
Advanced Programming with Java

The JavaTM programming platform contains a
set of class libraries. These standard libraries
provide functionality that ranges from file
compression to graphics. Here we will discuss
some of Java’s fundamental classes, useful
utility classes, and tools for performing I/O.

The Standard Libraries

• java.lang

• java.io

• java.util

Copyright ©2000-2023 by David M. Whitlock. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or fee. Request permission to publish from
whitlock@cs.pdx.edu. Last updated January 5, 2023.

1

The java.lang package

The java.lang package contains classes, interfaces,
and exceptions that are fundamental to the Java
programming language

• Object, Class, System

• String, StringBuilder

• The “wrapper” classes

• A bunch of exceptions

2

java.lang.Object

Object is the root class in Java: Everything is an Object

Therefore, all objects have the following methods

• equals: Compares an Object to another

• toString: Returns a String representation of an
Object (often invoked automagically)

• hashCode: Returns a hash code for an Object

• clone: Returns a copy of an Object

• getClass: Returns an instance of an Object’s
“metaclass”

• finalize: Called when an Object is garbage
collected (not a destructor!)

• notify, notifyAll, and wait are used in
multi-threaded programs

3

java.lang.String

Strings can be constructed from byte arrays, char
arrays, or other Strings

• charAt: Returns the char at a given offset into a
String

• compareTo: Compares a String to another

• endsWith/startsWith: Determines if one String is
a suffix/prefix of another

• indexOf: Finds an occurrence of a char in a String

• length: Returns the length of a String

• replace: Replaces all occurrences of one char with
another

• trim: Removes leading and trailing whitespace from
a String

4

java.lang.StringBuilder

Strings are immutable, StringBuilders* can be
changed

• append: Appends something to a StringBuilder

– The StringBuilder itself is returned

– sb.append("Result: ").append(4);

• delete/deleteCharAt: Removes some number of
chars from a StringBuilder

• insert: Inserts something into a StringBuilder

• length: Returns the length of a StringBuilder

• subString: Returns a portion of a StringBuilder
as a String

• toString: Returns the contents of a StringBuilder
as a String

*StringBuilder provides a better-performing alternative to the older
StringBuffer class

5

The secret life of StringBuilder

The + operator is overloaded to concatenate Strings

In reality, javac compiles string concatenation into
operations on a StringBuilder:

double temp;
System.out.println("Today’s temp is " + temp);

Is really:

double temp;
StringBuilder sb = new StringBuilder();
sb.append("Today’s temp is ");
sb.append(temp);
System.out.println(sb.toString());

So, remember that string concatenation creates a
StringBuilder

• There is some overhead, so don’t do it inside a tight
loop

• Sometimes it is better to use a StringBuilder
directly instead of concatentation

6

java.lang.System

Contains a number of system-level fields and methods

Static fields:

• out: A PrintStream for standard output (as in
System.out.println("Hi"))

• err: A PrintStream for standard error

• in: An InputStream for standard in

Static methods:

• currentTimeMillis: Returns the current time in
milliseconds since January 1, 1970

• exit: Shuts down the JVM with a given int exit code

• setOut, setErr, setIn: Reassigns the various
“standard” streams

7

java.lang.Math

Math provides static methods for performing
mathematical calculations on doubles

• abs, sqrt

• Trigonometric functions (cos, tan, asin, et. al.)

• ceil, floor

• exp, pow

• min, max

• toDegrees, toRadians

• random: Returns a random double between 0.0 and
1.0

8

The “wrapper” classes

Some things, such as they keys of a hash table, can only
be Objects.

What if you wanted to key a hash table on an int value?

Java provides “wrapper” classes for all of the primitive
types: Boolean, Byte, Character, Double, Float,
Integer, Long, Short, Void

Each wrapper class has a method that returns the value
of the primitive class represents: intValue, charValue,
etc.

9

java.lang.Boolean

Class methods

• valueOf: Parses a String and returns its boolean
value (case insensitive)

Instance methods

• booleanValue: Returns the boolean value for a
Boolean

• equals: Compares this Boolean to another

10

java.lang.Character

Java supports the 16-bit Unicode standard for
international character sets

A number of useful static methods

• digit: Returns the numeric (int) value of a char

• forDigit: Returns the char value for a number

• isDigit: Determines if a char is a digit

• isLetter: Determines if a char is a letter

• isWhitespace: Determines if a char is whitespace

Instance methods

• charValue: Returns the char value of a Character

• compareTo: Compares one Character to another

11

java.lang.Number

The numeric wrapper classes are subclasses of Number

Instance methods for converting between numeric types

• byteValue: Returns a Number’s value as a byte

• doubleValue

• floatValue

• intValue

• longValue

• shortValue

All of Number’s subclass have similar behavior

12

java.lang.Integer

Static methods:

• parseInt: Converts a String to an int

• toBinaryString Returns the binary representation
of an int as a String

• toHexString

• toOctalString

Static fields:

• MAX VALUE: The largest int

• MIN VALUE: The smallest int

13

The Wide World of Exceptions

java.lang.Throwable is the base class for all exceptions

• getMessage: Returns a String message describing
Throwable object

• printStackTrace: Prints a stack trace describing
where in the code the Throwable was thrown

• JDK 1.4 added a getCause method that returns a
Throwable that caused the other Throwable
(chained exceptions) and a getStackTrace method
that returns a representation of the location at which
the throwable was thrown

Throwable has two subclasses

• java.lang.Exceptions are the kinds of things a
reasonable program may want to catch

• java.lang.Errors are truly not expected (e.g.
running out of virtual memory), could happen at any
time, and should not be caught

14

Big Bucket o’ java.lang Exceptions

Exceptions
ArithmeticException e.g. divide by zero
ArrayIndexOutOfBoundsException

ClassCastException Trying to cast an object
to a type that it is not

IllegalArgumentException

NegativeArraySizeException

NullPointerException Referencing an object
that is null

NumberFormatException Thrown when parsing
numbers

Errors
OutOfMemoryError Garbage collected heap

is full
StackOverflowError Too much recursion

15

Checked versus Unchecked Exceptions

java.lang.RuntimeExceptions are often thrown by the
Java Virtual Machine’s runtime system

• Called “unchecked” exceptions because they do not
need to be declared in a throws clause, nor do they
have to be caught

• Examples include ClassCastExecption and
NullPointerException

• Often easy to test for: “Look before you leap”

Other subclasses of java.lang.Exception must be
explicitly thrown and caught

• These are “checked” exceptions

• Examples include java.io.IOException,
java.sql.SQLException, and
java.awt.AWTException

• Your exceptions should subclass Exception

• Checked exceptions make your code more explicit
and easier to understand

16

Catching Multiple Kinds of Exceptions

A try block can have multiple catch blocks

• The type of the exception determines which catch
block will be executed

try {
openFile();

} catch (FileNotFoundException ex) {
// prompt user for new file name

} catch (IOException ex) {
// Print out error message and exit

}

Note that the catch statements have to be arranged
according to the exception class hierarchy

try {
openFile();

} catch (IOException ex) {

} catch (FileNotFoundException ex) {
// Unreachable code. Won’t compile.

}

17

Assertions

JDK 1.4 added an assertion facility to the Java language

• assert Expression1

• assert Expression1 : Expression2

If Expression1 evaluates to false, then a
java.lang.AssertionError is thrown

• Expression2 is the detail message issued with the
AssertionError

Assertions are used to verify that certain program facts
are true

• For instance, after reading all of the bytes from a
buffer, assert that the buffer is empty

Assertions incur some runtime expense, so they must be
explicitly enabled

• Assertions are enabled via the -ea switch to java

• Code executed by the assertion must have no side
effects (e.g. changing the state of an object)

18

Using Assertions vs. Throwing Exceptions

Assertions should be used to verify the internal logic of a
method

An exception (such as IllegalArgumentException)
should be used to verify the inputs to a (public) method

• Remember, it is reasonable for a program to catch an
Exception, but it shouldn’t catch an Error

Using assertions:

public void setPort(int port) {
if (port <= 1024) {

throw new IllegalArgumentException();
}

}

private int readPort() {
int port = ...; // Read from config file
assert port > 1024 : port;

}

19

Assertions and Program Logic

Assertions are most useful to verify program logic

private String getDayString(int day) {
switch (day) {

case MONDAY:
return "Monday";

case TUESDAY:
return "Tuesday";

// ...
default:

assert false : "Unknown day: " + day;
}

}

if (i % 3 == 0) {
// ...

} else if (i % 3 == 1) {
// ...

} else {
assert i % 3 == 2;
// ...

}

Using asserts will make your code better!

20

Cloning Objects

Object’s clone method returns a copy of an object

The copy usually has the same state and commonly

x.clone().equals(x)

But obviously,

x.clone() != x

By default, the JVM doesn’t know how to make a copy of
an object

• By default, the clone method throws a
CloneNotSupportedException

If a class implements the Cloneable interface, invoking
the clone method will automagically return a shallow
copy of the receiving object

• JVM allocates a new instance of the class of the
receiver – no constructor is invoked

• Fields of the clone have the same values as the
receiver object

• Contents of the fields are not cloned (clone will refer
to the same objects as the original)

21

Cloning Objects

In order to get a deep copy, clone should be overridden:

public class Grades implements Cloneable {
private double[] grades;

public Object clone() {
Grades grades2 = (Grades) super.clone();
grades2.grades = this.grades.clone();
return grades2;

}
}

Some notes:

• Invoking super.clone() creates a new object

• Arrays are cloneable (because they are Objects)

• Even though the overriden clone doesn’t declare that
it throws CloneNotSupportedException, it still has
to be caught

– Superclass (Object) may throw it – can’t change
the contract

22

Covariant Returns

In J2SE 1.5 methods may have covariant returns

• An overriding method may modify the return type of a
method to be a subclass of the overridden method’s
return type

From edu/pdx/cs410J/j2se15/CovariantReturns.java

static abstract class Animal implements Cloneable {
public abstract Object clone();

}

static class Human extends Animal {
public Human clone() {

return new Human();
}

}

static class Student extends Human {
public Student clone() {

return new Student();
}

}

23

Covariant Returns

If you were to decompile the class files you would see

• In Human’s class file the declared return type of clone
is still Object

– Binary compatibility with older code

• However, a call to Human.clone() is typed as
returning a Human

Have to be careful with using covariant returns with
third-party code

• If someone else subclassed the JDK 1.4 Human

class Professor extends Human {
public Object clone() {

return new Professor();
}

}

The code wouldn’t compile because Object is not a
subclass of Human

24

Covariant returns of internal classes

Very often, applications have “external” APIs and
“internal” APIs

• External APIs are for users (interfaces and abstract
classes)

package com.college;

public interface Classroom { ... }

public interface University {
public Classroom[] getClassrooms();

}

• Internal APIs contain implementation (classes)

package com.college.internal;

public class ClassroomImpl implements Classroom { ... }

public class UniveristyImpl implements University {
public ClassroomImpl[] getClassrooms() { ... }

}

If the internal classes return internal types, the
implementation code doesn’t have to cast

25

The java.io package

The classes and interfaces in the java.io package
provide a myriad of facilities for performing I/O operations.

• File class that represents a file

• Classes for byte-based I/O (Streams)

• Classes for text-based I/O (Readers/Writers)

26

java.io.File

File represents a file and can be created from a String
specifying its location or a File representing the directory
that a named file resides in.

• canWrite: Determines whether or not a File can be
written to

• delete: Deletes a File

• exists: Determines if a File exists

• getName: Returns the name of a File

• isDirectory: Determine if a File represents a
directory

• length: Returns the size of a File

• mkdir: Creates the directory that a File represents

• getParentFile: Returns the directory containing this
File as a File

27

Other File goodies

File has four important static fields

• separator/separatorChar: The string/character that
separates portions of a file spec (/ on UNIX)

• pathSeparator/pathSeparatorChar: The
string/character that separates directories in a path
(: on UNIX)

The java.io package contains two interfaces,
FileFilter and FilenameFilter, which have an accept
method that accepts/rejects a File based on some
criteria (e.g. its name).

The filters are used as arguments to File’s list and
listFiles methods.

• list(FilenameFilter) returns the names of all files
that are accepted by a FilenameFilter

• listFiles(FileFilter) returns all of the Files that
are accepted by a FileFilter

28

Example using Files and filters

package edu.pdx.cs410J.core;
import java.io.*; // Must be imported

public class DirectoryFilter implements FileFilter {
public boolean accept(File file) {

if (file.isDirectory()) {
return true;

} else {
return false;

}
}

}

package edu.pdx.cs410J.core;
import java.io.*;

public class JavaFilenameFilter
implements FilenameFilter {

public boolean accept(File dir, String fileName) {
if (fileName.endsWith(".java")) {

return true;
} else {

return false;
}

}
}

29

Example using Files and filters
package edu.pdx.cs410J.core;
import java.io.*;

public class FindJavaFiles {
private static FileFilter dirFilter;
private static FilenameFilter javaFilter;

private static void findJavaFiles(File dir) {
File[] javaFiles = dir.listFiles(javaFilter);
for (int i = 0; i < javaFiles.length; i++)

System.out.println(javaFiles[i].toString());
File[] dirs = dir.listFiles(dirFilter);
for(int i = 0; i < dirs.length; i++)

findJavaFiles(dirs[i]);
}

public static void main(String[] args) {
File file = new File(args[0]);
if (file.isDirectory()) {

dirFilter = new DirectoryFilter();
javaFilter = new JavaFilenameFilter();
findJavaFiles(file);

} else {
System.err.println(file +

" is not a directory");
}

}
}

30

Example using Files and filters

$ cd ~whitlock/public_html/src
$ java -cp ~/classes edu.---.FindJavaFiles .
./edu/pdx/cs410J/AbstractAirline.java
./edu/pdx/cs410J/AbstractFlight.java
./edu/pdx/cs410J/AirportNames.java
./edu/pdx/cs410J/ParserException.java
./edu/pdx/cs410J/lang/Animal.java
./edu/pdx/cs410J/lang/Ant.java
./edu/pdx/cs410J/lang/Bee.java
./edu/pdx/cs410J/lang/Bird.java
./edu/pdx/cs410J/lang/Cow.java
./edu/pdx/cs410J/lang/DivTwo.java
...
./edu/pdx/cs410J/family/TextDumper.java
./edu/pdx/cs410J/family/Parser.java
./edu/pdx/cs410J/family/TextParser.java
./edu/pdx/cs410J/family/AddPerson.java
./edu/pdx/cs410J/family/NoteMarriage.java

31

Why is the FileFilter interesting?

Instance of DirectoryFilter and JavaFilenameFilter
do not have any state (fields)

• An object encapsulates behavior

The responsibility of filtering files is partitioned between
the File API and your code:

• File knows how to apply the filter, but doesn’t know
the criteria under which to filter

• You know what you want to filter, but File takes care
of doing the grunt work

File delegates some of its work to the filter’s accept
method

32

Streams: I/O in bytes

The java.io package in JDK 1.0 contained two
hierarchies of classes for performing byte-based stream
I/O

FilterOutputStream

ByteArrayOutputStream ObjectOutputStream

FileOutputStreamPipedOutputStream

OutputStream

PrintStream BufferedOutputStreamDataOutputStream

InputStream

FilterInputStreamByteArrayInputStream StringBufferInputStream

LineNumberInputStreamDataInputStream PushBackInputStream

ObjectInputStream SequenceInputStream

BufferedInputStream

FileInputStream PipedInputStream

33

java.io.OutputStream

An OutputStream is an abstract class that writes bytes
and has the following methods:

• write: Writes bytes to the stream

• close: Closes the stream and releases any
resources associated with it

• flush: Sends all pending output to the stream

Some OutputStreams

• ByteArrayOutputStream: Writes to a byte array

• PipedOutputStream: Used with a
PipedInputStream to send data between threads

• ObjectOutputStream: Writes Objects to a stream

34

java.io.FileOutputStream

A FileOutputStream write bytes to a file

Constructed from a File or a file’s name, may throw a
FileNotFoundException

java.io.FilterOutputStream

A FilterOutputStream is built around another
OutputStream and performs some processing on its
bytes

• BufferedOutputStream: Buffers the data to be
written

• DataOutputStream: Writes Java’s primitive types in a
machine-independent format

• PrintStream: Writes data in a human-readable
format, doesn’t throw exceptions

– System.out and System.err are PrintStreams

– Has print and println methods for all types

– The hasError method determines if an error has
occurred

35

An example using OutputStreams

package edu.pdx.cs410J.core;
import java.io.*;

public class WriteDoubles {
static PrintStream err = System.err;

public static void main(String[] args) {
FileOutputStream fos = null;
try {

fos = new FileOutputStream(args[0]);
} catch(FileNotFoundException ex) {

err.println("** No such file: " + args[0]);
System.exit(1);

}
DataOutputStream dos = new DataOutputStream(fos);
for(int i = 1; i < args.length; i++) {

try {
double d = Double.parseDouble(args[i]);
dos.writeDouble(d);

} catch(NumberFormatException ex) {
err.println("** Not a double: " + args[i]);

} catch(IOException ex) {
err.println("** " + ex);
System.exit(1);

}
}

}
}

36

An example using OutputStreams

$ java -cp ~/classes edu.---.WriteDoubles \
doubles.out 1.23 2.34 3.45

If you were to cat doubles.out you would see garbage
because double.out is a binary file.

Behavior Delegation

writeToFile(byte[])

DataOutputStream

FileOutputStream

File

write(double)

write(byte[])

Object Composition (the “object onion”)

File

FileOutputStream

DataOutputStream

37

java.io.InputStream

InputStreams read bytes and have the following
methods:

• available: Returns the number of bytes that can be
read without blocking

• close: Closes the stream

• read: Reads bytes into a byte array. Returns the
number of bytes read, -1 if done.

• skip: Skips over some number of bytes in the
stream

Some InputStreams:

• ByteArrayInputStream: InputStream behavior over
a byte array

• PipedInputStream: Used with a
PipedOutputStream to send data between threads

• SequenceInputStream: Read from multiple
InputStreams in a given order

38

java.io.FileInputStream

FileInputStream is used for reading bytes from a file

Constructed from a File or a file’s name, may throw a
FileNotFoundException

java.io.FilterInputStream

A FilterInputStream is built around another
InputStream and processes the bytes that are read

• BufferedInputStream: Buffer the input read from
another InputStream

• DataInputStream: Used to read Java’s primitive
types

• PushbackInputStream: Allows you to push bytes
back into the stream

39

An example using InputStreams

package edu.pdx.cs410J.core;
import java.io.*;
public class ReadDoubles {

static PrintStream out = System.out;
static PrintStream err = System.err;
public static void main(String args[]) {

FileInputStream fis = null;
try {

fis = new FileInputStream(args[0]);
} catch(FileNotFoundException ex) {

err.println("** No such file: " + args[0]);
}
DataInputStream dis = new DataInputStream(fis);
while (true) {

try {
double d = dis.readDouble();
out.print(d + " ");
out.flush();

} catch(EOFException ex) {
break; // All done reading

} catch(IOException ex) {
err.println("** " + ex);
System.exit(1);

}
}
out.println("");

}
}

40

An example using InputStreams

$ java -cp ~/classes edu.---.ReadDoubles \
doubles.out

1.23 2.34 3.45

There’s no nice way of telling when a DataInputStream
is done – have to catch an EOFException – yuch!

Note the use of print and flush

41

Handling text I/O: Writers and Readers

Streams worked well for byte data, but working with text
data was awkward. JDK 1.1 introduced writers and
readers:

StringWriter PipedWriter

Writer

OutputStreamWriter

FileWriter

PrintWriter

CharArrayWriterBufferedWriter

FilterWriter

PipedReader

InputStreamReader

Reader

BufferedReader

FileReader

FilterReader

CharArrayReader

StringReader

42

java.io.Writer

Writer is an abstract class and writes characters to
some destination. It has methods such as

• write: Writes characters or strings

• close: Closes a Writer

• flush: Sends all pending text to the destination

Some Writers

• BufferedWriter: Buffers text before writing it to the
destination

• CharArrayWriter: Writes text to a char array

• FilterWriter: Abstract class for writing filtered text
streams

• PipedWriter: Used with a PipedReader to send text
between threads

• OutputStreamWriter: Converts chars to bytes and
sends them to an OutputStream

43

java.io.PrintWriter

A PrintWriter prints formatted text to another Writer or
an OutputStream

Like a PrintStream in that it has print and println
methods, but flushing is not automatic

java.io.StringWriter

StringWriter is a Writer that writes to a String

• getBuffer: Returns the StringBuilder written to

• toString: Returns the String being written to

java.io.FileWriter

A FileWriter writes text to a file

The file is specified by a File object or the file’s name

44

Example using Writers

package edu.pdx.cs410J.core;
import java.io.*;

public class WriteToFile {
private static PrintWriter err;

public static void main(String[] args) {
// Wrap a PrintWriter around System.err
err = new PrintWriter(System.err, true);

try {
Writer writer = new FileWriter(args[0]);

// Write command line arguments to the file
for(int i = 1; i < args.length; i++) {

writer.write(args[i]);
writer.write(’\n’);

}

// All done
writer.flush();
writer.close();

} catch(IOException ex) {
err.println("** " + ex);

}
}

}

45

Example using Writers

$ java -cp ~/classes edu.---.WriteToFile \
text.out This is some text

$ cat text.out
This
is
some
text

Note how we “wrapped” a PrintWriter around a
PrintStream

This abstraction helps simplify programming by hiding
what’s really going on

You don’t know what you’re writing to and, more
importantly, you don’t care!

46

java.io.Reader

Reader is an abstract class for reading character data
from a source

• read: Reads chars

• ready: Determines if a Reader has more text to read

• close: Closes a Reader

• skip: Skips some number of characters

Some Readers

• CharArrayReader: Reads from a char array

• FilteredReader: Abstract class for reading filtered
character streams

• PipedReader: Used with a PipedWriter to send text
between threads

• StringReader: Reads from a String

• InputStreamReader: Reads from an InputStream

• BufferedReader: Buffers the text it reads
– Has a readLine method

47

Example using Readers

package edu.pdx.cs410J.core;
import java.io.*;

public class ReadFromConsole {
public static void main(String[] args) {

InputStreamReader isr =
new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);
StringWriter text = new StringWriter();

while (true) {
try {

// Read a line from the console
String line = br.readLine();

if (line.equals("-1")) {
break;

} else {
text.write(line + " ");

}
} catch(IOException ex) {

System.err.println("** " + ex);
System.exit(1);

}
}
System.out.println(text);

}
}

48

Example using Readers

$ java -cp ~/classes edu.---.ReadFromConsole
Does
this
program
work?
-1
Does this program work?

49

Closing Streams

To free up system resources, streams (and
readers/writers) should be closed by invoking their close
method, often in a finally block

• It’s easy to forget to call close

• And close may throw an IOException

public void printTextFile(File file)
throws IOException {

BufferedReader br =
new BufferedReader(new FileReader(file));

try {
while (br.ready()) {

System.out.println(br.readLine());
}

} catch (IOException ex) {
System.err.println(ex);
throw ex;

} finally {
if (br != null) {

br.close();
}

}
}

50

Automatically Closing Streams

In Java 7, a new “try with resources” language feature
was added: A try statement can declare instances of
java.lang.AutoCloseable that are automatically closed
when the try block is exited

• The java.io.Closeable interface that is
implemented by most I/O classes subclasses
AutoCloseable

public void printTextFile(File file)
throws IOException {

try (BufferedReader br =
new BufferedReader(new FileReader(file))) {

while (br.ready()) {
System.out.println(br.readLine());

}

} catch (IOException ex) {
System.err.println(ex);

}
}

Now you don’t need to remember to close the reader

51

The utility classes

The java.util package contains a number of useful and
handy classes

• StringTokenizer, Vector, Hashtable, Stack

• The collection classes

• Date, Calendar, Locale

• System properties

52

java.util.StringTokenizer

A StringTokenizer is used to parse a String*

The constructor takes the String to be parsed and a
String whose characters delimit tokens (by default
whitespace delimits tokens)

• countTokens: Returns the number of tokens
remaining

• nextToken: Returns the next token in the String

• hasMoreTokens: Are there more tokens to be
returned?

*JDK 1.4 added a regular expression package to Java
(java.util.regex) that provides Perl-like regex

53

StringTokenizer example

package edu.pdx.cs410J.core;

import java.util.*;

public class ParseString {
/**
* The second <code>String</code> from the
* command line contains the parsing delimiters.
*/

public static void main(String[] args) {
String string = args[0];
String delimit = args[1];
StringTokenizer st;
st = new StringTokenizer(string, delimit);

while (st.hasMoreTokens()) {
String token = st.nextToken();
System.out.println("Token: " + token);

}
}

}

$ java -cp ~/classes edu.---.ParseString \
This,is,a:sentence. ,:

Token: This
Token: is
Token: a
Token: sentence.

54

The Original Collection Classes

The first Java release contained several classes for
collecting objects together:

• Vector: A growable, ordered collection of objects

• Stack: A Vector with push/pop

• Hashtable: Maps objects to objects

While these classes were very useful, they tended to be
bulky and slow.

55

Collection Classes

First of all, a hierarchy of interfaces in java.util

SetList

Collection

SortedSet

ListIterator

Iterator

SortedMap

Map

java.util.Collection groups objects together

• add: Adds an Object to a Collection

• contains: Determines if a Collection contains an
Object

• isEmpty: Determines if a Collection is empty

• iterator: Returns an Iterator over a Collection

• remove: Removes an Object from a Collection

• size: Returns the number of elements in a
Collection

56

java.util.List

The elements of a List are 0-indexed

• add: Adds an Object at a given index

• get: Returns the Object at a given index

• set: Sets the Object at a given index

• listIterator Returns a ListIterator over a List

java.util.Set

Sets are unordered and each element in a Set is unique

The equals method is used to determine the equality of
two Objects

java.util.SortedSet

A Set whose elements are ordered

Has methods like first and last

57

java.util.Iterator

An Iterator is used to iterate over the Objects in a
collection

• hasNext: Determines if there are any more elements
to be iterated over

• next: Returns the next element to be examined

• remove: Removes the element returned by next from
the underlying collection (not always implemented)

java.util.ListIterator

ListIterators can iterate in both directions

• add: Inserts an Object into the underlying list

• hasPrevious: Determines whether or not there is a
previous element in the list

• previous: Returns the previous element in the
underlying list

• nextIndex/previousIndex: Returns the index of the
element that would be returned by next/previous

58

java.util.Map

A Map maps key objects to value objects

• put: Creates a mapping from one Object to another
in a Map

– Invokes the key’s hashCode method

• get: Returns the value Object associated with a
given key Object

• containsKey: Determines if an Object is a key in the
mapping

• containsValue: Determines if an Object is a value
in the mapping

• keySet: Returns the keys in a Map as a Set

• values: Returns the values in a Map as a Collection

• entrySet: Returns the mappings in a Map as a Set

59

Abstract collection classes

HashSet AbstractSequentialList

LinkedList

TreeSet ArrayList Vector

AbstractSet AbstractList

AbstractCollection

List

CollectionSet

SortedSet

Stack

To ease the implementation of collection classes, several
abstract base classes are provided:

• java.util.AbstractCollection

• java.util.AbstractList: Backed by a random
access data structure (e.g. array)

• java.util.AbstractSequentialList: Backed by a
sequential access data structure (e.g. linked list)

• java.util.AbstractMap

• java.util.AbstractSet

60

Concrete implementations of collections

In the java.util package: Lists

• ArrayList: List backed by an array

• LinkedList: List back by a linked list, provides
stack-like behavior

• Vector: Implements the List interface

Maps

• HashMap: Constant-time get and put

• TreeMap: Sorted keys gives log(n) get and put

• IdentityHashMap: Key comparison based on identity
(==) instead of equals method

• LinkedHashMap: Keeps track of insertion order of
mappings

Sets

• HashSet: Set backed by a hash table

• TreeSet: SortedSet backed by a red-black tree

61

Example using collections

package edu.pdx.cs410J.core;
import java.util.*; // Must be imported!

public class Collections {

/** Prints the contents of a Collection */
private static void print(Collection c) {

Iterator iter = c.iterator();
while (iter.hasNext()) {

Object o = iter.next();
System.out.println(o);

}
}

public static void main(String[] args) {
Collection c = new ArrayList();
c.add("One");
c.add("Two");
c.add("Three");
print(c);
System.out.println("");

Set set = new HashSet(c);
set.add("Four");
set.add("Two");
print(set);

}
}

62

Working with our example

$ java -cp ~/classes edu.---.Collections
One
Two
Three

One
Three
Four
Two

Note order of ArrayList and that a HashSet contains
unique values

Abstraction is key: “Program to the interface”

63

Storing primitives in collection

Collections take Objects, but ints, doubles,booleans,
etc. are not Objects

Use the wrapper classes to create Objects that
represent the primitives:

package edu.pdx.cs410J.core;
import java.util.*;

public class WrapperObjects {
public static void main(String[] args) {

Collection c = new ArrayList();
c.add(new Integer(4));
c.add(new Double(5.3));
c.add(new Boolean(false));

System.out.println(c);
}

}

64

Autoboxing of primitive types

J2SE 1.5 provides automatic conversion of primitives to
wrapper objects in a procedure called “autoboxing”

• Autoboxing is applied to variable and field
assignments, the arguments to method calls, and
casting

package edu.pdx.cs410J.j2se15;
import java.util.*;

public class Autoboxing {
public static void main(String[] args) {

// Note that Integer.valueOf returns an Integer
int i = Integer.valueOf("123");

List list = new ArrayList();
list.add(i);
int j = (Integer) list.get(0);

}
}

65

Strongly typing collections

Originally, collections could only contain Objects

“Generic types” introduced in Java 5 allow you to specify
the type of objects that a collection may contain

• List<String> is pronounced “a list of strings”

• List<Long> longs = new ArrayList<Long>();

• Attempting to a non-Long to longs will caused a
compilation error:

– longs.add("This will not compile")

66

Generics add some complexity to the type
system

Even though a String is an Object, an
ArrayList<String> is not a List<Object>

Otherwise, you could do this:

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
lo.add(new Integer(42)); // Bad!

Because the compiler cannot determine that lo may
actually only contain Strings, the language disallows the
assignment.

67

Generics added some complexity to the
language

Being forced to include all of the generic types in a
variable declaration made for hard-to-read code:

List<Map<String, String>> data =
new ArrayList<Map<String, String>>();

Java 7 introduced the generics “diamond” that infers the
generic types on the left side of the assignment:

List<Map<String, String>> data = new ArrayList<>();

68

Iterating over collections

What happens when a collection is modified while it is
being iterated over?

package edu.pdx.cs410J.core;
import java.util.*;

public class ModifyWhileIterating {
public static void main(String[] args) {

List<String> list = new ArrayList<String>();
list.add("one"); list.add("two");

Iterator<String> iter = list.iterator();
while (iter.hasNext()) {

String s = iter.next();
if (s.equals("one")) {

list.add(0, "start");
}

}
}

}

$ java -cp ~/classes edu.---.ModifyWhileIterating
Exception in thread "main"

java.util.ConcurrentModificationException

69

Iterating over collections

Most Iterators are fail-fast

• If the underlying collection is modified (e.g. it size
changes), then subsequent calls to next will result in
a ConcurrentModificationException

• To safely modify an underlying collection, use
Iterator’s remove method

Fail-fast iterators have the benefit of immediately
detecting when they are out-of-date

• Iterator fails quickly instead of allowing potential
non-deterministic (or simply incorrect) behavior

However, you should not rely on a
ConcurrentModificationException always being
thrown:

• Replacing an item in a List (using put) may not
cause the iterator to fail

• Fail-fast behavior should only be used to detect bugs

70

Iterators and the enhanced for loop

The enhanced for loop syntax can be used with
Collections* as well as arrays

Collection coll = ...
for (Object o : coll) {

System.out.println(o);
}

See edu.pdx.cs410J.j2se15.EnhancedForLoop

This syntax is compact, but you cannot reference the
Iterator object

• Can’t remove an element from the Collection while
you’re iterating over it

*Actually, any object that implements the java.lang.Iterable inter-
face

71

Example working with Maps

package edu.pdx.cs410J.core;

import edu.pdx.cs410J.lang.*;
import java.util.*;

public class Farm {
/** Prints the contents of a Map. */
private static void print(Map<String, Animal> map) {

for (String key : map.keySet()) {
Animal value = map.get(key);
String s = key + " -> " + value;
System.out.println(s);

}
}

public static void main(String[] args) {
Map<String, Animal> farm = new HashMap<>();
farm.put("Old MacDonald",

new Human("Old MacDonald"));
farm.put("Bossie", new Cow("Bossie"));
farm.put("Clyde", new Sheep("Clyde"));
farm.put("Louise", new Duck("Louise"));

print(farm);
} }

72

Working with our Map example

$ java -cp ~/classes edu.---.Farm
Clyde -> Clyde says Baa
Bossie -> Bossie says Moo
Old MacDonald -> Old MacDonald says Hello
Louise -> Louise says Quack

Note that the order in which the elements were added to
the HashMap has nothing to do with the order in which the
Iterator visits them

Note also:

• Maps use the key object’s hashCode method to
determine the bucket in which to search

• Each element in the bucket’s collision chain is
compared to the key object using its equals method

So, if instances of your own classes are to be used as
keys in a Map

• You should override equals and hashCode

• Note that two objects that are equal must have the
same hash code

73

Comparing Objects

Objects that implement the java.lang.Comparable
interface are said to have a natural ordering

• Instances of String, Integer, Double, etc. are all
Comparable

• Comparable’s compareTo method compares the
receiver (x) object to another object (y)

– if x < y, a negative int should be returned

– if x == y, zero should be returned*

– if x > y, a positive int should be returned

• Comparable has a generic type that specifies the
class of object it can compare itself to

– Often you compare an object to another object of
its same type

Unless instructed otherwise, classes and methods that
sort objects (such as SortedSets) will respect their
natural ordering

*Should have the same semantics as the equals method

74

An example of Natural Ordering

Instances of Cereal are naturally sorted alphabetically by
their name

package edu.pdx.cs410J.core;
import java.util.*;

public class Cereal implements Comparable<Cereal> {
private String name;
private double price;

// <snip>

public int compareTo(Cereal c2) {
return this.getName().compareTo(c2.getName());

}

public boolean equals(Object o) {
if (o instanceof Cereal) {

Cereal other = (Cereal) o;
return this.getName().equals(other.getName());

}
return false;

}

public int hashCode() {
return this.getName().hashCode();

}

75

An example of Natural Ordering

public static void main(String[] args) {
SortedSet<Cereal> set = new TreeSet<Cereal>();
set.add(new Cereal("Total", 3.56));
set.add(new Cereal("Raisin Bran", 2.65));
set.add(new Cereal("Sugar Crisps", 2.38));

for (Cereal c : set) {
System.out.println(c);

}
}

}

Running the example...

$ java -cp ~/PSU/src/classes edu.---.Cereal
Raisin Bran $2.65
Sugar Crisps $2.38
Total $3.56

Natural ordering allows the author of the class to specify
how instances of that class are compared

76

Custom Sorted Collections

The java.util.Comparator interface is used to sort
objects by criteria other than their natural ordering

• A Comparator specifies a total ordering over a set of
objects

• A Comparator’s compare method compares two
objects and returns an int with the same meaning
as Comparable’s compareTo method

• A Comparator may or may not choose to respect the
equals method of the objects that it is comparing

• Comparator has a generic type that specifies the
type of object that is compared

Comparators can be used to create TreeSets and
TreeMaps

77

An example Comparator

Compares boxes of Cereal based on their price

package edu.pdx.cs410J.core;

import java.util.*;

public class CerealComparator
implements Comparator<Cereal> {

public int compare(Cereal o1, Cereal o2) {
double price1 = o1.getPrice();
double price2 = o2.getPrice();

if (price1 > price2) {
return 1;

} else if (price1 < price2) {
return -1;

} else {
return 0;

}
}

// Continued..

78

An example Comparator

public static void main(String[] args) {
Set<Cereal> set =

new TreeSet<Cereal>(new CerealComparator());
set.add(new Cereal("Cap’n Crunch", 2.59));
set.add(new Cereal("Trix", 3.29));
set.add(new Cereal("Count Chocula", 2.59));
set.add(new Cereal("Froot Loops", 2.45));

// Print out the cereals
for (Cereal c : set) {

System.out.println(c);
}

}
}

$ java -cp ~/classes edu.---.CerealComparator
Froot Loops $2.45
Cap’n Crunch $2.59
Trix $3.29

Why wasn’t Count Chocula printed out?

79

Helpful collection functions

The java.util.Collections class* contains helpful
static methods for working with collections

• max(Collection) returns the largest element in a
collection (uses natural ordering)

• nCopies(int, Object) returns a List contains n
copies of a given object

• singleton(Object) returns an immutable Set that
contains only the given object

• sort(List, Comparator) sorts a list using the given
comparator

• unmodifiableMap(Map) returns a Map that cannot be
modified that has the same contents as the input Map

– Attempts to modify the Map throw an
UnsupportedOperationException

*This class cannot be instantiated.

80

Helpful collection functions

The java.util.Arrays class contains static methods
for working with arrays

• asList(Object[]) returns a List that is backed by
a given array

– Changes to the list will “write through” to the
backing array

• binarySearch(int[], int) returns the array index
at which the given int occurs

• equals(int[], int[]) returns whether or not two
arrays have the same contents

• fill(int[], int) populates each element of an
array with the given value

• sort(int[]) sorts an array in-place

Each of these methods is overloaded to operate on the
different kinds of arrays (double[], Object[], etc.)

81

Type-safe enumerations

J2SE 1.5 provides an enum facility* that is like a class, but
has a set of pre-defined instances (“constants”)

• The enum is similar to a class in that it has its own
namespace (can be referenced via an import
static)

• Unlike static final fields, the values of references
are not compiled into the class

– Can change enum values without having to
recompile all of your code

• Have useful toString, equals, and hashCode
methods (can be used with Collections)

• enums can implement interfaces, are Serializable
and Comparable, and can be used in a switch
statement

• Compile-time type safety (constants are no longer
just ints)

*Based on Item 21 from Joshua Bloch’s Effective Java book

82

An example of a type-safe enumeration

package edu.pdx.cs410J.j2se15;
import java.util.*;

public class EnumeratedTypes {
private enum Day { SUNDAY, MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

private static String enEspanol(Day day) {
switch (day) {
case SUNDAY:

return "Domingo";
case MONDAY:

return "Lunes";
case TUESDAY:

return "Martes";
case WEDNESDAY:

return "Miercoles";
case THURSDAY:

return "Jueves";
case FRIDAY:

return "Viernes";
case SATURDAY:

return "Sabado";
default:

String s = "Unknown day: " + day;
throw new IllegalArgumentException(s);

}
}

83

Type-safe enumerations

public static void main(String[] args) {
SortedSet<Day> set = new TreeSet<Day>();
set.add(Day.WEDNESDAY);
set.add(Day.MONDAY);
set.add(Day.FRIDAY);

System.out.print("Sorted days: ");
for (Day day : set) {

System.out.print(day + " ");
}

System.out.print("\nEn espanol: ");
for (Day day : set) {

System.out.print(enEspanol(day) + " ");
}
System.out.println("");

}

$ java -cp ~/classes edu.---.EnumeratedTypes
Sorted days: MONDAY WEDNESDAY FRIDAY
En espanol: Lunes Miercoles Viernes

84

Type-safe enumerations implementation

enums are compiled into Java inner classes

• All enums extend the java.lang.Enum class that
provides methods like equals, hashCode, and
ordinal

• The only non-final method of Enum is toString –
the rest is taken care of for you

The compiler adds two interesting static methods to the
enum class:

• values returns an array of each enumeration
instance

for (Coin coin : Coin.values()) {
System.out.println(coin);

}

• valueOf return the enumerated instance with the
given name

Coin dime = Coin.valueOf("DIME");

85

Type-safe enumeration with added behavior

You can also attach additional behavior to enumerated
types:

package edu.pdx.cs410J.j2se15;

public class NumericOperators {
private abstract enum Operation {

PLUS {
double eval(double x, double y) {

return x + y;
}
char getSymbol() { return ’+’; }

};

MINUS {
double eval(double x, double y) {

return x - y;
}
char getSymbol() { return ’-’; }

};

// Method declarations follow enumerations
abstract double eval(double x, double y);
abstract char getSymbol();

}

86

Type-safe enumeration with added behavior

public static void main(String[] args) {
Operation[] ops = { Operation.PLUS,

Operation.MINUS, Operation.TIMES,
Operation.DIVIDE };

for (Operation op : ops) {
System.out.println("5 " + op.getSymbol() +

" 2 = " + op.eval(5, 2));
}

}
}

$ java -cp ~/classes edu.---.NumericOperators
5 + 2 = 7.0
5 - 2 = 3.0
5 * 2 = 10.0
5 / 2 = 2.5

87

java.util.Properties

Properties instances map Strings to Strings and are
usually used to store configuration information about the
JVM or an application.

• setProperty: Set a named property to a given value

• getProperty: Returns the value of a property with a
given name

• list: Prints the contents of the Properties to a
PrintStream

• load: Loads properties from some source (e.g. a file)

• store: Stores properties in a format suitable for use
with load

Properties implements the Map interface

• Note that put will not complain if you add a
non-String property

88

The JVM system properties

The JVM maintains a Properties object that contains
various JVM settings known as system properties

System properties may be set with the -D option to java

Accessing the JVM’s system properties:

• System.getProperties: Returns the system’s
Properties instance

• System.getProperty: Returns the value of a given
named system property

Wrapper classes have static “get” methods that decode
system properties as a given primitive type

• Integer.getInteger, Boolean.getBoolean

89

Example using system properties

package edu.pdx.cs410J.core;

import java.util.*;

public class SystemProperties {
/**
* Print out the system properties and check
* to see if the "edu.pdx.cs410J.Debug"
* property has been set on the command line.
*/

public static void main(String[] args) {
// Print out some properties
Properties props = System.getProperties();
props.list(System.out);

// Is the "edu.pdx.cs410J.Debug" property set?
String name = "edu.pdx.cs410J.Debug";
boolean debug = Boolean.getBoolean(name);
System.out.print("\nAre we debugging? ");
System.out.println((debug ? "Yes." : "No."));

}
}

90

Example using system properties

$ java -Dedu.pdx.cs410J.Debug=true -cp ~/classes \
edu.pdx.cs410J.core.SystemProperties

-- listing properties --
java.vm.version=1.5.0-b64
java.vm.vendor=Sun Microsystems Inc.
path.separator=:
java.vm.name=Java HotSpot(TM) Client VM
user.dir=/u/whitlock/public_html/src
java.runtime.version=1.5.0-b64
os.arch=sparc
java.io.tmpdir=/var/tmp/
line.separator=

os.name=SunOS
java.class.version=49.0
os.version=5.9
user.home=/u/whitlock
edu.pdx.cs410J.Debug=true <--
java.specification.version=1.5
user.name=whitlock
java.class.path=/u/whitlock/jars/examples.jar
java.home=/pkgs/jdk1.5/jre
user.language=en
file.separator=/

Are we debugging? Yes.

91

java.util.Date

The Date class represents a date and a time as the
number of milliseconds since midnight on January 1,
1970.

• after Determines if a Date occurs after another

• before

• getTime Returns the aforementioned number of
milliseconds

A Date instantiated with the zero-argument constructor
represents the current date/time.

Support for internationalization and multiple day/time
formats complicates Java’s day/time facility.

• java.util.Calendar

• java.text.DateFormat

See edu.pdx.cs410J.core.AroundTheWorld

92

java.util.Calendar

A Calendar is used to get information (e.g. the day of the
week) about a Date.

Calendar has a number of static int fields

• Info about days: DAY OF MONTH, DAY OF YEAR, YEAR

• Info about time: HOUR, MINUTE, SECOND

Calendar instance methods:

• setTime: Sets the Date for a Calendar

• add: Adds to one of a date’s fields (e.g. MONTH)

• get: Returns the value of a date’s field

All of Calendar’s constructors are protected. How do we
get a Calendar to work with?

Calendar’s static getInstance method returns a
Calendar instance.

93

An example using Date and Calendar

package edu.pdx.cs410J.core;

import java.util.*;

public class Today {
public static void main(String[] args) {

Date today = new Date();
Calendar cal = Calendar.getInstance();
cal.setTime(today);

int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK);
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR);
int weekOfMonth =

cal.get(Calendar.WEEK_OF_MONTH);

StringBuilder sb = new StringBuilder();
sb.append("Today is " + today + "\n");
sb.append("It’s been " + today.getTime() +

"ms since the epoch.");
sb.append("\nIt is the " + dayOfWeek +

"th day of the week \nand the " +
dayOfYear + "th day of the year. ");

sb.append("\nWe are in the " + weekOfMonth +
"th week of the month.");

System.out.println(sb.toString());
}

}

94

Working with our Date and Calendar
example

$ java -cp ~/classes edu.---.Today
Today is Thu Jul 28 15:31:11 PDT 2005
It’s been 1122589871595ms since the epoch.
It is the 5th day of the week
and the 209th day of the year.
We are in the 5th week of the month.

The fact that the representation of a date (Date) is
separate from how it is accessed (via a Calendar) makes
Java’s time facility more modular.

Different Calendars can treat time differently

• Gregorian calendar

• Hebrew calendar

• Chinese calendar

95

java.text.DateFormat

The DateFormat class is used to format Dates into
Strings (format) and convert Strings into Dates
(parse).

• DateFormat.SHORT: 6/17/94 9:37 PM

• DateFormat.MEDIUM: Jun 17, 1994 9:37:45 PM

• DateFormat.LONG: June 17, 1994 9:37:45 PM PDT

• DateFormat.FULL: Friday, June 17, 1994 9:37:45 PM
PDT

Like Calendar, you use static methods to get an
instance of DateFormat

• getTimeInstance: Returns a DateFormat for
formatting/parsing a time (9:37 PM)

• getDateInstance: Returns a DateFormat for
formatting/parsing a date (6/17/94)

• getDateTimeInstance: Returns a DateFormat for
formatting/parsing both a date and time (6/17/94 9:37
PM)

• setLenient: Sets how strict parsing should be

96

Working with DateFormat

package edu.pdx.cs410J.core;

import java.text.*;
import java.util.*;

public class FormattedDate {
public static void main(String[] args) {

// Glue args together into one String
StringBuilder sb = new StringBuilder();
for(int i = 0; i < args.length; i++) {

sb.append(args[i] + " ");
}

Date date = null;
int f = DateFormat.MEDIUM;

DateFormat df =
DateFormat.getDateTimeInstance(f, f);

try {
date = df.parse(sb.toString().trim());

} catch(ParseException ex) {
System.err.println("** Bad date: " + sb);
System.exit(1);

}

// Continued...

97

Working with DateFormat

f = DateFormat.SHORT;
df = DateFormat.getDateTimeInstance(f, f);
System.out.println("SHORT: " + df.format(date));

f = DateFormat.MEDIUM;
df = DateFormat.getDateTimeInstance(f, f);
System.out.println("MEDIUM: " + df.format(date));

f = DateFormat.LONG;
df = DateFormat.getDateTimeInstance(f, f);
System.out.println("LONG: " + df.format(date));

f = DateFormat.FULL;
df = DateFormat.getDateTimeInstance(f, f);
System.out.println("FULL: " + df.format(date));

}
}

$ java -cp ~/classes edu.---.FormattedDate \
Jun 17, 1994 9:37:45 PM

SHORT: 6/17/94 9:37 PM
MEDIUM: Jun 17, 1994 9:37:45 PM
LONG: June 17, 1994 9:37:45 PM PDT
FULL: Friday, June 17, 1994 9:37:45 PM PDT

98

A more flexible format: SimpleDateFormat

java.text.SimpleDateFormat lets you specify a String
that specifies the format of the date to parse/format

Symbol Meaning Presentation
G era Text
y year Number
M month in year Text & Number
d day in month Number
h hour in am/pm (1-12) Number
H hour in day (0-23) Number
m minute in hour Number
s second in minute Number
S millisecond Number
E day in week Text
D day in year Number
F day of week in month Number
w week in year Number
W week in month Number
a am/pm marker Text
k hour in day (1-24) Number
K hour in am/pm (0-11) Number
z time zone Text
’ escape for text Delimiter
’’ single quote Literal

99

Using SimpleDateFormat

package edu.pdx.cs410J.core;

import java.text.*;
import java.util.*;

public class SimpleDate {
public static void main(String[] args) {

DateFormat df = new SimpleDateFormat(args[0]);
Date now = new Date();
System.out.println(df.format(now));

}
}

Alphabetical characters must be escaped:

$ java edu.---.SimpleDate "E M d, y G ’at’ h:mm a z"
Sun 4 29, 01 AD at 3:59 PM PDT

The more times a symbol occurs in the format string, the
more verbose the format:

$ java edu.---.SimpleDate \
"EEEE MMM d, yyyy G ’at’ h:mm a zzzz"

Sunday Apr 29, 2001 AD at 3:59 PM Pacific Daylight Time

100

Many kinds of DateFormats

Again we’ve seen how the presentation of a date
(DateFormat) is separated from the date itself (Date).

This mechanism allows us to display dates in a variety of
ways.

The java.util.Locale class represents a certain
language/country combination.

There is a DateFormat for each Locale that parses and
formats dates according to the local convention.

For instance, in the FRANCE locale, a date is printed as:

samedi 30 septembre 2000 17 h 01 GMT-07:00

101

Variable-length argument lists

J2SE 1.5 introduced language syntax for specifying a
variable number of arguments (“varargs”) to a method
(think printf in C)

• Prior to this feature, methods had to be overloaded to
take one, two, three, etc. arguments, or you had to
pass in an array

• Now there is a special keyword ... that indicates
that there are multiple arguments

• The vararg is treated like an array in the method body

– Varargs have a length and are zero-indexed

• A method can only have one variable-length
argument list

– Only the last argument to a method can have
variable length

• The argument to Arrays.asList has variable
arguments

List l = Arrays.asList("One", "Two", "Three");

102

Variable-length argument lists

An example of a variable-length argument list:

package edu.pdx.cs410J.j2se15;

public class VarArgs {

private static void printSum(String header,
int... ints) {

int sum = 0;
for (int i : ints) {

sum += i;
}
System.out.print(header);
System.out.println(sum);

}

public static void main(String[] args) {
printSum("1+2+3 = ", 1, 2, 3);
printSum("1+2+3+4+5 = ", 1, 2, 3, 4, 5);
printSum("2+4+6+8 = ", 2, 4, 6, 8);

}
}

103

J2SE 1.5 text formatting

One of the deficiencies of Java’s text formatting
capabilities was that you had to invoke print (or
StringBuilder.append) multiple times, or you had to
create an Object array to pass to a
java.text.MesageFormat’s format method

Variable-length argument lists allow the Java API to
provide C-style printf and scanf behavior

• A printf method has been added to
java.io.PrintStream

• Most of the formatting work is done by the
java.util.Formatter class

• Formatter supports formatting the primitive types
(int, etc.), Strings, Calendars, etc.

• A new method String.format() offers the
functionality of sprintf (formatting to a String)

• The format is a superset of what is offered in C, but
attempts to convert incompatible types (a Calendar
to an int) will result in an exception being thrown

104

Format string syntax

The general form of the format string is:

%[argument$][flags][width][.precision]conversion

• The argument is the index of the argument in the
varargs list

• flags are characters that modify the output format

• width is the minimum number of characters that
should be written for the argument

• precision usually restricts the number of characters
that should be written (dates and times do not have a
precision)

• conversion is a character that indicates how the
argument should be formatted

105

Format string syntax

This table summarizes the various conversion characters

b “boolean” true or false
h “hashcode (arg.hashCode() in hexadecimal)
s “string” toString is invoked
c “character”
d “decimal integer”
o “octal”
x “hexadecimal”
e “floating point” (in scientific notation)
f “floating point”
g “floating point” (scientific for large exponents)
a “floating point” (significant and exponent)
t “time” (data and time)
% literal percent
n “newline” (platform-specific line separator)

106

Formatting times

The t conversion character can be followed by one of the
following (like POSIX strftime):

H “Hour of day” (00 - 23)
I “12-hour hour” (01 - 12)
k “24-hour hour” (0 - 23)
l “12-hour hour” (1 - 12)
M “minute” (00 - 59)
S “second” (00 - 60)
L “millisecond” (000 - 999)
N “nanosecond” (000000000 - 999999999)
p am/pm
T AM/PM
z RFC 822 time zone offset (e.g. -0800)
Z String time zone (PDT)
s Seconds since epoch
E Milliseconds since epoch

107

Formatting dates

The t conversion character can be followed by one of the
following (like POSIX strftime):

B “full month” (e.g. January)
b “short month” (e.g. Jan)
A “full day of week” (e.g. Sunday)
a “short day of week” (e.g. Sun)
Y “four-digit year”
y “two-digit year”
j “day of year”
m “two-digit month”
d “two-digit day of month”
e “day of month” (one or two digits)

The following flags can be applied to format strings:

- “left justified”
^ “upper case”
“alternate form”
+ numerics will always have a sign

positive numerics have leading space
0 numerics are zero-padded
, numerics have grouping separators
(negative numerics are enclosed in parentheses

108

An example of using formatting

package edu.pdx.cs410J.j2se15;

import java.io.PrintStream;
import java.util.Calendar;

public class Formatting {
public static void main(String[] args) {

PrintStream out = System.out;
out.printf("%s%n", "Hello World");

Calendar today = Calendar.getInstance();
out.printf("Today’s date is: %tm/%td/%tY%n",

today, today, today);
out.printf("The current time is: %tl:%tM %tp%n",

today, today, today);

out.printf("%f/%.2f = %f%n", 2.0, 3.0, (2.0/3.0));

for (int i = 0; i < 3; i++) {
out.printf("%5s%5s%5s%n", i, i+1, i+2);

}

out.printf("%-10s%s%n", "left", "right");
}

}

109

Summary

Java’s standard class libraries provide a vast array of
functionality

• Basic language features: String, StringBuilder,
Class, “wrapper” classes, Math

• Facilities for performing byte-based or
character-based I/O: File, OutputStream,
PrintStream, FileWriter, BufferedReader

• Handy utilities: Date, Calendar, BitSet,
StringTokenizer

• Collection classes: Vector, List, Iterator,
HashMap, Comparator

110

