
Database as a Service

Database as a Service (DBaaS)

 Fully managed, NoOps, database services that

automatically scale

 Many backend databases, many DBaaS

 Flavors
 SQL
 Cloud SQL

 NoSQL
 Cloud Datastore, Cloud BigTable

 NewSQL
 Cloud Spanner

 Block-chain*

Portland State University CS 410/510 Internet, Web, and Cloud Systems

SQL vs. NoSQL

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 SQL

 Relational structured

data

 Complex querying using

relations

 Schema (statically typed

data)

 Strict transactional

consistency

 Vertical scaling

 NoSQL

 Non-realational,

unstructured data

 Simple, fast key-value

lookup

 Schemaless (dynamically

typed data)

 Loose eventual

consistency

 Horizontal scaling

What explains the last two design patterns?

CAP Theorem (Fox/Brewer 2000)

 Can not have strong consistency in the wake of network
outages with high availability

 Any networked system can have at most two of three
desirable properties
 C = consistency
 A = availability
 P = partition-tolerance

 Two consistency options for networked databases
 ACID (atomicity, consistency, isolation, durability)
 To achieve strong consistency, lose “A” availability in the face of a

network partition “P”
 Can not perform transactions until all* replicas fully on-line
 Cloud SQL* & Cloud Spanner

 BASE (basically available, soft state, eventual consistency)
 To achieve high availability, lose “C” in the face of a network partition

“P”
 Cloud BigTable & Cloud Datastore

 Portland State University CS 410/510 Internet, Web, and Cloud Systems

Application drives consistency model

 Bank accounts
 Require strong consistency

 High-score updates in a game?
 Can survive with just eventual consistency

 Different implementations of databases (and DBaaS)

to support

Portland State University CS 410/510 Internet, Web, and Cloud Systems

AWS RDS (Relational Database Service)

Azure SQL Database

Cloud SQL

Recall

 Fully-managed, drop-in replacement for MySQL (or

Postgres) relational database

 Uses pre-configured VMs on demand
 Vertical scaling (read and write)

 Horizontal scaling only for reads via replicas

 Accessed via standard drivers on App Engine, SQL

Alchemy, etc.

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Summary

Transactions No Yes No Yes

Complex

queries

No No No Yes

Capacity Petabytes+ Terabytes+ Petabytes+ Up to 500GB

Portland State University CS 410/510 Internet, Web, and Cloud Systems

AWS DynamoDB

Azure Cosmos DB

Cloud Datastore (NoSQL)

Cloud Datastore

 Distributed, managed NoSQL database optimized for

reading
 Schemaless, key-value store
 Store entities and objects given a unique key

 Stored object can be modified without conforming to some

database schema

 Limited querying (mostly gets and puts)

 Like Cloud SQL: NoOps
 Autoscaled and managed, no configuration

 Data automatically stored across multiple zones for availability

 Programming API from App Engine for many languages

Portland State University CS 410/510 Internet, Web, and Cloud Systems

"NewSQL"

Cloud Spanner

Cloud Spanner (2017)

 Managed, horizontally scalable, relational ACID

database

 Best of SQL
 SQL queries, JOINs

 Schemas, strong types

 Strong consistency

 Indexes, strong secondary keys

 Best of NoSQL
 Horizontal scaling

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Spanner and the CAP theorem

 C (consistency) over A (availability) just like ACID

 Scale via synchronous replicas (unlike Cloud

Datastore)
 3 copies by default

 But, when partitions happen, go into partition mode
 Replicas use consensus mechanism to manage partitions

 Replicas on the “majority” side of partition continue, those

in minority lose availability

 Engineer against P (partitions) via Google’s network to

get 5 9s reliability

 Good for scaling OLTP (On-Line Transaction

Processing) applications

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://static.googleusercontent.com/media/research.google.com/en//pub

s/archive/45855.pdf

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45855.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45855.pdf

Cloud Spanner

 Multiple ways for accessing as with Cloud SQL and

Cloud Datastore
 REST API, Java/Go/Python/NodeJS libraries, SQL JDBC

 Cloud SQL vs Cloud Spanner
 If data fits in single server, Cloud SQL (cheaper)

 When vertical scaling via Cloud SQL not enough, Cloud

Spanner (due to horizontal scaling ability)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Example use cases

 Require SQL with ACID at massive scale
 Initially, manually-sharded MySQL
 Columns and tables of each database split across multiple nodes
 Resharding a multi-year process
 Moved to Cloud Spanner
 F1 paper: "A Distributed SQL Database that Scales"

https://research.google.com/pubs/pub41344.html

 From sharded MySQL to Spanner
 https://quizlet.com/blog/quizlet-cloud-spanner

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://research.google.com/pubs/pub41344.html
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner
https://quizlet.com/blog/quizlet-cloud-spanner

Blockchain-as-a-Service

Azure Blockchain Workbench (2018)

What is it?

 Immutable ledger (transaction log)
 Recall CRUD (create, read, update, delete)

 Block-chain (append, read)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Data stored in linked lists of blocks
 1 MB for original Bitcoin

 Organized as a tree, rooted at initial entry (called the base)
 Append operation protected via proof-of-work computation

to prevent tampering (on public block-chains)
 New blocks stored with a cryptographic hash, derived from

base, through individual lists of blocks to support
immutability

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Transactions point to records on the block-chain that

trace up to the "root" (i.e. base)
 Merkle tree of hash-chains

 Applied to blocks to give block-chains their name

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Essentials

 Entire block-chain replicated amongst a large number

of independent machines for durability and

immutability
 BTC ledger @ ~150GB, 1MB every 10 min

 Consensus agreement to prevent tampering (exactly

like Spanner!)

 Public-key cryptography for authenticating transactions
 For block-chains handling financial data

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Classes of applications

 Auditing for compliance and provenance
 Leverages immutability of published data onto a common

data store
 Supply-chain tracking, medical history and records, fraud

detection
 All on the ledger instead of siloed in legacy databases

 Removal of trusted third party for non-repudiation
 Block-chain acts as a "witness"
 Leverages agreement amongst nodes via consensus

protocol
 Anywhere that a notary or escrow is needed, replace with

a public block-chain
 Currency transactions, ownership validation, social media

posts, etc.

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Types of block-chains

 Can be used to commit data and/or code
 e.g. web transactions, smart contracts

 Can be public
 Global crypto-currency transactions (e.g. Bitcoin)

 Can be private
 Secure and durable audits for compliance

 Supply-chain tracking

 Medical history and records

 Can do without the proof-of-work and financial incentives

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in health-care…

 Unified, tamper-resistant storage of medical records

 Tracking prescription drug abuse

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in consumer fraud…

 Good-bye knock-offs

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Disruption in asset-backed

securities…
 Prove and transfer ownership of arbitrary assets
 e.g. real-estate, fine art, equity, investment funds

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Coming to Oregon?

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Services

 Hyperledger
 https://www.hyperledger.org/

 Azure
 https://azure.microsoft.com/en-us/solutions/blockchain/

 IBM
 https://www.ibm.com/blockchain/

 AWS
 https://aws.amazon.com/partners/blockchain/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://www.hyperledger.org/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.ibm.com/blockchain/
https://aws.amazon.com/partners/blockchain/

Labs

Cloud Datastore Lab #1

 Bookshelf Python/Flask app running on App Engine via

managed, DBaaS NoSQL backend (Cloud Datastore)

(45 min)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Run within your class project (not cp100)

 On, navigation pane go straight to “Source

Repositories => Repositories"
 Create a new repository named "default"

 Note the options for populating your repository
 We will be doing this via command-line

 Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Cloud Shell, populate the repository

 Then go back to Web UI and view the files in "Source

Repositories"

Portland State University CS 410/510 Internet, Web, and Cloud Systems

mkdir cp100

cd cp100

gcloud equivalent to git clone <name_of_repo>

for GCP source repositories

gcloud source repos clone default

cd default

pull the bookshelf code from Github

git pull https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf

then upload it back to the GCP source repository you just created

git push origin master

https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf
https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf
https://github.com/GoogleCloudPlatformTraining/cp100-bookshelf

 Bookshelf code
 Has versions for multiple cloud architectures
 app-engine

 PaaS (App Engine)
 cloud-storage

 PaaS with static content (App Engine w/ Cloud Storage)
 compute-engine

 IaaS (Compute Engine)
 container-engine

 Containers (Container Engine)

 Done via simple MVC framework to separate model

(database code) so that it is easily pluggable

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Within app-engine

 app.yaml configures app and routes requests to it
 All routes go to main.app

 Database implementation
 Set in config.py (not needed in Homework #6)
There are two different ways to store the data in the application.

You can choose 'datastore', or 'cloudsql'. Be sure to

configure the respective settings for the one you choose below.

You do not have to configure the other data backend. If unsure, choose

'datastore' as it does not require any additional configuration.

DATA_BACKEND = 'datastore'

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 main.py

 Code mostly in bookshelf class

 Imports config.py for model configuration

 Note that bookshelf is imported as a directory

 By default, Python will look for __init__.py for its

implementation

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 bookshelf/__init__.py

 Initializes app and configures model based on config
 (e.g. Cloud SQL vs Cloud Datastore)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 crud.py routes for
 list()-ing all

books
 read()-ing a single

book by ID
 create()-ing a

book
 delete()-ing a

book
 edit()-ing a book
 Note use of
get_model()
throughout to
abstract out which
backend database is
used

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Each model implements same 5 methods
 Database implementation in model_datastore.py

 Implementation for managed NoSQL (Cloud Datastore)

 Recall key-value storage abstraction
 Key is a unique integer

 Google’s ndb Python client library for interfacing with

Cloud Datastore

 Note the restricted interface to backend datastore
 get()

 put()

 delete()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Cloud Datastore model
 Kind = similar to table in SQL, categorizes entities for

queries

 Entities = similar to a row in SQL, but not all entities of a

Kind have the same properties. Has a unique key.

 Properties = similar to columns in SQL

Portland State University CS 410/510 Internet, Web, and Cloud Systems

from google.appengine.datastore.datastore_query import Cursor

from google.appengine.ext import ndb

Creates a Book "Kind" from base Datastore model class

class Book(ndb.Model):

 author = ndb.StringProperty()

 description = ndb.StringProperty(indexed=False)

 publishedDate = ndb.StringProperty()

 title = ndb.StringProperty()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

from google.appengine.datastore.datastore_query import Cursor

from google.appengine.ext import ndb

Creates a derived class from base Datastore model class

class Book(ndb.Model):

 author = ndb.StringProperty()

 description = ndb.StringProperty(indexed=False)

 publishedDate = ndb.StringProperty()

 title = ndb.StringProperty()

Lookup key based on Kind 'Book' and id (given as a string)

get() a Book Entity by ID, conver to a Python dictionary

def read(id):

 book_key = ndb.Key('Book', int(id))

 results = book_key.get()

 return from_datastore(results)

Translates datastore Entity to a Python dict for application.

Datastore format: [Entity{key: (kind, id), prop: val, ...}]

Returns: {id: id, prop: val, ...}

def from_datastore(entity):

 …

 book = {}

 book['id'] = entity.key.id()

 book['author'] = entity.author

 …

 return book
Portland State University CS 410/510 Internet, Web, and Cloud Systems

If ID given, get() Book entity otherwise create new Book entity

then set fields based on data, before put()

def update(data, id=None):

 if id:

 key = ndb.Key('Book', int(id))

 book = key.get()

 else:

 book = Book()

 book.author = data['author']

 book.description = data['description']

 book.publishedDate = data['publishedDate']

 book.title = data['title']

 book.put()

 return from_datastore(book)

def delete(id):

 key = ndb.Key('Book', int(id))

 key.delete()

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Alternate database implementation in
model_cloudsql.py

 Implementation for managed SQL (Cloud SQL)
 SQLAlchemy (Python support for writing to SQL backends)
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy() # [START read]

def read(id):

 result = Book.query.get(id)

 if not result:

 return None

 return from_sql(result)

[END read]

def delete(id):

 Book.query.filter_by(id=id).delete()

 db.session.commit()

[END delete]

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bookshelf code
 Python modules specified in requirements.txt

 Install packages in requirements.txt in lib directory

 appengine_config.py then loads lib directory

packages when app deployed

Portland State University CS 410/510 Internet, Web, and Cloud Systems

cd ~/cp100/default/app-engine

pip install –r requirements.txt –t lib

Flask==0.11.1

gunicorn==19.6.0

 Then, deploy the app

 Visit the web application after deployed
 Add the book as described in the walkthrough

 Turn in
 Submit a book to your app

 Then, go to Storage => Datastore => Entities to show the

book added

 Add a book via this interface and return to the web app

 Show both books

 Remove the app from App Engine (see prior lab)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

gcloud app deploy

Cloud Datastore Lab #1

 PaaS+DBaaS
 Bookshelf Python/Flask app running on App Engine via

managed, DBaaS NoSQL backend (Cloud Datastore) (45

min)

 Link to lab
 https://codelabs.developers.google.com/codelabs/cp100-

app-engine

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine
https://codelabs.developers.google.com/codelabs/cp100-app-engine

Homework #6 (510 only)

 Adapt your app from Homework #3 to work on App

Engine using App Engine's Datastore
 Leave it up for the instructor to test

 Commit your code to Bitbucket under directory hw6

 Place all code and configuration files in repo
 Submit a a file called url.txt repository containing the

URL that points to your running instance

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Spanner Lab #1

 Getting Started with Cloud Spanner in Python
 Uses multiple methods for accessing

 Enable API
 Use us-west1 region

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Cloud Shell, set up authentication and authorization

(if needed)

gcloud config set project <Project_ID>

gcloud auth application-default login

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Setup

 Clone the sample app repository (not necessary)

 Set up a local Python virtual environment and install

Spanner dependencies

 Create a 1-node Cloud Spanner instance in us-west1

Creating instance...done.

git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

cd python-docs-samples/spanner/cloud-client

virtualenv env

source env/bin/activate

pip install -r requirements.txt

gcloud spanner instances create test-instance \

 --config=regional-us-west1 \

 --description="Test Instance" --nodes=1

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python code for creating database

(SQL)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

python snippets.py test-instance --database-id example-db

create_database

Spanner database client (SQL)

 Client class used to interact with Spanner database

cd spanner/cloud-client/

python quickstart.py

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python client for inserting data

 Via a Batch object

 Container for mutation operations (create/insert, update,

delete) to be applied atomically to a set of rows/tables

 Run snippets.py with insert_data as argument

Inserted data.

python snippets.py test-instance --database-id

example-db insert_data

Portland State University CS 410/510 Internet, Web, and Cloud Systems

CLI for querying data

 Via command line, execute arbitrary SQL on Spanner

instance to read values columns from the Albums table

 Show the results

gcloud spanner databases execute-sql example-db

 --instance=test-instance

 --sql='SELECT SingerId, AlbumId, AlbumTitle FROM Albums'

SingerId AlbumId AlbumTitle

1 1 Total Junk

1 2 Go, Go, Go

2 1 Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Python client for querying data (SQL)

 query_data to get album information via SQL

 Run snippets.py using the query_data argument

 Show results

python snippets.py test-instance --database-id

example-db query_data

SingerId: 2, AlbumId: 2, AlbumTitle: Forever Hold Your Peace

SingerId: 1, AlbumId: 2, AlbumTitle: Go, Go, Go

SingerId: 2, AlbumId: 1, AlbumTitle: Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Reading data via Python

 read_data to get album information via Spanner API

 Run script using the read_data argument

 Show results

python snippets.py test-instance --database-id

example-db read_data

SingerId: 1, AlbumId: 1, AlbumTitle: Total Junk

SingerId: 1, AlbumId: 2, AlbumTitle: Go, Go, Go

SingerId: 2, AlbumId: 1, AlbumTitle: Green

…

Portland State University CS 410/510 Internet, Web, and Cloud Systems

Cloud Spanner Lab #1

 Only do the first two bullets of the walk-through
 https://cloud.google.com/spanner/docs/getting-

started/python/

 Note, you may do the entire lab on Cloud Shell

 (i.e stop at "Update the database schema" section)

 Remember to delete everything when done
 $$$

Portland State University CS 410/510 Internet, Web, and Cloud Systems

https://cloud.google.com/spanner/docs/getting-started/python/
https://cloud.google.com/spanner/docs/getting-started/python/
https://cloud.google.com/spanner/docs/getting-started/python/

Extra

Portland State University CS 410/510 Internet, Web, and Cloud Systems

PaaS+DBaaS+Cloud Storage Lab #1

 Add integration with Google Cloud Storage (35 min)
 https://codelabs.developers.google.com/codelabs/cp100-

cloud-storage/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Run within your class project (not cp100)
 Via gcloud SDK (access via Google Cloud Shell or via

linuxlab)
gsutil mb -l <location> gs://$DEVSHELL_PROJECT_ID

 gsutil (Google Cloud Storage utility) command
 mb = make bucket
 Use <location> of us-west1
 gs://
 URI for all buckets (must be globally unique)
 Use <Project ID> to uniquely label bucket

 Note: you can use any name that is unique but the instructions
assume you’ve named your bucket after your project ID

 Get Project ID in Google Cloud Shell via
 echo $DEVSHELL_PROJECT_ID

 Verify in console that bucket has been created
 Allow global read access to bucket

gsutil defacl ch -u AllUsers:R gs://$DEVSHELL_PROJECT_ID
gsutil defacl set public-read gs://$DEVSHELL_PROJECT_ID

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 App located in source repository from previous lab
within cloud-storage directory
 Examine config.py to see bucket name configuration

and allowed filename extensions for image uploads

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/storage.py to see code for writing to bucket
 Cloud Storage URI is returned so database can set imageUrl property

 Filename created with timestamped to avoid naming conflicts

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/crud.py to see code for uploading and

setting imageUrl property for book

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine bookshelf/templates/list.html to see code for

displaying book when given a dict of books from model code

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 In Console, cd ~/cp100/default/cloud-storage and edit

config.py and edit it to point to your storage bucket

(<projectID>)
 Or use the sed command, but use
sed -i s/your-bucket-name/$DEVSHELL_PROJECT_ID/ config.py

 Note that GCS libraries now needed in requirements.txt

 Install requirements and deploy (see walkthrough)

 Download images and create book as instructed

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Turn in
 Show book that is added in section 6 of walkthrough

(CPD200..)

 Show time-stamped image of book cover used in storage

bucket via console

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bookshelf app on Compute Engine (30 min)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

IaaS+DBaaS+Cloud Storage Lab #1

 Changes
 Uses Cloud Datastore and Cloud Storage directly

(instead of from App Engine)

 Small changes in client library to migrate from App

Engine PaaS to unmanaged version on an IaaS model

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Bring up instance in Cloud Shell
 Set zone to us-west1-b
 Run command
 Run command

gcloud compute instances create bookshelf \

 --image-family=debian-8 --image-project=debian-cloud \

 --machine-type=g1-small \

 --scopes userinfo-email,cloud-platform \

 --metadata-from-file startup-script=startup-scripts/startup-

script.sh \

 --tags http-server

 Image type to debian, machine type to small, binds owner
of instance

 Specifies startup script to run upon launch
 Tags with label that allows HTTP traffic through the

firewall to the instance

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Add additional firewall rule to http-server tag since

non-standard port is used (8080)
gcloud compute firewall-rules create default-allow-http-8080 \

 --allow tcp:8080 \

 --source-ranges 0.0.0.0/0 \

 --target-tags http-server \

 --description "Allow port 8080 access to http-server“

 Adds rule to http-server tag that allows traffic to TCP port

8080 from any source (0.0.0.0/0)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Startup script
 Bring up environment onto initial vanilla VM

 Done manually in this lab
 Automated tools for doing similar functions include Puppet,

Ansible, Chef

 Subsumed by Google Deployment Manager on GCP (but other

tools can still be used)

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Startup script

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Examine code
 Source Repositories=>Source code=>compute-engine

 Note: Alternative client libraries used to access Cloud Datastore for

Compute Engine version versus App Engine

Portland State University CS 410/510 Internet, Web, and Cloud Systems

 Link: Bookshelf app on Compute Engine (30 min)
 https://codelabs.developers.google.com/codelabs/cp100-

compute-engine/

Portland State University CS 410/510 Internet, Web, and Cloud Systems

