
Deterministic Finite Automata (DFA)

• DFAs are easiest to present pictorially:

Q0 Q1 Q2

1 1

0 0 0,1

They are directed graphs whose nodes are states and whose arcs
are labeled by one or more symbols from some alphabet Σ.

Here Σ is {0,1}.

• One state is initial (denoted by a short incoming arrow), and
several are final/accepting (denoted by a double circle). For
every symbol a∈Σ there is an arc labeled a emanating from
every state.

•

• Automata are string processing devices. The arc from q1 to q2
labeled 0 shows that when the automaton is in the state q1
and receives the input symbol 0, its next state will be q2.

q0 q1 q2

1 1

0 0 0,1

• Every path in the graph spells out a
string over S. Moreover, for every string
w ∈Σ∗ there is a unique path in the
graph labelled w. (Every string can be
processed.) The set of all strings whose
corresponding paths end in a final state
is the language of the automaton.

• In our example, the language of the
automaton consists of strings over {0,1}
containing at least two occurrences of
0.

Q0 Q1 Q2

1 1

0 0 0,1

• Modify the automaton so that its language
consists of strings containing exactly two
occurrences of 0.

•

Formal Definition

• A DFA is a quintuple A=(Q,Σ,s,F,δ), where

– Q is a set of states
– Σ is the alphabet of input symbols
– s is an element of Q --- the initial
state

– F is a subset of Q ---the set of
final states

– δ: Q × Σ → Q is the transition
function

Example

• In our example,
• Q={q0,q1,q2},

Σ={0,1},
s=q0,
F={q2},

• and

δ is given by 6 equalities

• δ(q0,0)=q1,
• δ(q0,1)=q0,
• δ(q2,1)=q2
• …

q0 q1 q2

1 1

0 0 0,1

Transition Table

• All the information presenting a DFA can be given by a single
thing -- its transition table:

• The initial and final states are denoted by → and *
respectively.

0 1

Q0 Q1 Q0

Q1 Q2 Q1

*Q2 Q2 Q2

Extension of δ to Strings

• Given a state q and a string w, there is a unique path labeled w
that starts at q (why?). The endpoint of that path is denoted
δ(q,w)

• Formally, the function δ : Q × Σ* → Q
• is defined recursively:

– δ(q,ε)=q
– δ(q,ua)= δ(δ(q,u),a)

• Note that δ(q,a)= δ(q,a) for every a∈Σ;

• so δ does extend δ.

Example trace

• Diagrams (when available) make it very easy
to compute δ(q,w) --- just trace the path
labeled w starting at q.

• E.g. trace 101 on the diagram below starting
at q1

q0 q1 q2

1 1

0 0 0,1

• Implementation and precise arguments
need the formal definition.

•
• δ(q1,101)=δ(δ(q1,10),1)
• =δ(δ(δ(q1,1),0),1)
• =δ(δ(δ(q1,1),0),1)
• =δ(δ(q1,0),1)
• =δ(q2,1)
• =q2

0 1

→q0 q1 q0

q1 q2 q1

*q2 q2 q2

Language of accepted strings

A DFA =(Q,Σ,s,F,δ), accepts a string w iff δ(s,w)∈ F

The language of the automaton A is
L(A)={w | A accepts w}.

More formally

L(A)={w | δ(Start(A),w) ∈ Final(A)}

Example:
Find a DFA whose language is the set of all strings over {a,b,c}

that contain aaa as a substring.

DFA’s as Programs
data DFA q s = DFA { states :: [q],

symbols :: [s],
delta :: q -> s -> q,
start :: q,
final :: [q]}

Transition function
trans :: (q -> s -> q) -> q -> [s] -> q
trans d q [] = q
trans d q (s:ss) = trans d (d q s) ss

accept :: (Eq q) => DFA q s -> [s] -> Bool
accept

m@(DFA{delta = d,start = q0,final = f}) w
= elem (trans d q0 w) f

An Example

ma = DFA { states = [0,1,2],
symbols = [0,1],
delta = \p a ->

(2*p+a) `mod` 3,
start = 0,
final = [2]

}

	Deterministic Finite Automata (DFA)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Formal Definition
	Example
	Transition Table
	Extension of d to Strings
	Example trace
	Slide Number 10
	Language of accepted strings
	DFA’s as Programs
	Transition function
	An Example

