Haskell Contract Checking via First-Order Logic

Nathan Collins 1

Department of Computer Science
Portland State University

RPE Presentation, 11 May 2012

! Joint work with Charles-Pierre Astolfi, Koen Claessen, Simon
Peyton-Jones, and Dimitrios Vytiniotis

Nathan Collins 1/17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> X
head 42 -- Rejected.

Nathan Collins 2/17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> x
head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -— Accepted. Uh oh!

Nathan Collins 2/17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> x
head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -— Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Nathan Collins 2/17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> x
head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -— Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?

Nathan Collins 2/17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> x
head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -— Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2/17

Outline

Goal: effective static contract checking.

Overview of Contracts

Checking Contracts: Translating Haskell to FOL

Experiments

Conclusions/Future Work

Nathan Collins 3/17

My Contributions

v

Rewrote the contract checker and added many features.

v

Designed and implemented the Min-translation.

» Wrote many examples, including the first use of lemmas.

v

Designed and implemented a type checker for contracts.

» ...and now: documented the research in an RPE paper.

Nathan Collins 4/17

Notation

; Cons O (Cons 1 (Cons 2 Nil))
Cons Z (Cons (S Z) (Comns (S (S Z)) Nil))

Judgments:
> Has type:
» Has contract:

Nathan Collins Overview of Contracts 5/17

An Example Contract

c ::= CF -- Crash free
| c&&c -- Conjunction
| cllc -- Disjunction
| x:c -> ¢ -- Implication
| {xIp} -- Refinement

Nathan Collins Overview of Contracts 6/17

An Example Contract

c = CF -- Crash free
| c&&c -- Conjunction
| cllc -- Disjunction
| x:c -> ¢ -- Implication
| {xIp} -- Refinement

Example: CF is not a syntactic property:

fst (x,_) = x

snd (_,y) =y
1.’fst (Z, error "Oh no!") ::: CFL
2. But not|(Z, error "Oh no!") ::: CF‘,because

’snd (Z, error "Oh no!") ‘ is a crash.

Nathan Collins Overview of Contracts 6/17

Another Example Contract

= CF
| c&&
| cll
| x:c
|

{x

Crash free

¢ -- Conjunction
c -- Disjunction
-> c -- Implication

pr -- Refinement

Example: refinement, implication, and conjunction:

lookUp
lookUp n
Nil
Cons x
Z
S n’
lookUp

forall t. Nat -> List t -> t
Xxs = case xs of
-> error "List is too short!"
xs’ -> case n of

-> lookUp n’ xs’
n:CF -> ({xs|n < length xs}&&CF)

-> CF

Nathan Collins Overview of Contracts

7/17

Contracts Are Useful

» Static type checking = compile-time approximation to
run-time program behavior.

» Contracts + types = better approximation.

sort :: forall t. List t -> List t
sort ::: CF -> CF&&{xs|sorted xs}

Nathan Collins Overview of Contracts 8/17

Contracts Are Useful ... But Difficult to Check Statically

error
head xs
Nil

Cons x _

forall t. String -> t

= case xs of

-> error "Empty list!"

-> x

Type checking is path insensitive (easy):

head

forall t. List t

-> t

Nathan Collins

Overview of Contracts

9/17

Contracts Are Useful ... But Difficult to Check Statically

error :: forall t. String -> t
head xs = case xs of
Nil -> error "Empty list!"
Cons x _ -> x

Type checking is path insensitive (easy):

head :: forall t. List t -> t

Contract checking is path sensitive:

head ::: CF&&{xs | not (null xs)} -> CF

And must reason about arbitrary computations (undecidable):

not (null xs) =True = xs # Nil

Nathan Collins Overview of Contracts 9/17

Contract Checking Process

Axioms

Data Type Definitions

Function Definitions
Checked Contracts

Theorem Prover

Unchecked Contracts

[BN

Nathan Collins Checking Contracts: Translating Haskell to FOL

The Naive Translation

map ::: (CF -> CF) -> CF -> CF
map :: forall s t. (s -> t) -> List s -> List t
map f xs = case xs of

Nil -> Nil

Cons x xs’ -> Cons (f x) (map f xs’)

Naive translation of map's definition:

V f xs. (xs=Nil) — (map f xs = Nil)
AN Vxxs’.
(xs =Cons x xs’) —
(map f xs =Cons (f x) (map f xs’))

A (xs=DNil)V (3 xxs’. xs =Cons x xs’)V ---

Nathan Collins Checking Contracts: Translating Haskell to FOL

11/17

The Naive Translation .. .is Naive

» [BESBIEE: prover wastes time on pointless instantiations.

Naive translation of map's definition (unchanged):

EEEES. (xs =Nil) — (map f xs =Nil)
AN Vxxs’.
(xs = Cons x xs’) —
(map f xs =Cons (f x) (map f xs’))

© (xs=Nil)V(3x xs’. xs = Cons x xs’) V-~

Nathan Collins Checking Contracts: Translating Haskell to FOL 12 /17

The Less-Naive Translation

» Problem: prover wastes time on pointless instantiations.
» Solution:

> Idea: restrict instantiation to “interesting” terms.
» Implementation: “Min(e)” means “e is interesting”.

Less-naive translation of map's definition:

V f xs. Min(map £ xs) — (
(xs = Nil) — (map f xs = Nil)
AN ¥V xzxs’
(xs =Cons x xs’) —
(map f xs =Cons (f x) (map f xs’))

A (xs=DNil)V(dxxs’. xs =Cons x xs’)V---
A Min(xs))

Nathan Collins Checking Contracts: Translating Haskell to FOL 13 /17

How to Design a Less-Naive Translation

> Restrict prover’s search space using Min.
» Evaluation semantics + axiom/goal distinction motivate Min
placement.

Axioms

Data Type Definitions

Function Definitions
Checked Contracts

Unchecked Contracts

[BN

See paper for details.

Nathan Collins Checking Contracts: Translating Haskell to FOL

14 /17

Ison

ime Compar

iments: Running-t

Exper

0oL

SPUOIIG Ul AWL], Uy

06 (] 0Z 09 08 or 0 0z 0t 0
Uy ou) FARN o UIIN
(reg) 1L ,
(re) o' | EE—
1) 60l
qred) o
210
(ssed) 70
.ﬁﬁ%c.ﬁ 5]
(ssed) g0
[o —
(ssed) 01T J
(s5eg) 5 1 I———
(sseq) 50
(sseq)ppr
(s55%1) 90
Mﬁiw o
ssed) 1)

—

£

(sse,

(sseq) 0Tt
(s5ed) 1€

(sseq) o0
(ssed) 01

(ssed) €7

(pre) 7 1 | I—

(ssed) 7D
(ssed) 0L 1]
e o

sseg) e 1 M

sy Sng-uorsin,
sy paysouun-15-
sryS-nur/ou/

sy 3eu-Suoim-u

SY 01 -S1-pect
Sy jo-s1-peq/ou/:

S OIIZUOU-} U

Experiments

S £42-51-95 1041/
sysjuawm e-ypo,
SYUOGIUnyJue)s:
Sy s furu/sad /|
syuy/ssaaday /

S JO-03-J3-03-§2-

sydew/sod /-
sy doop/sek

SUORY-PUIL

SYPO-sp1/ k)
syroupiE fsak
S [EL-p po-
syjeNbo fsak /-

Sy 3eu-Suoim-uo-

syzgo-si-ba-sanu

S IIAUIAS- pp!

ey

S J-0-§-03-f -

S OIAZUOU-) [

Conclusion
Progress made:
» Adding Min significantly improves performance.

But lots of room for improvement:

» Debugging failed proofs is hard:
» Is the contract wrong?
» Or are the axioms insufficient?

> Need better feedback from contract checker:
» Which part of which contract is violated?
» What execution path leads to violation?

> Need better lemma support:
» Lemma use shouldn't affect run-time behavior.
» Equational reasoning would help.

Axioms

Data Type Definitions
Function Definitions
Checked Contracts

[Theorem Prover

Unchecked Contracts

Goals

Fail

Nathan Collins Conclusions/Future Work 16 /17

Future Work

Improve contract checker:
> Better feedback on failure by making goals:

» Smaller: (¢ = A; ¢i) = \;(¢ — ¢i)
» Path-based.

» More expressive proof system:
» Real lemmas?
» Structural (co-)induction?
» More expressive contract system:
» Equality?
» Contract polymorphism.
» Constructor contracts.
» Recursive contract definitions.

data List t Nil | Comns t (List t)
contract ListC c Nil || Comns c¢ (ListC c)
map:: forall s t. (s -> t) -> List s -> List t
map:::forall ¢ d. (¢ -> d) -> ListC ¢ -> ListC d

Nathan Collins Conclusions/Future Work 17 /17

	Overview of Contracts
	Checking Contracts: Translating Haskell to FOL
	Experiments
	Conclusions/Future Work

