
Cse536 Functional Programming

1 4/7/2014

Simple Animations
•Today’s Topics

–Simple animations
–Buffered graphics
–Animations in Haskell
–Complex animations
–Lifting primitives to animations
–Behaviors
–Type classes, animations, and Behaviors
–Time translation

•Reading Assignment
– Haskell School of Expression

»Read chapter 13 - A Module of Simple Animations

•

Cse536 Functional Programming

2 4/7/2014

Animations
• An animation is a “moving” graphic.

– Sometimes we say a time dependent graphic, since where it
“moves” to is dependent upon time.

• To create the illusion of “movement” we need draw
frames with a different picture each frame.

– A frame rate of about 30 frames a second is optimal
– less than 15-20 appears to flicker
– greater than 30 gives no apparent improvement

• To draw a frame we need to erase the old frame
before drawing the new frame.

• All our drawings have been accumulative (we never
erase anything, just draw “over” what’s already
there).

• There exist several strategies for frame drawing.

Cse536 Functional Programming

3 4/7/2014

Buffered graphics
• Display devices display the information stored in the

video memory.

• Buffered graphics use two sets of memory,
instantaneously switching from one memory to the
other, so quickly that the flicker effect is
unobservable.

H I HI

H I

T H E R E THERE

This video memory free for
writing while the other is displayed

Cse536 Functional Programming

4 4/7/2014

Haskell interface to buffered graphics

• timeGetTime
– timegetTime :: IO Word32
– Returns the current time. This time has no real bearing on

anything tangible. It is just a big number, and measures the time in
milliseconds. The “difference” between successive calls
accurately measures elapsed time.

• setGraphic
– setGraphic :: Window -> Graphic -> IO()

– Writes the graphic into the “free” video graphic buffer. At the next
frame “tick” what’s in the “free” video buffer will be drawn, and the
current buffer will become the free buffer.

Usual tick rate = 30
times per second

Cse536 Functional Programming

5 4/7/2014

Old interface:
openWindow :: String -> Point -> IO Window
e.g. openWindow “title” (width,height)

Richer interface:
openWindowEx :: String -> Maybe Point
 Maybe Point -> (Graphic -> DrawFun) ->
 Maybe word32 -> IO Window

openWindowEx “title”
 (Just(x,y)) -- upper left corner
 (Just(width,height))
 drawFun
 (Just 30) -- refresh rate

Interface to the richer window interface.

Cse536 Functional Programming

6 4/7/2014

Animations in Haskell
type Animation a = Time -> a
type Time = Float

rubberBall :: Animation Shape
rubberBall t = Ellipse (sin t) (cos t)

animate :: String -> Animation Graphic -> IO ()

main1 :: IO ()
main1 = animate "Animated Shape"
 (withColor Blue .
 shapeToGraphic .
 rubberBall)

Cse536 Functional Programming

7 4/7/2014

Example
Shape pulses from

this

to this

to this

Cse536 Functional Programming

8 4/7/2014

The animate function
animate :: String -> Animation Graphic -> IO ()

animate title anim
 = runGraphics (
 do w <- openWindowEx title (Just (0,0)) (Just Win,yWin))
 drawBufferedGraphic
 t0 <- timeGetTime
 let loop =
 do t <- timeGetTime
 let word32ToInt = fromInteger . toInteger
 let ft = intToFloat (word32ToInt(t-t0))/1000
 setGraphic w (anim ft)
 spaceCloseEx w loop
 loop
)

Cse536 Functional Programming

9 4/7/2014

Complex Animations

revolvingBallB :: Behavior Picture
revolvingBallB
 = let ball = shape (ell 0.2 0.2)
 in reg red (translate (sin time, cos time) ball)

planets :: Animation Picture
planets t
 = let p1 = Region Red (Shape (rubberBall t))
 p2 = Region Yellow (revolvingBall t)
 in p1 `Over` p2

tellTime :: Animation String
tellTime t = "The time is: " ++ show t

Cse536 Functional Programming

10 4/7/2014

Telling Time
main2 = animate "Animated Text”
 tellTime
 (return . text (100,200))

The time changes
as time advances

Cse536 Functional Programming

11 4/7/2014

Revolving Circle
regionToGraphic :: Region -> Graphic
regionToGraphic = drawRegion . regionToGRegion
main3 :: IO ()
main3 =
 animate "Animated Region"
 (withColor Yellow .
 regionToGraphic .
 revolvingBall)

Ball
rotates

Cse536 Functional Programming

12 4/7/2014

Animating Pictures

picToGraphic :: Picture -> Graphic
picToGraphic (Region c r)
 = withColor c (regionToGraphic r)
picToGraphic (p1 `Over` p2)
 = picToGraphic p1 `overGraphic` picToGraphic p2
picToGraphic (Text v str) = (text (trans v) str)
picToGraphic EmptyPic = emptyGraphic

main4 :: IO ()
main4 = animate "Animated Picture"
 (picToGraphic . planets)

Case analysis over
structure of region.

Use the primitives

 `overGraphic`
&

emptyGraphic

Cse536 Functional Programming

13 4/7/2014

Lifting primitives to animations
• Its useful to define “time varying” primitives, like Picture

type Animation a = Time -> a
type Anim = Animation Picture
type Time = Float

• First an Anim which doesn’t really vary
emptyA :: Anim
emptyA t = EmptyPic

• Combining time varying pictures
overA :: Anim -> Anim -> Anim
overA a1 a2 t = a1 t `Over` a2 t

overManyA :: [Anim] -> Anim
overManyA = foldr overA emptyA

Recall
Anim =

Animation Picture =
Time -> Picture

hence the time
 parameter t

Cse536 Functional Programming

14 4/7/2014

Time Translation
timeTransA :: (Time -> Time) ->
 Animation a -> Animation a

or
timeTransA :: Animation Time ->
 Animation a -> Animation a

timeTransA f a t = a (f t)

or
timeTransA f a = a . f

timeTransA (2*) anim -- runs twice as fast
timeTransA (5+) anim -- runs 5 seconds behind

Cse536 Functional Programming

15 4/7/2014

Example
revolvingBallB :: Behavior Picture
revolvingBallB
 = let ball = shape (ell 0.2 0.2)
 in reg red (translate (sin time, cos time) ball)

main5 :: IO ()
main5 = animateB "Revolving Ball Behavior" revolvingBallB

Ball rotates around screen

Cse536 Functional Programming

16 4/7/2014

Type Classes and Animations
• “Polymorphism captures similar structure over

different values, while type classes capture similar
operations over different structure.”

• Capture the similar operations on different things
which vary over time with a Haskell Class.

• First define a new type:
newtype Behavior a = Beh (Time -> a)

–newtype like data in Haskell
– doesn’t require the overhead that ordinary data

definitions require since there is only 1
constructor function.

Cse536 Functional Programming

17 4/7/2014

Lifting ordinary functions to Behavior’s
lift0 :: a -> Behavior a
lift0 x = Beh (\t -> x)

lift1 :: (a -> b) -> (Behavior a -> Behavior b)
lift1 f (Beh a) = Beh (\t -> f (a t))

lift2 :: (a -> b -> c) ->
 (Behavior a -> Behavior b -> Behavior c)
lift2 g (Beh a) (Beh b) = Beh (\t -> g (a t) (b t))

lift3 :: (a -> b -> c -> d) ->
 (Behavior a -> Behavior b -> Behavior c -> Behavior d)
lift3 g (Beh a) (Beh b) (Beh c)
 = Beh (\t -> g (a t) (b t) (c t))

Cse536 Functional Programming

18 4/7/2014

Making Behavior Instances
instance Eq (Behavior a) where
 a1 == a2 = error "Can't compare animations."

instance Show (Behavior a) where
 showsPrec n a1 =
 error "Can't coerce animation to String."

The instances for Eq and Show are bogus, but are necessary in
order to define the Num class which requires Eq and Show

instance Num a => Num (Behavior a) where
 (+) = lift2 (+); (*) = lift2 (*)
 negate = lift1 negate; abs = lift1 abs
 signum = lift1 signum
 fromInteger = lift0 . fromInteger

Cse536 Functional Programming

19 4/7/2014

More Instances
instance Fractional a => Fractional (Behavior a)
where

 (/) = lift2 (/)
 fromRational = lift0 . fromRational

instance Floating a => Floating (Behavior a) where
 pi = lift0 pi; sqrt = lift1 sqrt
 exp = lift1 exp; log = lift1 log
 sin = lift1 sin; cos = lift1 cos
 tan = lift1 tan
 asin = lift1 asin; acos = lift1 acos
 atan = lift1 atan
 sinh = lift1 sinh; cosh = lift1 cosh
 tanh = lift1 tanh
 asinh = lift1 asinh; acosh = lift1 acosh
 atanh = lift1 atanh

Cse536 Functional Programming

20 4/7/2014

Time
time :: Behavior Time
time = Beh (\t -> t)

A New Class

class Ani a where
 empty :: a
 over :: a -> a -> a

Cse536 Functional Programming

21 4/7/2014

Instances for Our types
instance Ani [a] where
 empty = []
 over = (++)

data Fun a = Fun (a->a)
instance Ani (Fun a) where
 empty = Fun id
 Fun a `over` Fun b = Fun (a . b)

instance Ani Picture where
 empty = EmptyPic
 over = Over

instance Ani a => Ani (Behavior a) where
 empty = lift0 empty
 over = lift2 over

What type is “empty” here?

Cse536 Functional Programming

22 4/7/2014

Things that can turn

class Turnable a where
 turn :: Float -> a -> a

instance Turnable Picture where
 turn theta (Region c r) =
 Region c (turn theta r) -- turn on Regions
 turn theta (p1 `Over` p2) = turn theta p1 `Over`
turn theta p2

 turn theta EmptyPic = EmptyPic

instance Turnable a => Turnable (Behavior a) where
 turn theta (Beh b) = Beh(turn theta . b)

Cse536 Functional Programming

23 4/7/2014

Turning Shapes

type Coordinate = (Float,Float)

rotate :: Float -> Coordinate -> Coordinate
rotate theta (x,y) =
 (x*c + y*s, y*c - x*s)
 where (s,c) = (sin theta,cos theta)

instance Turnable Shape where
 turn theta (Polygon ps) =
 Polygon (map (rotate theta) ps)
 -- lots of missing cases here for
 -- turn theta (Rectangle s1 s2) =
 -- turn theta (Ellipse r1 r2) =
 -- turn theta (RtTriangle s1 s2) =

Cse536 Functional Programming

24 4/7/2014

Turning Regions

instance Turnable Region where
 turn theta (Shape sh) = Shape (turn theta sh)
 -- lots of missing cases here for
 -- turn theta (Translate (u,v) r) =
 -- turn theta (Scale (u,v) r) =
 -- turn theta (Complement r) =
 -- turn theta (r1 `Union` r2) =
 -- turn theta (r1 `Intersect` r2) =
 -- turn theta Empty = Empty

A final example. See the text pages 209-212
main7 in today’s Haskell code.

	Simple Animations
	Animations
	Buffered graphics
	Haskell interface to buffered graphics
	
	Animations in Haskell
	Example
	The animate function
	Complex Animations
	Telling Time
	Revolving Circle
	Animating Pictures
	Lifting primitives to animations
	Time Translation
	Example
	Type Classes and Animations
	Lifting ordinary functions to Behavior’s
	Making Behavior Instances
	More Instances
	Time
	Instances for Our types
	Things that can turn
	Turning Shapes
	Turning Regions

