
Closure of Regular Languages

Union, Concatenation, Kleene Star
The class of regular languages is closed under 

these three operations by definition.

Complementation
Take a DFA for L and change the status - final 

or non-final - of all its states. The resulting 
DFA will accept exactly those strings that the 
first one rejects. It is, therefore, a DFA for 
C(L). 

Thus, the complement of every regular 
language is regular.



Complement Example

Contains a “0”
Starts with a “1”



Intersection

The intersection L ∩ M of two regular 
languages must be regular, too. The 
quickest way to see it is by expressing  
intersection in terms of union and 
complementation, and then referring  to 
the already established facts that the class 
of regular languages is closed under
union and complementation. 

The requisite set-theoretical identity is one  
of DeMorgan's laws:

L ∩ M = C(C(L)∪ C(M))



Constructive Proof

A more direct proof is based on a construction that 
given two DFAs A and B, produces a third DFA C
such that L(C) = L(A) ∩ L(B). The states of C are 
pairs (p,q) , where p is a state of A and q is a 
state of B. A transition labeled a leads from 
(p,q) to (p',q') iff there are transitions

in A and B. The start state is the pair or original 
start states; the final states are pairs of original 
final states. The transition function 

δA∩Β(q,a) = ( δA(q,a), δB(q,a) )
This is called the product construction. 

'pp a→ 'qq a→



Example 1
a+aa+aaa

aa+aaa+aaaa

What is the 
intersection?

Make a new DFA 
where states of the 
new DFA are pairs of 
states form the old 
ones
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Reachable states only

Intersection

{a,aa,aaa} ∩ {aa,aaa,aaaa} 



Example 2

p q0

r s1
0

1

0,1

0,1
A – string contains a 0

B – string contains a 1

C – string contains a 
0 and a 1
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Contains a  “0”

Contains a  “1”

Contains  both a  
“1” and a “0”



Difference

The identity: 

L - M = L ∩ C(M) 

reduces the closure under set-theoretical 
difference operator to closure under 
complementation and intersection.



Example Difference

- =

L - M = L ∩ C(M) 



Reversal

As we saw in the homework, closure under reversal 
is most easily seen using ε-NFAs. If you take 
such an automaton for L, you need to make the 
following changes to transform it into an 
automaton for LRev:

1. Reverse all arcs

2. The old start state becomes the only new final state.

3. Add a new start state, and an ε-arc from it to all old 
final states.



Example Closure Construction

Given a language L, let L' be the set of all 
prefixes of even length of strings which 
belong to L.  We prove that if L is
regular then L' is also regular.

It is easy to show that prefix(L) is regular 
when L is (How?). We also know that the 
language Even of even length strings is 
regular (How?). All we need now is to 
note that
L' = Even ∩ prefix(L) 
and use closure under intersection. 



Conclusion

• We have studied the class of regular languages
• We saw many different ways to express a regular 

language
1. Regular Expressions
2. DFA
3. NFA                        (More than one choice per symbol)

4. Epsilon-NFA            (L transitions)

5. Generalized NFA      (RegExp on transitions)

6. Regular Grammars

• We showed that all were equally expressive
• Some were easier to use than others to 

describe some languages



Algorithms

We studied algorithms to transform one 
description into another

1. Subset construction
2. GenNFA expansion
3. State minimization
4. Λ-closure and removal



Automata and Formal Languages

Tim Sheard 16Lecture 9

DFA
NFA

εNFA

RegExp

Lift delta fun

Subset
Construction

Via GenNFA by 
RegExp
decompostion

State
Elimination

GenNFA

Delta fun 
lifting

ε-removal

data DFA q s = 
DFA { states :: [q],

symbols :: [s],
delta :: q -> s -> q,
start :: q,
final :: [q]} data NFA q s = 

NFA { states :: [q],
symbols :: [s],
delta :: q -> s -> [q],
start :: q,
final :: [q]}

data NFAe q s = 
NFAe { states :: [q],

symbols :: [s],
delta :: q -> Maybe s -> [q],
start :: q,
final :: [q]}

data RegExp a
= Lambda          
| Empty                        
| One a   
| Union (RegExp a) (RegExp a) 
| Cat (RegExp a) (RegExp a) 
| Star (RegExp a)

data GNFA q s = 
GNFA { states :: [q],

symbols :: [s],
delta :: q -> q -> RegExp s,
start :: q,
final :: q }

RegGram
data RegGram v t = 
RegGram { nonTerm :: [v]

, term :: [t]
, prod :: [Prod v t]
, start :: v }

Transition to 
production



Properties

We saw that Regular grammars have many 
properties

Closure properties
Union
Kleene – star
Intersection
Complement
Reversal
Difference



Uses

Regular languages and their algorithms 
have many uses in computer science

1. Searching  for “rich” patterns in text
2. Describing the structure of tokens in computer 

languages
3. Describing the sequence of operators in protocols 

(understanding the exchange of information between 
machines)

4. Understanding complexity. What is easy, what is 
hard, what is not possible.

5. Hardware design. State machines model circuits
6. Model Checking. Finite state approximations of real 

programs



Not all languages are Regular

Some languages are not regular

The pumping lemma provides one means to 
show that a language is not regular.

How can we describe these languages?

This is the topic of the next section of the 
course
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