
Last Lecture

We began to show CFL = PDA
Theorem 1. Every context-free language is accepted by some

PDA.
Theorem 2. For every PDA M, the language L(M) is context-

free.

We showed how a PDA could be constructed from
a CFL. Given a CFG G=(V,T,P,S), we define a
PDA M=({q},T, T ∪ V, δ,q,S), with δ given by

– If A ∈ V, then δ(q,Λ,A) = { (q,α) | A → α is in P}
– If a ∈ T, then δ(q,a,a) = { (q,Λ) }

1. The stack symbols of the new PDA contain all the terminal
and non-terminals of the CFG

2.There is only 1 state in the new PDA
3.Add transitions on Λ, one for each production
4.Add transitions on a ∈ T, one for each terminal.

Transitions simulate left-most derivation

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

(q, "(())()" ,S) |- [1]
(q, "(())()" ,SS) |- [2]
(q, "(())()" ,(S)S) |- [4]
(q, "())()" ,S)S) |- [4]
(q, "())()" ,(S))S) |- [4]
(q, "))()" ,S))S) |- [3]
(q, "))()" ,))S) |- [5]
(q, ")()" ,)S) |- [5]
(q, "()" ,S) |- [2]
(q, "()" ,(S)) |- [4]
(q, ")" ,S)) |- [3]
(q, ")" ,)) |- [5]
(q, ε ,ε)

1. δ(q, Λ,S) = (q, SS) S → SS
2. δ(q, Λ,S) = (q, (S)) S → (S)
3. δ(q, Λ,S) = (q, Λ) S → Λ
4. δ(q, (, () = (q,Λ)
5. δ(q,),)) = (q,Λ)

Note there is an entry in δ
for each terminal and
non-terminal symbol. The
stack operations mimic a
top down parse, replacing
Non-terminals with the
rhs of a production.

Proof Outline

To prove that every string of L(G) is accepted by
the PDA M, prove the following more general
fact:

If S ⇒left-most
* α then (q,uv,S) |-* (q,v,β)

where α = uβ is the “leftmost factorization” of α
(u is the longest prefix of α that belongs to T*,
i.e. all terminals).
For example: if α = abcWdXa then u = abc, and β = WdXa,
since the next symbol after abc is W∈V (a non-terminal or Λ)
S ⇒lm

* abcW… then (q, abcV,S) |-* (q,V, W…)

The proof is by induction on the length of the
derivation of α.

We also need to prove that every string
accepted by M belongs to L(G). Again, to
make induction work, we need to prove a
slightly more general fact:

If (q,w,A) |-* (q, Λ, Λ), then A ⇒∗ w
For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of
execution of M that leads from the ID
(q,w,A) to (q, Λ , Λ).

A Grammar from a PDA

Assume the M = (Q,Σ,Γ,δ,q0,Z0) is given, and that
it accepts by empty stack. Consider execution of
M on an accepted input string.

If at some point of the execution of M the stack is
Zζ (Z is on top, ζ is the rest of stack)

In terms of instantaneous descriptions
(statei, input, Zζ) |− . . .

Then we know that eventually the stack will be ζ.
Why? Because we assume the input is accepted,

and M accepts by empty stack, so eventually Z
must be removed from the stack

(statei, αX, Zζ) |−∗ (statej, X, ζ)

The sequence of moves between these two
instants is the “net popping” of Z from the
stack.

During this sequence of moves, the stack
may grow and shrink several times, some
input will be consumed (the α), and M will
pass through a sequence of states, from
statei to statej.

Net Popping

Net popping is fundamental for the construction of a CFG G
equivalent to M.

We will have a variable (Non-terminal) [qZp] in the CFG G for
every triple in (q,Z,p) ∈ Q×Γ×Q from the PDA. Recall

1. Q is the set of states
2. Γ Is the set of stack symbols

We want the rhs of a production whose lhs is [qZp] to
generate precisely those strings w ∈ Σ* such that M can
move from q to p while reading the input w and doing the
net popping of Z. A production like [qZp] -> ?

This can be also expressed as (q,w,Z) |-* (p, Λ , Λ)

Productions of G correspond to transitions of M.

If (p,ζ) ∈ δ(q,a,Z), then there is one or more
corresponding productions, depending on
complexity of ζ.

1. If ζ = Λ, we have [qZp] → a
2. If ζ = Y, we have [qZr] → a[pYr] for every

state r
3. If ζ = YY’ we have [qZs] → a[pYr][rY's], for

every pair of states r and s.
4. You can guess the rule for longer ζ.

Example

Q = {0,1}
S = {a,b}
Γ = {X}
δ(0,a,X) = { (0,X) }
δ (0,Λ,X) = { (1,Λ) }
δ (1,b,X) = { (1,Λ) }
Q0 = 0

Z0 = X
F = {}, accepts by empty stack

Non-terminals
(q,Z,p) ∈ Q×Γ×Q
(0,'X',0)
(0,'X',1)
(1,'X',0)
(1,'X',1)

Productions, At least one
from each element in delta
(p,z) ∈ δ(q,a,Z)

(0,a,X,0,X)
(1,b,X,1,Λ)
(0,Λ,X,1,Λ)]

0X0 -> a 0X0
0X1 -> a 0X1
1X1 -> b
0X1 -> Λ

CFL Pumping Lemma

A CFL pump consists of two non-
overlapping substrings that can be
pumped simultaneously while staying in
the language.

Precisely, two substrings u and v constitute
a CFL pump for a string w of L when
1. uv ≠ Λ (which means that at least one of u or v is not empty)

2. And we can write w=xuyvz, so that for
every i ≥ 0

3. xuiyviz ∈ L

Pumping Lemma

Let L be a CFL. Then there exists a number
n (depending on L) such that every string
w in L of length greater than n contains a
CFL pump.

Moreover, there exists a CFL pump such
that (with the notation as above), |uyv|≤
n.

For example, take L= {0i1i | i ≥ 0 }: there
are no (RE) pumps in any of its strings,
but there are plenty of CFL pumps.

The pumping Lemma Game

We want to prove L is not context-free. For a proof,
it suffices to give a winning strategy for this
game.

1. The demon first plays n.
2. We respond with w ∈ L such that |w| ≥ n.
3. The demon factors w into five substrings,

w=xuyvz, with the proviso that uv ≠ Λ and
|uyv| ≤ n

4. Finally, we play an integer i ≥ 0, and we win if
xuiyviz ∉ L.

Example 1

We prove that L= {0i1i2i | i ≥ 0} is not context-free.

In response to the demon's n, we play w=0n1n2n.

The middle segment uyv of the demon's factorization of w =
xuyvz, cannot have an occurrence of both 0 and 2
(because we can assume |uyv| ≤ n).

Suppose 2 does not occur in uyv (the other case is similar).
1. We play i = 0.
2. Then the total number of 0's and 1's in w0=xyz will be

smaller than 2n,
3. while the number of 2's in w0 will be n.
4. Thus, w0 ∉ L.

Example 2

Let L be the set of all strings over {0,1}
whose length is a perfect square.

1. The demon plays n
2. We respond with w = 0n^2

3. The demon plays a factorization 0n^2 = xuyvz
with 1 ≤ |uyv| ≤ n.

4. We play i=2.
5. The length of the resulting string w2 = xu2yv2z

is between n2+1 and n2+n.
6. In that interval, there are no perfect squares,

so w2 ∉ L.

Proof of the pumping lemma

Strategy in several steps

1. Define fanout
2. Define height yield
3. Prove a lemma about height yield
4. Apply the lemma to prove pumping

lemma

Fanout

Let fanout(G) denote the maximal length of
the rhs of any production in the
grammar G.

E.g. For the Grammar
S → S S
S → (S)
S → ε

The fanout is 3

Height Yield

The proof of Pumping Lemma depends on
this simple fact about parse trees.

The height of a tree is the maximal length of
any path from the root to any leaf.

Lemma. If a parse tree of G has height h,
than its yield has length at most fanout(G)h

Proof. Induction on h
qed

The actual Proof

The constant n for the grammar G is fanout(G)|V|

where V is the set of variables of G.
Suppose w ∈ L(G) and |w| ≥ n.
Take a parse tree of w with the smallest possible

number of nodes.
By the Height-Yield Lemma, any parse tree of w

must have height ≥ |V|.
Therefore, there must be two occurrences of the

same variable on a path from root to a leaf.
Consider the last two occurrences of the same

variable (say A) on that path.
They determine a factorization of the yield

w=xuyvz as in the picture on the next slide

Diagram

We have

S ⇒∗ xAz
A ⇒∗ uAv
A ⇒∗ y

so clearly S ⇒∗ xuiyviz for
any i ≥ 0.

Start

A

A

x u y v z

We also need to check that uv ≠ Λ. Indeed, if uv=
Λ, we can get a smaller parse tree for the same
w by ignoring the productions “between the two
As”. But we have chosen the smallest possible
parse tree for w! Which leads to a Contradiction.

Finally, we need to check that |uyv| ≤ n. This
follows from the Height-Yield Lemma because
the nodes on our chosen path from the first
depicted occurrence of A, onward, are labeled
with necessarily distinct variables.

qed

	Last Lecture
	Transitions simulate left-most derivation
	Proof Outline
	Slide Number 4
	A Grammar from a PDA
	Slide Number 6
	Net Popping
	Slide Number 8
	Example
	 CFL Pumping Lemma
	Pumping Lemma
	The pumping Lemma Game
	Example 1
	Example 2
	Proof of the pumping lemma
	Fanout
	Height Yield
	The actual Proof
	Diagram
	Slide Number 20

