Last Lecture

We began to show CFL = PDA

ThPeDoA(em 1. Every context-free language is accepted by some
Tk}eorém 2. For every PDA M, the language L(M) is context-
ree.

We showed how a PDA could be constructed from

a CFL. Given a CFG G=(V,T,P,S), we define a
PDA M=({q},T, T UV, 5,q,S), with 6 given by

—IfA eV, then5(q,AA) ={(q,0) | A—> alisin P}
—Ifa e T, then 6(g,a,a) = { (q,A) }

1. The stack symbols of the new PDA contain all the terminal
and non-terminals of the CFG

2. There is only 1 state in the new PDA
3. Add transitions on A, one for each production
4. Add transitions on a € T, one for each terminal.

Transitions simulate left-most derivation

S=35=(8)S=((35)s=(0)s= () = ()0

(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,
(g,

")

“(QQ .S
(O .SS
(DO .(S)s
"OIO" .98
RO TORNONE
NOT .S
NOT S
PICHEEES &
KOS
Q" (D)

" .9
2 D

m

N AU AU AN AN

[1]
[2]
[4]
[4]
[4]
[3]
[5]
[5]
[2]
[4]
[3]
[5]

M

8(q, A,S) = (q, SS) S —>SS
3(a,AS) =, (S)) S—>(S)
8(q, A,S) =(q, A) S—>A
6(g, (; () = (a,A)
6(0,),)) = (a,A)

Kl\lzh IS an entry in 6\

for each terminal and
non-terminal symbol. The
stack operations mimic a
top down parse, replacing

Non-terminals with the
rhs of a production. /

-

Proof Outline

To prove that every string of L(G) Is accepted by
the PDA M, prove the following more general

fact:
If S :>Ieft-most* O then (q1uv’S) I_* (q’V’B)

where o = up Is the “leftmost factorization” of o
(u is the longest prefix of o that belongs to T,
l.e. all terminals).

For example: if o = abcWdXa then u = abc, and = WdXa,
since the next symbol after abc is WeV (a non-terminal or A)

S =, abcW... then (q, abcV,S) |-* (q,V, W...)

The proof is by induction on the length of the
derivation of a.

We also need to prove that every string
accepted by M belongs to L(G). Again, to
make induction work, we need to prove a

slightly more general fact:

If (q,w,A) |- (g, A, A), then A="w

For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of
execution of M that leads from the ID

(q,w,A) to (g, A, A).

A Grammar from a PDA

Assume the M = (Q,Z,I',6,q,,Z,) IS given, and that
It accepts by empty stack. Consider execution of
M on an accepted input string.

If at some point of the execution of M the stack Is
ZC (Z1s on top, C Is the rest of stack)

In terms of instantaneous descriptions
(state;, input, ZC)|-. ..

Then we know that eventually the stack will be C.

Why? Because we assume the input is accepted,
and M accepts by empty stack, so eventually Z
must be removed from the stack

(state;, aX, Z0) |-* (statej, X, ©)

The sequence of moves between these two
Instants is the “net popping” of Z from the
stack.

During this sequence of moves, the stack
may grow and shrink several times, some
iInput will be consumed (the o), and M will
pass through a sequence of states, from
state; to state;.

Net Popping

Net popping is fundamental for the construction of a CFG G
equivalent to M.

We will have a variable (Non-terminal) (?] Zp] in the CFG G for
every triple in (q,Z,p) € QxI'xQ from the PDA. Recall

1. Qs the set of states
2. I Is the set of stack symbols

We want the rhs of a production whose Ihs is [qZp] to
generate precisely those strings w € X such that M can
move from g to p while reading the input w and doing the
net popping of Z. A production like [gZp] ->?

This can be also expressed as (q,w,Z) |-* (p, A, A)

Productions of G correspond to transitions of M.

If (p,&) € 8(q,a,2), then there is one or more
corresponding productions, depending on
complexity of C.

1. If £=A, we have [gZp] — a

2. IfC =Y, we have [gZr] — a[pYr] for every
state r

3. If £ =YY we have [qZs] — a[pYr][rY's], for
every pair of states r and s.

4. You can guess the rule for longer C.

Example

Q={0,1}

S ={a,b}

I ={X}

5(0,a,X) = { (0,X) } Non-terminals

6 (0,AX) ={(1,A) } (9.Z,p) € QxI'xQ
8 (1,b,X) = { (1,A) } (0,’X',0)

Qo =0 (0,X',1)

io :{)}((1.%.0)
={}, ts by empty stack
accepts by empty stac (1,')(',1)

Productions, At least one OXO -> a OXO

from each element in delta
(p.2) € 8(0.a.2) OX1 -> a 0X1
(0,a,X,0,X) 1X1 ->Db

(1,b,X,1,A) OX1 -> A

(0,A,X,1,A)]

CFL Pumping Lemma

A CFL pump consists of two non-
overlapping substrings that can be
pumped simultaneously while staying in

the language.

Precisely, two substrings u and v constitute
a CFL pump for a string w of L when
1. uv=A (which means that at least one of u or v is not empty)

2. And we can write w=xuyvz, so that for
every i >0

3. Xuyviz e L

Pumping Lemma

Let L be a CFL. Then there exists a number
n (depending on L) such that every string
w In L of length greater than n contains a
CFL pump.

Moreover, there exists a CFL pump such
that (with the notation as above), |uyv|<
n.

For example, take L= {0'1' | i > 0 }: there
are no (RE) pumps in any of its strings,
but there are plenty of CFL pumps.

The pumping Lemma Game

We want to prove L is not context-free. For a proof,
It suffices to give a winning strategy for this
game.

1. The demon first plays n.
2. We respond with w € L such that |w]| > n.

3. The demon factors w into five substrings,
w=xuyvz, with the proviso that uv # A and
luyv] < n

4. Finally, we play an integer 1 > 0, and we win if
Xu'yv'z ¢ L.

Example 1

We prove that L= {0'12' | i > 0} is not context-free.

In response to the demon's n, we play w=0"1"2",

The middle segment uyv of the demon's factorization of w =
Xuyvz, cannot have an occurrence of both 0 and 2

(because we can assume |uyv| < n).

Suppose 2 does not occur in uyv (the other case is similar).

1.
2.

3.
4.

We play i = 0.

Then the total number of O's and 1's in wy=xyz will be
smaller than 2n,

while the number of 2's in w, will be n.

Thus, w, ¢ L.

Example 2

Let L be the set of all strings over {0,1}
whose length Is a perfect square.

=

The demon plays n
. We respond with w = 0"

The demon plays a factorization 0"? = xuyvz
with 1 < |uyv] <n.

We play 1=2.

The length of the resulting string w, = xu?yv?z
IS between n?+1 and n2+n.

In that interval, there are no perfect squares,
sow, ¢ L.

W N

o1 A

o

Proof of the pumping lemma

Strategy In several steps

Define fanout
Define height yield
Prove a lemma about height yield

Apply the lemma to prove pumping
lemma

> w e

Fanout

Let fanout(G) denote the maximal length of
the rhs of any production in the
grammar G.

E.g. For the Grammar
S—>SS
S—>(S)
S > ¢

The fanout is 3

Height Yield

The proof of Pumping Lemma depends on
this simple fact about parse trees.

The height of a tree Is the maximal length of
any path from the root to any leaf.

Lemma. If a parse tree of G has height h,
than its yield has length at most fanout(G)"

Proof. Induction on h
ged

The actual Proof

The constant n for the grammar G is fanout(G)!V!
where V is the set of variables of G.

Suppose w € L(G) and |w| = n.

Take a parse tree of w with the smallest possible
number of nodes.

By the Height-Yield Lemma, any parse tree of w
must have height > |V].

Therefore, there must be two occurrences of the
same variable on a path from root to a leaf.

Consider the last two occurrences of the same
variable (say A) on that path.

They determine a factorization of the yield
W=Xxuyvz as In the picture on the next slide

Diagram

Start

We have

S =* XAz
:>>x<
:>>x<

so clearly S =* xu'yv'z for
any 1 > 0.

We also need to check that uv # A. Indeed, If uv=
A, we can get a smaller parse tree for the same
w by ignoring the productions “between the two
As”. But we have chosen the smallest possible
parse tree for w! Which leads to a Contradiction.

Finally, we need to check that Juyv| < n. This
follows from the Height-Yield Lemma because
the nodes on our chosen path from the first
depicted occurrence of A, onward, are labeled
with necessarily distinct variables.

ged

	Last Lecture
	Transitions simulate left-most derivation
	Proof Outline
	Slide Number 4
	A Grammar from a PDA
	Slide Number 6
	Net Popping
	Slide Number 8
	Example
	 CFL Pumping Lemma
	Pumping Lemma
	The pumping Lemma Game
	Example 1
	Example 2
	Proof of the pumping lemma
	Fanout
	Height Yield
	The actual Proof
	Diagram
	Slide Number 20

