
Haskell Contract Checking via First-Order Logic

Nathan Collins 1

Department of Computer Science
Portland State University

RPE Presentation, 11 May 2012

1Joint work with Charles-Pierre Astolfi, Koen Claessen, Simon
Peyton-Jones, and Dimitrios Vytiniotis

Nathan Collins 1 / 17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -- Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2 / 17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -- Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2 / 17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -- Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2 / 17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -- Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2 / 17

Introduction

The Haskell type system is powerful:

head :: forall t. List t -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

head 42 -- Rejected.

But it doesn’t prohibit exceptions:

head Nil :: forall t. t -- Accepted. Uh oh!

Contracts to the rescue! Contracts are fancy types:

head ::: CF&&{xs | not (null xs)} -> CF

Great! But how to check these fancy types?
First-order logic to the rescue ... sort of.

Nathan Collins 2 / 17

Outline

Goal: effective static contract checking.

Overview of Contracts

Checking Contracts: Translating Haskell to FOL

Experiments

Conclusions/Future Work

Nathan Collins 3 / 17

My Contributions

I Rewrote the contract checker and added many features.

I Designed and implemented the Min-translation.

I Wrote many examples, including the first use of lemmas.

I Designed and implemented a type checker for contracts.

I . . . and now: documented the research in an RPE paper.

Nathan Collins 4 / 17

Notation

Data:

[0,1,2]

= Cons 0 (Cons 1 (Cons 2 Nil))

= Cons Z (Cons (S Z) (Cons (S (S Z)) Nil))

Judgments:

I Has type: e :: t

I Has contract: e ::: c

Nathan Collins Overview of Contracts 5 / 17

An Example Contract

c ::= CF -- Crash free

| c&&c -- Conjunction

| c||c -- Disjunction

| x:c -> c -- Implication

| {x|p} -- Refinement

Example: CF is not a syntactic property:

fst (x,_) = x

snd (_,y) = y

1. fst (Z, error "Oh no!") ::: CF .

2. But not (Z, error "Oh no!") ::: CF , because

snd (Z, error "Oh no!") is a crash.

Nathan Collins Overview of Contracts 6 / 17

An Example Contract

c ::= CF -- Crash free

| c&&c -- Conjunction

| c||c -- Disjunction

| x:c -> c -- Implication

| {x|p} -- Refinement

Example: CF is not a syntactic property:

fst (x,_) = x

snd (_,y) = y

1. fst (Z, error "Oh no!") ::: CF .

2. But not (Z, error "Oh no!") ::: CF , because

snd (Z, error "Oh no!") is a crash.

Nathan Collins Overview of Contracts 6 / 17

Another Example Contract

c ::= CF -- Crash free

| c&&c -- Conjunction

| c||c -- Disjunction

| x:c -> c -- Implication

| {x|p} -- Refinement

Example: refinement, implication, and conjunction:

lookUp :: forall t. Nat -> List t -> t

lookUp n xs = case xs of

Nil -> error "List is too short!"

Cons x xs ’ -> case n of

Z -> x

S n’ -> lookUp n’ xs’

lookUp ::: n:CF -> ({xs|n < length xs}&&CF) -> CF

Nathan Collins Overview of Contracts 7 / 17

Contracts Are Useful

I Static type checking = compile-time approximation to
run-time program behavior.

I Contracts + types = better approximation.

sort :: forall t. List t -> List t

sort ::: CF -> CF&&{xs|sorted xs}

Nathan Collins Overview of Contracts 8 / 17

Contracts Are Useful . . . But Difficult to Check Statically

error :: forall t. String -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

Type checking is path insensitive (easy):

head :: forall t. List t -> t

Contract checking is path sensitive:

head ::: CF&&{xs | not (null xs)} -> CF

And must reason about arbitrary computations (undecidable):

not (null xs) = True =⇒ xs 6= Nil

Nathan Collins Overview of Contracts 9 / 17

Contracts Are Useful . . . But Difficult to Check Statically

error :: forall t. String -> t

head xs = case xs of

Nil -> error "Empty list!"

Cons x _ -> x

Type checking is path insensitive (easy):

head :: forall t. List t -> t

Contract checking is path sensitive:

head ::: CF&&{xs | not (null xs)} -> CF

And must reason about arbitrary computations (undecidable):

not (null xs) = True =⇒ xs 6= Nil

Nathan Collins Overview of Contracts 9 / 17

Contract Checking Process

Nathan Collins Checking Contracts: Translating Haskell to FOL 10 / 17

The Naive Translation

map ::: (CF -> CF) -> CF -> CF

map :: forall s t. (s -> t) -> List s -> List t

map f xs = case xs of

Nil -> Nil

Cons x xs ’ -> Cons (f x) (map f xs ’)

Naive translation of map’s definition:

∀ f xs. (xs = Nil)→ (map f xs = Nil)
∧ ∀ x xs’.

(xs = Cons x xs’)→
(map f xs = Cons (f x) (map f xs’))

...
∧ (xs = Nil) ∨ (∃ x xs’. xs = Cons x xs’) ∨ · · ·

Nathan Collins Checking Contracts: Translating Haskell to FOL 11 / 17

The Naive Translation . . . is Naive

I Problem: prover wastes time on pointless instantiations.

Naive translation of map’s definition (unchanged):

∀ f xs . (xs = Nil)→ (map f xs = Nil)
∧ ∀ x xs’.

(xs = Cons x xs’)→
(map f xs = Cons (f x) (map f xs’))

...
∧ (xs = Nil) ∨ (∃ x xs’. xs = Cons x xs’) ∨ · · ·

Nathan Collins Checking Contracts: Translating Haskell to FOL 12 / 17

The Less-Naive Translation

I Problem: prover wastes time on pointless instantiations.
I Solution:

I Idea: restrict instantiation to “interesting” terms.
I Implementation: “Min(e)” means “e is interesting”.

Less-naive translation of map’s definition:

∀ f xs. Min(map f xs) →
(

(xs = Nil)→ (map f xs = Nil)
∧ ∀ x xs’.

(xs = Cons x xs’)→
(map f xs = Cons (f x) (map f xs’))

...
∧ (xs = Nil) ∨ (∃ x xs’. xs = Cons x xs’) ∨ · · ·
∧ Min(xs)

)
Nathan Collins Checking Contracts: Translating Haskell to FOL 13 / 17

How to Design a Less-Naive Translation

I Restrict prover’s search space using Min.

I Evaluation semantics + axiom/goal distinction motivate Min

placement.

See paper for details.

Nathan Collins Checking Contracts: Translating Haskell to FOL 14 / 17

Experiments: Running-time Comparison

Nathan Collins Experiments 15 / 17

Conclusion
Progress made:

I Adding Min significantly improves performance.

But lots of room for improvement:
I Debugging failed proofs is hard:

I Is the contract wrong?
I Or are the axioms insufficient?

I Need better feedback from contract checker:
I Which part of which contract is violated?
I What execution path leads to violation?

I Need better lemma support:
I Lemma use shouldn’t affect run-time behavior.
I Equational reasoning would help.

Nathan Collins Conclusions/Future Work 16 / 17

Future Work
Improve contract checker:

I Better feedback on failure by making goals:
I Smaller: (φ→

∧
i φi) ≡

∧
i (φ→ φi)

I Path-based.

I More expressive proof system:
I Real lemmas?
I Structural (co-)induction?

I More expressive contract system:
I Equality?
I Contract polymorphism.
I Constructor contracts.
I Recursive contract definitions.

data List t = Nil | Cons t (List t)

contract ListC c = Nil || Cons c (ListC c)

map:: forall s t. (s -> t) -> List s -> List t

map::: forall c d. (c -> d) -> ListC c -> ListC d

Nathan Collins Conclusions/Future Work 17 / 17

	Overview of Contracts
	Checking Contracts: Translating Haskell to FOL
	Experiments
	Conclusions/Future Work

