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Abstract—This paper proposes a general design guideline 
for the voltage regulator (VR) to achieve adaptive voltage 
position (AVP). All existing control methods are covered 
for different kinds of output filter capacitors. Based on the 
small-signal model analysis, the output impedance and 
system control bandwidth are discussed. Following the 
proposed design guidelines, simulation and experimental 
results demonstrate very good VR transient response. 
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I.  INTRODUCTION 
It is perceived that Moore’s Law will prevail at least for the 

next decade with the continuous advancement of processing 
technologies for integrated circuits. According to Intel’s 
roadmap, over one billion transistors will be integrated in one 
processor by the year 2010; the processor’s clock speed will 
approach 15 GHz; the core static currents will increase up to 
150A; the dynamic current slew rate will rise up to 120A/ns; 
and the core voltage will reduce to 0.8V [1-2]. The rapid 
advancement of processor technology has posed stringent 
challenges to power management and power delivery. 

One pressing issue is the dynamic voltage regulation of the 
voltage regulator (VR). Many output capacitors have already 
been used to reduce the voltage spikes that occur during the 
transient period. Increasing the number of capacitors to meet 
the even higher transient requirement in the future is no longer 
a suitable solution because of size and cost issues. One way to 
alleviate this problem is based on adaptive voltage position 
(AVP) control [3-4]. The basic idea is to control the output 
voltage level so that it is slightly higher than the minimum 
value at full load, and a little lower than the maximum value at 
light load. As a result, the entire voltage tolerance window can 
be used for the voltage jump or drop during the transient 
period. Fig. 1 shows the transient comparison between non-
AVP and AVP designs. It is very clear that the AVP design 
allows the use of fewer output capacitors, and hence reduces 
the VR cost. A side benefit of the AVP control is that the VRM 
output power at full load is degraded, which greatly facilitates 

the thermal design. Also, the AVP design is indispensable for 
meeting the processor load line specifications [3]. 

The AVP is related to the steady-state operation of the 
VRM. If the transients between the two steady-state stages 
have no spikes and no oscillations, as is the situation shown in 
Fig. 2 (a), the AVP design is optimal. The transient can take 
advantage of the entire voltage tolerance window. The 
comparison between the current and the related output voltage 
waveforms reveals that the VRM equals an ideal voltage source 
in series with a resistor RO. 
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Fig. 2 (b) shows the equivalent circuit of the VRM. 
 

 
Figure 1.  Transient without and with AVP designs.  

 
Figure 2.  (a) The ideal AVP design and (b) the equivalent circuit of the 

VRM. 

Now it is very clear that the constant resistive output 
impedance design for the VRM is an optimal design for the 
transient response. Actually, improving the dynamic regulation 
of a converter based on the output impedance consideration is 
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an old concept [5-8]. However, not every converter can achieve 
constant resistive output impedance. How to apply this concept 
to VR for AVP design is not clear. This paper clarifies these 
issues for all kinds of existing control methods. Section II 
classifies the existing control methods into two. By comparing 
their small signal models, a general way is derived to design 
the AVP. Section III discusses the compensator design for 
different control methods with different kinds of output 
capacitors. Simulation and experimental results demonstrate 
very good AVP transient response. 

 

II. A GENERAL DESIGN GUIDELINE 
The multiphase buck converter is widely adopted for the 

VR design. The small-signal model of the multiphase buck 
converter can be simplified as a single-phase buck converter in 
continuous-current mode (CCM) [9]. As a result, a simple 
synchronous buck converter is used here for analysis.  

A. Existing Control Methods 
Power management IC companies have developed many 

controllers to achieve AVP function. Basically, all the control 
methods can be classified as current-mode control or active-
droop control. Fig. 3(a) shows the current-mode control 
scheme, and Fig. 3(b) shows the active-droop control scheme. 
The equivalent series inductor (ESL) of the output capacitor is 
ignored here since the high-frequency ceramic capacitors in 
parallel greatly reduce its effect. In the current-mode control, a 
finite DC gain is designed for the voltage-loop compensator 
Gcv to achieve AVP by introducing a steady-state output 
voltage error. In the active-droop control, the current 
information is injected into the feedback voltage information, 
so that the AVP can be realized with an infinite DC gain 
compensator design for Av. That is why this control method is 
also referred to as current-injection control. The design 
methods to achieve AVP for these two kinds of controls have 
already been discussed by the authors [10-11]. However, the 
designs are based only on electrolytic capacitors (the Oscon 
capacitor). This paper develops a general way to analyze the 
two kinds of control methods, and this approach can be 
extended to all kinds of output filter capacitors. 

Based on the multi-loop analysis method [12], Fig. 4 shows 
the small-signal block of the two control schemes with the 
power stage. Zo is the power stage open-loop output 
impedance. Gvd is the transfer function of output voltage vo to 
the duty cycle d. Gii is the transfer function of inductor current 
iL to load current io. Gid is the transfer function of the inductor 
current to the duty cycle. Fm represents the comparator effect. 
In Fig. 3(a), Gci is the current-loop compensator transfer 
function, and Gcv is the voltage-loop compensator transfer 
function. In Fig. 3(b), Ai represents the current-sensing 
function. Av is the feedback compensator transfer function.  
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RL includes the DC resistance of the inductor Lo, the 
conduction resistance Rds-on of the MOSFETs, and the parasitic 
resistance of the traces. 
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Figure 3.  Output impedance analysis using a buck converter: (a) current-

mode control and (b) active-droop control. 
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Figure 4.  The small-signal blocks: (a) current-mode control and (b) active-
droop control. 
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From Fig. 4, it is very clear that both controls are two-loop 
feedback systems. Table I lists the system current loop Ti and 
voltage loop Tv. In the expression of Ti, He(s) models the 
current sampling effect: 
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In current-mode control, the current loop is inside the 
voltage loop. The voltage-loop compensator requires a finite 
DC gain to achieve AVP control, and the designs of Gci and Gcv 
can be separated.  In active-droop control, the current and 
voltage are fed back, and then the two are added together. The 
compensator design of Av influences both the current and 
voltage loops, and it needs an infinite DC gain. Thus, the 
design for the active-droop control seems more complex. 
However, a comparison between Figs. 4 (a) and (b) shows that 
the two control methods are very similar. When Gcv=Av and 
Gci=Ai×Av, these two small-signal blocks are equivalent. As a 
result, the active-droop control is a special case of current-
mode control. The AVP design for these two control methods 
should follow the same principle. 

TABLE I.  THE CURRENT LOOP AND VOLTAGE LOOP FOR THE TWO 
CONTROL METHODS. 

 Current-Mode Control Active-Droop Control 
Current 
Loop )(sHGFGT eidMcii ⋅⋅⋅=  )(sHGFAAT eidMvii ⋅⋅⋅⋅=  

Voltage 
Loop vdMcvv GFGT ⋅⋅=  

vdMvv GFAT ⋅⋅=  

 

B. The Basic Design Idea 
The design for the current-mode control has already been 

discussed before to realize a stable system [13-15]. A high-
bandwidth current-loop design can simplify the buck converter 
from a two-order system to a one-order system. When the 
current loop is closed and the voltage loop is open, the buck 
converter operates as an ideal current source, as shown in Fig. 
5. Its output impedance can be approximately represented as: 
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When the voltage loop is closed, the closed-loop output 
impedance is: 
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T2 is defined as the system control loop in a multi-loop 
controlled system [12]. 

With a logarithm union, the closed-loop output impedance 
is: 
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Figure 5.  The simplified small-signal model with current-mode control. 

For the output impedance Zoi, the corner frequency is just at 
the capacitor ESR zero ωESR. Following the constant output 
impedance design concept [10], it is easy to derive that the 
system loop T2 should be designed with a -20dB/dec slope and 
a bandwidth (ωc) at ωESR. Fig. 6 shows this clearly.  

However, for different kinds of output capacitors, the ESR 
zeros is different. Table II lists three major kinds of output 
capacitors in the practical VR applications. For the design with 
Oscon capacitors, 200~300KHz switching frequencies are 
sufficient to achieve the 16 KHz bandwidth. Further increasing 
the bandwidth cannot help the transient response, because the 
impedance beyond ωc determines the transient voltage spikes. 
Fig. 7 (a) shows this condition. This is the critical control 
bandwidth concept proposed before by the authors [16]. The 
design with ESRE capacitors can still achieve constant output 
impedance, but it needs higher switching frequencies to realize 
the 40 KHz control bandwidth so that to take advantage of the 
small capacitor size. For the ceramic capacitor, it is impossible 
to push the bandwidth to 1.1 MHz with a reasonable efficiency. 
However, as long as the output impedance is constant within 
the control bandwidth, and the impedance beyond the 
bandwidth is smaller than that in the lower frequency range, 
AVP can still be achieved. Fig. 7 (b) shows this condition, and 
the simulation results in Fig. 8 show a good AVP design with 
the ceramic capacitors. In this case, the output impedance 
within the control bandwidth determines the AVP. 
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Figure 6.  Constant output impedance design with ωc=ωESR. 
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At the bandwidth frequency point (ωc), )180(12 θ+°−∠=T , 
where θ is the phase margin. In order to make sure the above 
analysis is still effective at ωc, the following relationship 
should be satisfied: 

11 2 >+ T . 

It is easy to derive that the phase margin θ must be larger 
than 60° based on the vector analysis in Fig. 9. Otherwise, 
there will be a bump at ωc in the closed-loop impedance curve, 
which will cause extra transient voltage spikes. For a system 
loop T2 designed with a -20dB/dec, there is no such problem 
because the phase margin is about 90°. 

Consequently, for all kinds of output capacitors, the desired 
system loop T2 is: 

TABLE II.  THE ESR ZERO OF DIFFERENT KINDS OF OUTPUT CAPACITORS. 

VR Output Capacitors Size (mm3) ESR Zero (ωESR) 

Oscon (820µF/12Ω) φ102×10.5 16KHz 

ESRE (270µF/15Ω) 7.3×4.3×4.2 40KHz 

Ceramic (100µF/1.5Ω) 4.5×3.2×3.1 1.1MHz 
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Figure 7.  Output impedance with: (a) ωc>ωESR and (b) ωc<ωESR. 

 
Figure 8.  Simulation result for AVP design with ceramic capacitors. 
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Figure 9.  θ>60° for |1+T2|>1. 
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The following items summarize the AVP design guidelines: 
• A stable current-loop design with a high bandwidth 

simplifies the buck converter into a one-order system. 
• A system loop T2 deigned with -20dB/dec slope, a 

bandwidth equal to or smaller than the capacitor ESR 
zero, and a phase margin over 60°. This is necessary to 
achieve a constant output impedance design within the 
control bandwidth. 

• 
oooc iVZ ∆∆≤ / is needed to meet the transient response 

requirement. 
Based on these guidelines, it is easy to design the 

compensators for different control methods with different kinds 
of output capacitors. 

 

III. COMPONSATOR DESIGN 
If the current loop bandwidth ωci is much larger than the 

system bandwidth ωc, (12) can be simplified as: 
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Table I shows the relationship between the compensator 
transfer function between the current-loop and voltage-loop 
transfer functions. Then from (14) and (15), the required 
compensator design can be derived to achieve the desired 
system loop T2. Consequently, AVP design can be realized 
based on the constant output impedance design within the 
control bandwidth.  

The following analysis and modeling are based on a 12V- 
to-1.5V/25A VR design with both Oscon and ceramic output 
capacitors in Table II. Both cases the capacitor numbers are 
four. The output chock follows the critical inductance design in 
[9, 10].  

A. Current-Mode Control 
For current-mode control, (15) becomes  
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From (14) and (16), we can derive the desired compensator 
design as: 
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Approximately, we can put a zero at half of the switching 
frequency to simplify the compensator design. 
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There is some physical meaning for the compensator 
design. A pole compensates the output capacitor ESR zero, and 
a zero compensates the double right-half-plane zero introduced 
by the current sample and hold effect. The finite DC gain 
design is to adjust the steady-stage output error to achieve the 
AVP.  
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Fig. 10 shows the outer-loop T2 and output impedance with 
the proposed compensator design for the current-mode control. 
They approximate very well to the desired designs for both 
applications with Oscon and ceramic capacitors.    
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Figure 10.  Outer-loop T2 and output impedance in the current-mode control: 
(a) with Oscon output capacitors, and (b) with ceramic output capacitors. 

B. Active-Droop Control 
For active-droop control, (15) becomes 
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Normally, Ai is designed with the specified Rdroop, which is 
the DC output impedance. If the control bandwidth is lower 
than the ESR zero, (19) can be further simplified as: 
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which is exactly the desired outer-loop design. And the 
compensator design Av(s) has no impact as long as it can meet 
the design assumption: a current loop with high control 
bandwidths.   

Then the compensator design for the active-droop control is 
relative simple. The current-loop design guideline in the 
average current-mode control can be applied here:  
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An integrator is used to eliminate the steady-state error. A 
zero is put to compensate the system double pole. A pole at 
high frequency range can be used to further attenuate the 
switching noise, but it can be omitted to simplify the 
compensator design. The K is designed to achieve a high 
current loop bandwidth ωci. 

For ωc<<ωESR, the K can be expressed as:  
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Fig. 11 shows the outer-loop T2 with the proposed 
compensator design for the active-droop control. They 
approximate very well to the desired design in (14) for both 
designs with Oscon and ceramic capacitors. The deviation at 
very high frequencies has little impact for the system 
performance. 

For the design with Oscon capacitors, it is very interesting 
that all the three loops (Ti, Tv and T2) have almost the same 
control bandwidths at the capacitor ESR zero. Fig. 11(b) shows 
this clearly.  

 

IV. EXPERIMENTAL RESULTS 
A two-phase interleaved buck converter is designed for a 

12V-to-1.5V/25A VR to verify the theoretical analysis for the 
current-mode control. The controller ISL6560 from Intersil is 
used. Fig. 12 shows the output current and voltage during a 
transient response. Fig. 12(a) is for the Oscon capacitor design. 
Four Oscon capacitors (in Table II) are used in parallel as the 
bulk output filter capacitor Co. A switching frequency of 300 
KHz is good enough to achieve the 16KHz bandwidth, and in 
the same time the VRM can achieve high efficiency. The 
output filter inductor in each phase is set as 1 µH. Fig. 12(b) is 
for the ceramic capacitor design. Six ceramic capacitors (in 
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Table II) are used in parallel as the bulk output filter capacitor 
Co. A switching frequency of 650 KHz is selected to achieve a 
bandwidth of 96 KHz. The output filter inductor in each phase 
is set as 150 nH. Also, 16 decoupling capacitors (22µF) are 
used in the output to attenuate the high di/dt effect. 
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Figure 11.  Outer-loop T2 in the active-droop control: (a) with Oscon output 
capacitors, and (b) with ceramic output capacitors. 
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Figure 12.  The transient response with current-mode control: (a) with Oscon 
capacitors and (c) with ceramic capacitors. 

A four-phase interleaved buck converter is designed for a 
12V-to-1.5V/90A VR to verify the theoretical analysis for the 
active-droop control. The controller ISL6561 from Intersil is 
used. Fig. 13 shows the output current and voltage during a 
transient response. Fig. 13(a) is for the Oscon capacitor design. 
Ten Oscon capacitors (560µF/7mΩ for each one) are used in 
parallel as the bulk output filter capacitor Co. The switching 
frequency is 300 KHz. The output filter inductor in each phase 
is set as 300 nH. Fig. 12(b) is for the ceramic capacitor design. 
Four ceramic capacitors (in Table II) are used in parallel as the 
bulk output filter capacitor Co. A switching frequency of 1 
MHz is selected to achieve a bandwidth of 220 KHz. The 
output filter inductor in each phase is set as 100 nH. Also, the 
decoupling capacitors use 10×22µF and 23×10µF to attenuate 
the high di/dt effect. 

Fig. 14 shows the tested outer-loop bandwidth in the 
current-mode control with Oscon capacitors. It shows that the 
crossover frequency is exactly on the ESR zero of the output 
capacitors. Fig. 15 is the case for the ceramic capacitor design 
with the active-droop control. It agrees very well with the 
theoretical analysis. 

 

VI. CONCLUSION 

The AVP design based on the output impedance 
consideration is discussed in this paper. Small-signal model 
analysis shows that all the existing control methods for VR 
follow the same dual-loop structure. By designing a high 
bandwidth current loop, the system is very easy to achieve 
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constant output impedance within the control bandwidth. 
Experimental results show very good AVP control for different 
kinds of output capacitors. 
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Figure 13.  The transient response with active-droop control: (a) with Oscon 
capacitors and (c) with ceramic capacitors. 

 

 
Figure 14.  The measured outer-loop gain and phase for the current-mode 

control with Oscon capacitor design. 
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Figure 15.  The measured outer-loop gain and phase for the active-droop 

control with ceramic capacitor design. 
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