
Closure of Regular Languages

Union, Concatenation, Kleene Star
The class of regular languages is closed under

these three operations by definition.

Complementation
Take a DFA for L and change the status - final

or non-final - of all its states. The resulting
DFA will accept exactly those strings that the
first one rejects. It is, therefore, a DFA for
C(L).

Thus, the complement of every regular
language is regular.

Complement Example

Contains a “0”
Starts with a “1”

Intersection

The intersection L ∩ M of two regular
languages must be regular, too. The
quickest way to see it is by expressing
intersection in terms of union and
complementation, and then referring to
the already established facts that the class
of regular languages is closed under
union and complementation.

The requisite set-theoretical identity is one
of DeMorgan's laws:

L ∩ M = C(C(L)∪ C(M))

Constructive Proof

A more direct proof is based on a construction that
given two DFAs A and B, produces a third DFA C
such that L(C) = L(A) ∩ L(B). The states of C are
pairs (p,q) , where p is a state of A and q is a
state of B. A transition labeled a leads from
(p,q) to (p',q') iff there are transitions

in A and B. The start state is the pair or original
start states; the final states are pairs of original
final states. The transition function

δA∩Β(q,a) = (δA(q,a), δB(q,a))
This is called the product construction.

'pp a→ 'qq a→

Example 1
a+aa+aaa

aa+aaa+aaaa

What is the
intersection?

Make a new DFA
where states of the
new DFA are pairs of
states form the old
ones

Automata and Formal Languages

Tim Sheard 6Lecture 9

Reachable states only

Intersection

{a,aa,aaa} ∩ {aa,aaa,aaaa}

Example 2

p q0

r s1
0

1

0,1

0,1
A – string contains a 0

B – string contains a 1

C – string contains a
0 and a 1

Automata and Formal Languages

Tim Sheard 9Lecture 9

Contains a “0”

Contains a “1”

Contains both a
“1” and a “0”

Difference

The identity:

L - M = L ∩ C(M)

reduces the closure under set-theoretical
difference operator to closure under
complementation and intersection.

Example Difference

- =

L - M = L ∩ C(M)

Reversal

As we saw in the homework, closure under reversal
is most easily seen using ε-NFAs. If you take
such an automaton for L, you need to make the
following changes to transform it into an
automaton for LRev:

1. Reverse all arcs

2. The old start state becomes the only new final state.

3. Add a new start state, and an ε-arc from it to all old
final states.

Example Closure Construction

Given a language L, let L' be the set of all
prefixes of even length of strings which
belong to L. We prove that if L is
regular then L' is also regular.

It is easy to show that prefix(L) is regular
when L is (How?). We also know that the
language Even of even length strings is
regular (How?). All we need now is to
note that
L' = Even ∩ prefix(L)
and use closure under intersection.

Conclusion

• We have studied the class of regular languages
• We saw many different ways to express a regular

language
1. Regular Expressions
2. DFA
3. NFA (More than one choice per symbol)

4. Epsilon-NFA (L transitions)

5. Generalized NFA (RegExp on transitions)

6. Regular Grammars

• We showed that all were equally expressive
• Some were easier to use than others to

describe some languages

Algorithms

We studied algorithms to transform one
description into another

1. Subset construction
2. GenNFA expansion
3. State minimization
4. Λ-closure and removal

Automata and Formal Languages

Tim Sheard 16Lecture 9

DFA
NFA

εNFA

RegExp

Lift delta fun

Subset
Construction

Via GenNFA by
RegExp
decompostion

State
Elimination

GenNFA

Delta fun
lifting

ε-removal

data DFA q s =
DFA { states :: [q],

symbols :: [s],
delta :: q -> s -> q,
start :: q,
final :: [q]} data NFA q s =

NFA { states :: [q],
symbols :: [s],
delta :: q -> s -> [q],
start :: q,
final :: [q]}

data NFAe q s =
NFAe { states :: [q],

symbols :: [s],
delta :: q -> Maybe s -> [q],
start :: q,
final :: [q]}

data RegExp a
= Lambda
| Empty
| One a
| Union (RegExp a) (RegExp a)
| Cat (RegExp a) (RegExp a)
| Star (RegExp a)

data GNFA q s =
GNFA { states :: [q],

symbols :: [s],
delta :: q -> q -> RegExp s,
start :: q,
final :: q }

RegGram
data RegGram v t =
RegGram { nonTerm :: [v]

, term :: [t]
, prod :: [Prod v t]
, start :: v }

Transition to
production

Properties

We saw that Regular grammars have many
properties

Closure properties
Union
Kleene – star
Intersection
Complement
Reversal
Difference

Uses

Regular languages and their algorithms
have many uses in computer science

1. Searching for “rich” patterns in text
2. Describing the structure of tokens in computer

languages
3. Describing the sequence of operators in protocols

(understanding the exchange of information between
machines)

4. Understanding complexity. What is easy, what is
hard, what is not possible.

5. Hardware design. State machines model circuits
6. Model Checking. Finite state approximations of real

programs

Not all languages are Regular

Some languages are not regular

The pumping lemma provides one means to
show that a language is not regular.

How can we describe these languages?

This is the topic of the next section of the
course

	Closure of Regular Languages
	Complement Example
	Intersection
	Constructive Proof
	Example 1
	Slide Number 6
	Reachable states only
	Example 2
	Slide Number 9
	Difference
	Example Difference
	Reversal
	Example Closure Construction
	Conclusion
	Algorithms
	Slide Number 16
	Properties
	Uses
	Not all languages are Regular

