

Overview

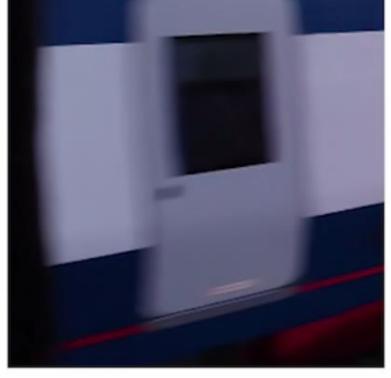
As video frame interpolation results often exhibit unique artifacts, existing quality metrics sometimes are not consistent with human perception.

Contributions

- 1) Provide the first video perceptual similarity metric dedicated to video frame interpolation,
- 2) Design a novel neural network architecture for video perceptual quality assessment based on the Swin Transformers,
- 3) Build a large video frame interpolation perceptual similarity dataset.

GT

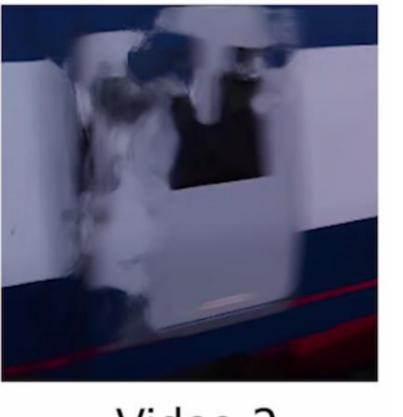
Compression


Deblurring

SR

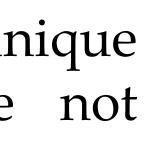
Unique distortions in video frame interpolation results.

Video Frame Interpolation Quality Dataset


We collected a Video Frame Interpolation Perceptual Similarity (VFIPS) dataset. It contains 25,887 samples.

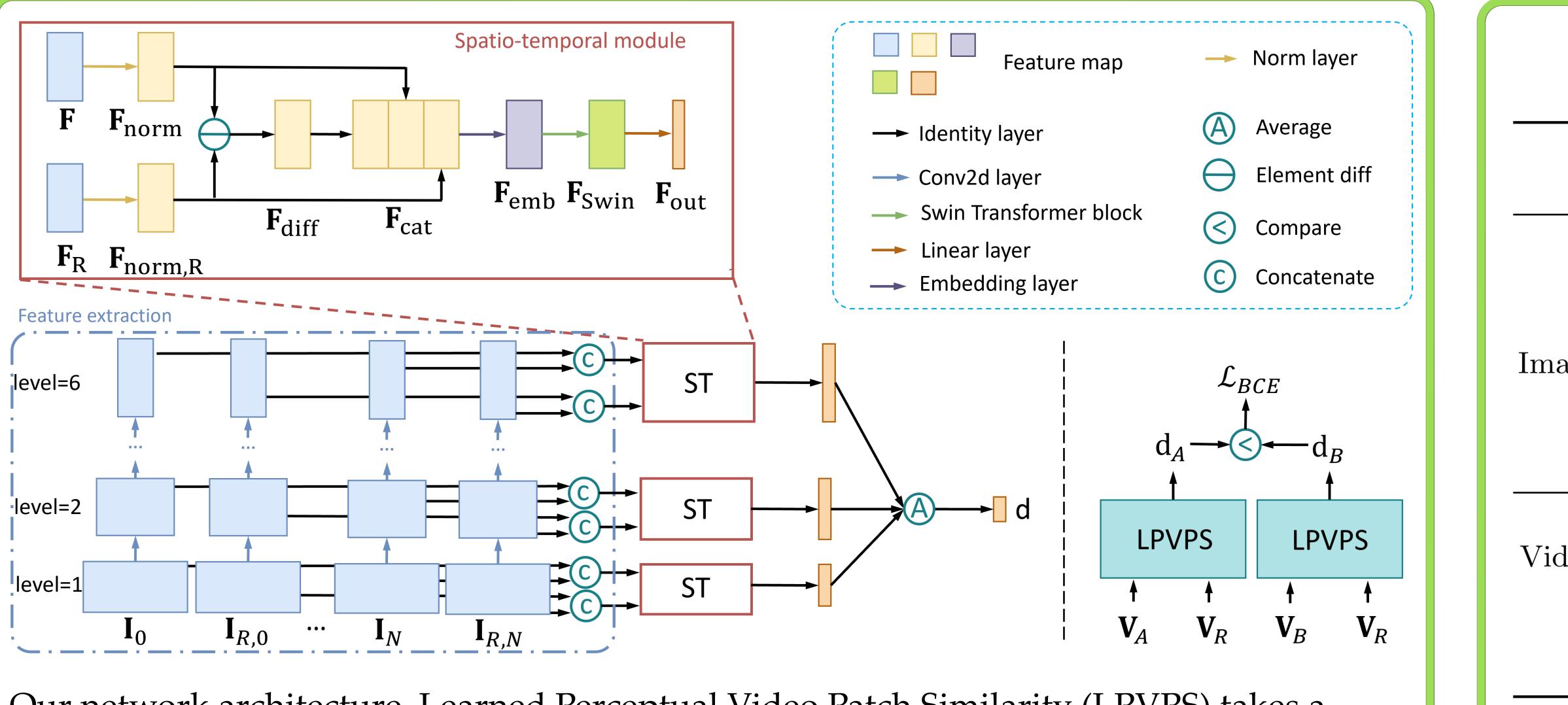
Video 1

Reference

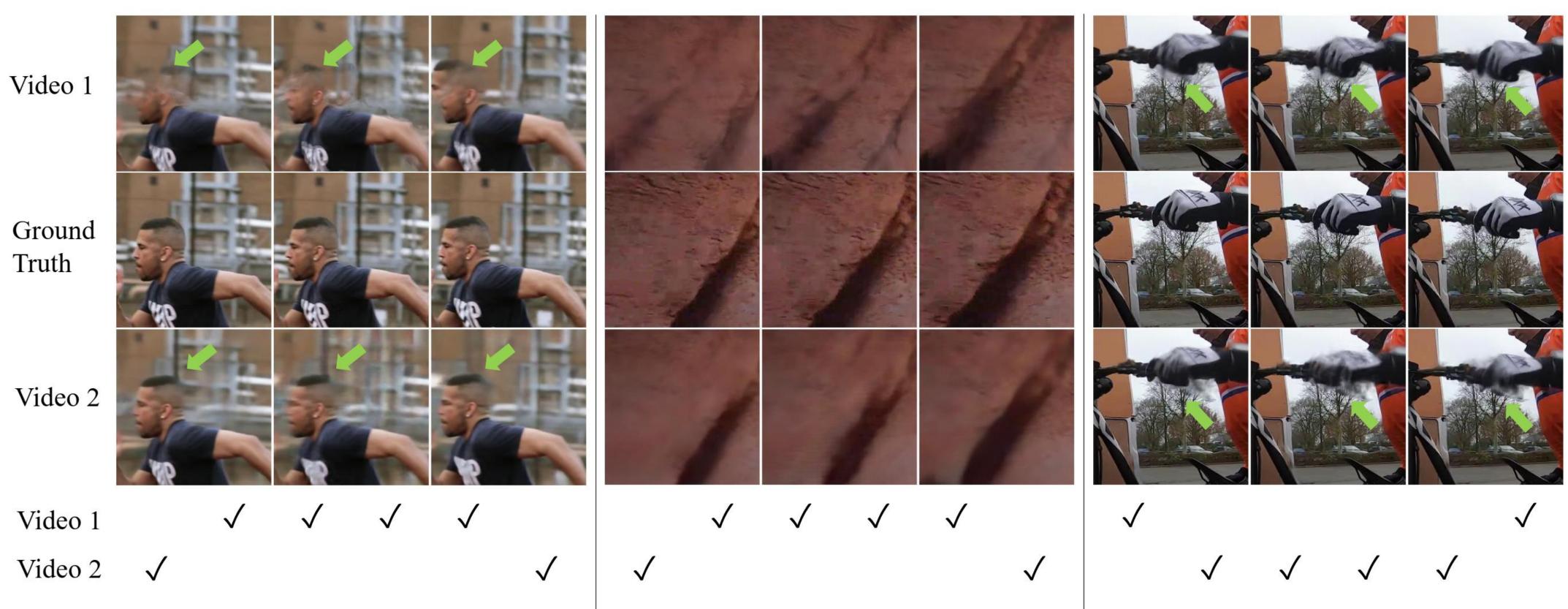


Video 2

Each sample consists of two videos synthesized from different interpolation methods, the reference video, and its perceptual judgments.


A Perceptual Quality Metric for Video Frame Interpolation

Qiqi Hou, Abhijay Ghildyal, and Feng Liu


Interpolation

Our network architecture. Learned Perceptual Video Patch Similarity (LPVPS) takes a video V and its reference V_R as input and predicts their perceptual similarity d.

Visual Comparison

Human LPIPS DISTS PIM1 VMAF Ours Human LPIPS DISTS PIM1 VMAF Ours Human LPIPS DISTS PIM1 VMAF Ours

Visual examples on the VFIPS dataset. Green arrows are used to label the area with noticeable difference. We mark the preference of each method using \checkmark . Compared to other methods, our method is consistent with humans.

Ref			SSU,			Ref					
Human	4th	3rd	5th	1st	2nd	Human	4th	1st	5th	3rd	2nd
VMAF	4th	3rd	5th	2nd	1st	VMAF	1st	2nd	3rd	4th	5th
LPIPS	3rd	4th	5th	1st	2nd	LPIPS	2nd	1st	5th	3rd	4th
Ours	4th	3rd	5th	1st	2nd	Ours	4th	1st	5th	3rd	2nd

Visual examples on the BVI-VFI dataset. Yellow rectangles are used to show the reference video. We report the rank for the distorted videos.

Ta
Image
Video
Our n large
Method 2AFC
Our 1 the hi
We e modu
modu
modu
modu Extra AlexNe I3D
modu Extra AlexNe I3D Ours Ours Effectiv
modu Extra AlexNe I3D Ours Ours Effectiv
modu L Extra AlexNa I3D Ours Ours Ours ST Modu None Conv3D Original St Ours-Swin v
modu L Extra AlexNa I3D Ours Ours Ours ST Modu None Conv3D Original St Ours-Swin v
modu L Extra AlexNa I3D Ours Ours Ours ST Modu None Conv3D Original St Ours-Swin v

Yable 1: Comparison with state-of-the-art methods.							
Method	VFIPS (val.) 2AFC		/FI [19] PLCC	$\frac{(\text{test})}{\text{KROCC}}$			
PSNR SSIM [79] MS-SSIM [80] e LPIPS (VGG) [97] DISTS [21] PIM-1 [6] Watson-DFT [17]	$0.763 \\ 0.784 \\ 0.794 \\ 0.808 \\ 0.801 \\ 0.787 \\ 0.800$	$\begin{array}{c} 0.742 \\ 0.739 \\ 0.772 \\ 0.628 \\ 0.597 \\ 0.492 \\ 0.628 \end{array}$	$0.722 \\ 0.746 \\ 0.789 \\ 0.796 \\ 0.763 \\ 0.668 \\ 0.706$	$0.656 \\ 0.639 \\ 0.667 \\ 0.517 \\ 0.517 \\ 0.428 \\ 0.538$			
STRRED [7] o VMAF [69] DeepVQA [77] VSFA [41] Ours	0.777 0.805 0.588 0.660 0.830	0.614 0.583 0.369 0.108 0.794	0.682 0.614 0.271 0.486 0.870	0.539 0.483 0.300 0.050 0.700			

Experiments

method outperforms the state-of-the-art methods by a margin in the VFIPS dataset and the BVI-VFI dataset.

Table 2: Comparison on the X-TEST(4K) dataset [73].

PSNR	SSIM [79]	MSSSIM [80]	LPIPS $[97]$	STRRED [7]	VMAF [69]	Ours
0.752	0.637	0.737	0.748	0.722	0.735	0.789

method outperforms the state-of-the-art methods on igh-resolution-large-motion X-TEST(4K) dataset.

Ablation Study

examine our feature extractor, our spatio-temporal lle, and the LPIPS-annotated training examples.

ractor	SI	ROCO	C PLC	C	KROCC	Param(M)) Runt	time(ms)
Net [37] D [10]).761).659	0.83 0.75		$\begin{array}{c} 0.650 \\ 0.550 \end{array}$	$\begin{array}{c} 14.5 \\ 20.3 \end{array}$		$12.8 \\ 33.2$
cs-3D	(0.728	0.73	88	0.639	8.6		13.6
rs-2D	C).794	0.87	70	0.700	4.6		10.4
iveness of the ST module Effectiveness of the Annotations								tions
	ROCC	PLCC	KROCC	А	nnotations	SROCC	PLCC	KROCC
BD0Swin0w. LN0	.617 .761 .728 .724 .794	0.663 0.819 0.766 0.746 0.870	0.539 0.661 0.639 0.611 0.700	1	Human Automatic All	0.719 0.653 0.794	0.753 0.687 0.870	0.611 0.567 0.700

code and models can be downloaded at: s://github.com/hqqxyy/VFIPS

