Nondeterministic Finite Automata (NFA)

 When an NFA receives an input symbol a, it can make a transition to a number (including 0) of states (each state can have multiple edges labeled with the same symbol).

 An NFA accepts a string w iff there exists a path labeled w from the initial state to one of the final states.

Example N1

 The language of the following NFA consists of all strings over {0,1} whose 3rd symbol from the right is 0.

Note Q₀ has multiple transitions on 0

Example N2

The NFA N₂ accepts strings beginning with
 0.

• Note Q₀ has no transition on 1

NFA Processing

• Suppose N_1 receives the input string $0\,0\,1\,1$. There are three possible execution sequences:

$$\bullet \quad q_0 \longrightarrow q_0 \longrightarrow q_0 \longrightarrow q_0 \longrightarrow q_0$$

Only the second finishes in an accept state. The third even gets stuck (cannot even read the fourth symbol).

Implementation

 Implementation of NFAs has to be deterministic, using some form of backtracking to go through all possible executions.

 Any thoughts on how this might be accomplished?

Formal Definition

• An NFA is a quintuple $A=(Q,\Sigma,s,F,\delta)$, where the first four components are as in a DFA, and the transition function takes values in P(Q) instead of Q. Thus

$$-\delta$$
: Q × Σ \longrightarrow P(Q)

- The extension $\underline{\delta}: Q \times \Sigma^* \longrightarrow P(Q)$ is defined by
 - $-\underline{\delta}(q,\epsilon) = \{q\}$
 - $-\underline{\delta}(q,ua)$ is the union of the sets $\delta(p,a)$, where p varies over all states in $\underline{\delta}(q,u)$
 - $-\bigcup_{p \in \delta(q,u)} \delta(p,a)$,

NFA Acceptance

• An NFA accepts a string w iff $\underline{\delta}(s,w)$ contains a final state. The language of an NFA N is the set L(N) of accepted strings:

• L(N) =
$$\{w \mid \underline{\delta}(s,w) \cap F \neq \emptyset\}$$

compute $\underline{\delta}(q_0,000)$

•
$$\underline{\delta}(q, ua) = \bigcup_{p \in \underline{\delta}(q, u)} \delta(p, a)$$

• $\underline{\delta}(q_0, 000) = \bigcup_{\mathbf{x} \in \underline{\delta}(q_0, 00)} \delta(\mathbf{x}, 0)$
• $\underline{\delta}(q_0, 000) = \bigcup_{\mathbf{y} \in \underline{\delta}(q_0, 0)} \delta(\mathbf{y}, 0)$
• $\underline{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
• $\underline{\delta}(q_0, 0) = \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_1, q_2\}$
• $\underline{\delta}(q_0, 000) = \bigcup_{\mathbf{x} \in \{q_0, q_1, q_2\}} \delta(\mathbf{x}, 0)$
• $\underline{\delta}(q_0, 000) = \bigcup_{\mathbf{x} \in \{q_0, q_1, q_2\}} \delta(\mathbf{x}, 0)$
• $\underline{\delta}(q_0, 000) = \{q_0, q_1\} \cup \{q_2\} \cup \{q_3\}$
• $\underline{\delta}(q_0, 000) = \{q_0, q_1, q_2, q_3\}$

Intuition

• At any point in the walk over a string, such as "000" the machine can be in a set of states.

 To take the next step, on a character 'c', we create a new set of states. Those reachable from the old set on a single 'c'

	0	1
{Q0}	{Q0,Q1}	{Q0}
{Q0,Q1}	{Q0,Q1,Q2}	{Q0,Q2}
{Q0,Q2}	{Q0,Q1,Q3}	{Q0,Q3}
{Q0,Q1,Q3}	?	?
{Q0,Q3}	?	?