

 Specifies startup script to run upon launch
 Tags with label that allows HTTP traffic through the

firewall to the instance

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Add additional firewall rule to http-server tag since

non-standard port is used (8080)
gcloud compute firewall-rules create default-allow-http-8080 \

 --allow tcp:8080 \

 --source-ranges 0.0.0.0/0 \

 --target-tags http-server \

 --description "Allow port 8080 access to http-server“

 Adds rule to http-server tag that allows traffic to TCP port

8080 from any source (0.0.0.0/0)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Startup script
 Bring up environment onto initial vanilla VM

 Done manually in this lab
 Automated tools for doing similar functions include Puppet,

Ansible, Chef

 Subsumed by Google Deployment Manager on GCP (but other

tools can still be used)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Startup script

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine code
 Source Repositories=>Source code=>compute-engine

 Note: Alternative client libraries used to access Cloud Datastore for

Compute Engine version versus App Engine

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Link: Bookshelf app on Compute Engine (30 min)
 https://codelabs.developers.google.com/codelabs/cp100-

compute-engine/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

