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ABSTRACT
A noise map facilitates monitoring of environmental noise
pollution in urban areas. It can raise citizen awareness
of noise pollution levels, and aid in the development of
mitigation strategies to cope with the adverse effects.
However, state-of-the-art techniques for rendering noise
maps in urban areas are expensive and rarely updated
(months or even years), as they rely on population and
traffic models rather than on real data. Participatory
urban sensing can be leveraged to create an open and in-
expensive platform for rendering up-to-date noise maps.

In this paper, we present the design, implementation
and performance evaluation of an end-to-end partici-
patory urban noise mapping system called Ear-Phone.
Ear-Phone, for the first time, leverages Compressive
Sensing to address the fundamental problem of recover-
ing the noise map from incomplete and random samples
obtained by crowdsourcing data collection. Ear-Phone,
implemented on Nokia N95 and HP iPAQ mobile de-
vices, also addresses the challenge of collecting accurate
noise pollution readings at a mobile device. Extensive
simulations and outdoor experiments demonstrate that
Ear-Phone is a feasible platform to assess noise pollu-
tion, incurring reasonable system resource consumption
at mobile devices and providing high reconstruction ac-
curacy of the noise map.

Categories and Subject Descriptors
C.m [Computer Systems Organization]: Miscellaneous–
Mobile Sensing Systems
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1. INTRODUCTION
At present, a large number of people around the world

are exposed to high levels of noise pollution, which can
cause serious illnesses ranging from hearing impairment
to negatively influencing productivity and social behav-
ior [12]. As an abatement strategy, a number of coun-
tries, such as the United Kingdom [9] and Germany [10],
have started monitoring noise pollution. They typically
use a noise map (a visual representation of the noise
level of an area) to assess noise pollution levels. The
noise map is computed using simulations based on in-
puts such as traffic flow data, road or rail type, and
vehicle type. Since the collection of such input data is
very expensive, these maps can be updated only after
a long period of time (e.g. 5 years for UK [9]). To
alleviate this problem, a recent study [20] proposes the
deployment of wireless sensor networks to monitor noise
pollution. Wireless sensor networks can certainly elimi-
nate the requirements of sending acoustic engineers for
taking real measurements, but the deployment cost of
a dedicated sensor network in a large urban space will
also be prohibitively expensive.

In this paper, we instead propose an urban sensing
approach (also known in the literature as participatory
sensing [6], people-centric sensing [11] or community
sensing [15]) for monitoring environmental noise, espe-
cially roadside ambient noise. The key idea in partici-
patory sensing is to “crowdsource” the collection of en-
vironmental data in urban spaces to people, who carry
smart phones equipped with sensors and location-providing
Global Positioning System (GPS) receivers. The vision
of participatory sensing is inspired by the success of
other online participatory systems, such as Wikipedia,
online reputation systems, and human computation sys-
tems such as the Google Image Labeler. Due to the
ubiquity of mobile phones, the proposed approach can
offer a large spatial-temporal sensing coverage at a small
cost. Therefore, a noise map based on participatory
data collection can be updated with a very small la-



tency such as hours or days compared to months or
years, making information provided by such a noise map
significantly more current than that provided by tradi-
tional approaches.

It is non-trivial to build a noise pollution monitoring
system based on mobile phones. Mobile phones are in-
tended for communication, rather than for acoustic sig-
nal processing.1 To be credible, noise pollution data col-
lected on mobile phones should be comparable in accu-
racy to commercial sound level meters used to measure
noise pollution. Since a participatory noise monitoring
system relies on volunteers contributing noise pollution
measurements, these measurements can only come from
the place and time where the volunteers are present.
Furthermore, volunteers may prioritize the use of the
microphone on their mobile phones for conversation. Or
they may choose to collect data only when the phone
has sufficient energy. Consequently, samples collected
from mobile phones are typically randomly distributed
in space and time, and are incomplete. To develop a
useful noise pollution monitoring application, we need
to recover the noise map from random and incomplete
samples obtained via crowdsourcing. In this paper, we
address these challenges. Our main contributions are:

1. We present the design and implementation of an
end-to-end noise mapping system, called Ear-Phone,
to generate the noise map of an area using partici-
patory urban sensing. EarPhone consists of mobile
phones and a central server. It encompasses sig-
nal processing software to measure noise pollution
at the mobile phone, as well as signal reconstruc-
tion software at the central server. This new noise
mapping system is expected to cost significantly
less than traditional noise monitoring systems.

2. We address the problem of incomplete samples that
are obtained via crowdsourcing by using compres-
sive sensing, focusing on roadside noise pollution.2
To the best of our knowledge, this is the first ap-
plication of compressive sensing to environmental
noise data collection.

3. We evaluate Ear-Phone with extensive simulations
and real-world outdoor experiments. The results
show that Ear-Phone has reasonable accuracy, and
resource requirements in terms of CPU load and
energy consumption.

The rest of the paper is organized as follows. In
the next section, we describe the Ear-Phone architec-
ture followed by the system design in Section 3. Then,
we evaluate Ear-Phone with both outdoor experiments
(Section 4) and extensive simulations (Section 5). We
present related work in Section 6 and conclude in Sec-
tion 7.
1
For example, devices such as the Nokia N95 or HP iPAQ

do not support floating-point arithmetic, which must be em-

ulated with fixed point operations.
2
We focus on roads because typically noise pollution is most

severe on busy roads.

2. EAR-PHONE ARCHITECTURE
In this section, we provide an overview of Ear-Phone.

A detailed description of the system components is pre-
sented in Section 3.

The overall Ear-Phone architecture, depicted in Fig. 1
consists of a mobile phone component and a central
server component. Noise levels are assessed on the mo-
bile phones before being transmitted to the central server.
The central server reconstructs the noise map based on
the partial noise measurements. Note that reconstruc-
tion is required because the urban sensing framework
cannot guarantee that noise measurements are available
at all times and locations.

Let us begin with a mobile phone user who is walk-
ing along a street. We call a mobile phone with the
Ear-Phone application a MobSLM, where SLM stands
for “sound level meter” which is the instrument used
by acoustic engineers to measure environmental noise
level. When the mobile phone is not used for conversa-
tion the MobSLM on the phone is turned on. 3 When
turned on, the signal processing module starts comput-
ing a loudness characteristic known as the equivalent
noise level (LAeq,T ) over a time interval T from the
raw acoustic samples collected by the microphone over
the corresponding time interval. The computed noise
level is further tagged with the GPS coordinates (which
will be denoted by (lat,lon) and system time before be-
ing stored in the phone memory. The stored records �
time,lat,lon,LAeq,T � are uploaded to the central server
when the mobile phone detects an open WiFi access
point. Of course, 3G services on mobile phones can also
be used to upload data.

The communication manager at the central server waits
for user transmissions. When it receives user data, it
converts the GPS coordinates of a record to a Military
Grid Reference System (MGRS, see Section 3.2.2 for the
detailed description) grid index and stores the informa-
tion � time, grid index, LAeq,T � in a data repository.
Reconstruction is conducted at (predefined) periodic in-
tervals4; when triggered, the reconstruction module is
invoked to reconstruct the missing data. The recon-
structed data is then stored in the data repository.

A query from an end user (e.g., what is the noise
level on Oxford Street at 5pm on 28 October 2009? ) is
processed by a query manager at the central server. The
location information (e.g., Oxford Street) of the query
is first resolved into grid indices and the reconstructed
data associated with those grid indices is fetched from
the data repository. Then, the grid indices are converted
back to GPS coordinates and the corresponding noise
levels are overlaid on a geo-centric Internet map before
being displayed to the end user.

3
Note that in the current prototype deployment we have

not implemented this feature. During our experiments we

did not use the phone for conversation.
4
Note that in this paper we primarily focus on the accuracy

of the noise map obtained from participatory sensing. De-

termination of a suitable update interval is left for future

work.



Figure 1: Ear-Phone Architecture

3. SYSTEM COMPONENTS
In this section, we describe the major components of

Ear-Phone in detail.

3.1 Mobile Phone Components

3.1.1 Signal Processing Module
The aim of the signal processing module is to quan-

titatively assess the environmental noise. Noise level or
loudness is typically measured as the A-weighted equiv-
alent continuous sound level or LAeq,T . A-weighting is
the commonly used frequency weighting that reflects the
loudness perceived by human being [14]. Measured in
decibel (dBA), LAeq,T captures the A-weighted sound
pressure level of a constant noise source over the time
interval T , which has the same acoustic energy as the
actual varying sound pressure level over the same in-
terval. Note that sound pressure level is captured by
a microphone as an induced voltage. The A-weighted
equivalent sound level LAeq,T in time interval T is thus
given by

LAeq,T = 10 log10(
1
T

� T

0
(vA(t))2dt

� �� �
v̄A(T )

) + ∆ (1)

where vA(t) is the result of passing the induced voltage
v(t) through an A-weighting filter and ∆ is a constant
offset determined by calibrating the microphone against
a standard sound level meter.

In order to compute v̄A(T ) , we design a tenth-order
digital filter (whose coefficients are given in Table 1)
whose frequency response matches with that of A weight-
ing over the range 0–8kHz. This range is chosen because
the acoustic standard, IEC651 Type 2 SLM [14], re-
quires measurement of environmental noises between 0
and 8 kHz. Based on the coefficients of the digital filter
(al, bl where l = 1..10), we then calculate v̄A(T ) using
the following algorithm.
Algorithm Compute v̄A(T )
1. Initialize: Q = FsT − 1, Fs =Sampling Frequency,

Sampling Period Ts = 1
Fs

;

Input: Voltage samples v(kTs) for k = 0, 1, 2, . . . , Q−1
over duration [0, T ];

Output: v̄A(T )
2. Based on {al, bl} and initial condition, vA(kTs) = 0

for k = 0, ..., 9, recursively compute

vA(kTs) =
10�

�=1

a�vA((k − �)Ts)

+
10�

�=0

b�v((k − �)Ts) for k ≥ 10 (2)

3. Compute

v̄A(T ) =
1
Q

Q−1�

k=0

vA(kTs)2 (3)

3.2 Central Server Components

3.2.1 Computing Long-term Equivalent Noise Level,
LAeq,LT

In order to compute the long-term equivalent noise
level LAeq,LT over the duration NT (where N > 1
and N is an integer) from the equivalent noise levels
LAeq,T measured over shorter time durations T , we use
the following standard formula:

LAeq,LT = 10 log10[
1
N

ΣN
i=1100.1LAeq,Ti ] (4)

where N is the number of reference time intervals and
LAeq,Ti is the time average A-weighted sound pressure
level in the i-th reference time interval. The above for-
mula can be readily derived by noting that the equiv-
alent noise level is defined as the logarithm of average
noise power (see equation (1)).

3.2.2 GPS, MGRS conversions
The reasons for approximating GPS by square areas

are two fold. First, computing the LAeq,T for every pos-
sible GPS coordinate is impractical because there are



� 0 1 2 3 4 5 6 7 8 9 10
b� 0.9299 -2.1889 0.7541 1.3229 -0.7728 0.1025 -0.2398 -0.0098 0.1154 -0.0103 -0.0033
a� 2.1856 -0.7403 -1.0831 0.6863 -0.2274 0.2507 -0.0058 -0.0821 0.0153 0.0004

Table 1: Coefficient of the digital filter that approximates A-weighting

infinite GPS coordinates. Secondly, the acoustic stan-
dards for monitoring noise pollution recommend mea-
suring the pollution in square areas (Section 5.3.1(a) in
[1]) assuming that the noise level is constant over that
area. In order to approximate GPS by grids, we use
MGRS, which can divide the earth surface into squares
of 100 m × 100 m, 10 m × 10 m or 1 m × 1 m etc.

We followed the Australian acoustic standard to de-
termine an appropriate grid size. We assume that the
volunteers walk along the pavement (or sidewalk), which
is typically two meters wide, and measure ambient noise
on the street level which is the aggregate of the noise
generated by multiple moving vehicles. The Australian
acoustic standard restricts the noise level difference be-
tween two adjacent grids to be no more than 5 dB (Sec-
tion 5.3.2 in [1]). Therefore, we conducted a number of
experiments where we put a MobSLM at a static posi-
tion and put another MobSLM at difference distances
from the first MobSLM and recorded the difference of
LAeq,1s readings for each distance. For grid sizes of 10×
10, 20 × 20, 30 × 30, 40 × 40 and 50 × 50 square me-
ters, the corresponding noise level differences between
adjacent grids were found to be 2.26 ± .06, 3.82 ± .05,
3.86 ± .03, 4.11 ± .02 and 4.97 ± .03 dB, respectively.
We could therefore use square grids which are less than
or equal to 50 meters in each dimension. We chose to
use a grid size of 30m ×30m because it takes approx-
imately 30 seconds for a Nokia N95 to acquire a GPS
position. In that time, a person can travel 30 meters
at normal walking speed (1 m/s). Furthermore, GPS
has an accuracy of 10 meters in outdoor environments,
therefore a 30 × 30 grid could help us to cope with the
GPS accuracy. We use formulations in [17] to convert
between GPS and MGRS.

3.2.3 Signal Reconstruction Module
To study the sampling requirements, communication

overhead and reconstruction accuracy trade-offs within
Ear-Phone,we developed two sensing strategies. In this
section, we will describe the two sensing strategies, namely
the projection method and the raw-data method, and
also describe how the central server performs recon-
struction using the information collected by these two
different sensing strategies. For ease of explanation, we
will explain the two sensing strategies with an example.

Consider the trajectory of two volunteers, A and B,
along a section SG of a one dimensional street (see
Fig. 2). Section SG contains three MGRS grid refer-
ences: �1, �2 and �3. Suppose at times t1 and t2, vol-
unteer A collects noise samples in grids �1 and �2, and
B collects samples in grids �3 and �1 respectively. Note
that the noise sample in a grid refers to the equivalent

noise level LAeq,1s in that grid. The complete noise
samples in section SG, during time t1 and t2 can be rep-
resented as a vector x = [d(�1, t1), d(�2, t1), d(�3, t1),d(�1, t2),
d(�2, t2), d(�3, t2)]T, where d(�, t) is the noise level at lo-
cations � = {�1, �2, �3} and time t = {t1, t2}. We refer
to the vector x as a noise profile. Similarly, samples
collected by A and B can be represented as vectors
xA = [d(�1, t1), 0, 0, 0, d(�2, t2), 0]T and
xB = [0, 0, d(�3, t1), d(�1, t2), 0, 0]T respectively.

Figure 2: Illustration of urban sensing

In the projection method, A multiplies his measure-
ment vector xA with a projection vector
φA = [φ1

A, 0, 0, 0, φ5
A, 0]T, where φ1

A, φ5
A are Gaussian

distributed random numbers with mean zero and unit
variance, and sends the projected value, yA = φT

A ∗ xA

to the central server. Note that the inner product φT
AxA

is known as a projection in compressive sensing.
In the raw-data method, A directly sends his noise

samples to the central server. Then, at the central server
the projection vector for A’s data is regenerated as
φA = [φ1

A, 0, 0, 0, 0, 0; 0, 0, 0, 0, φ5
A, 0]T, where φ1

A = φ5
A =

1. Note that the projected value is again given by
yA = φT

AxA. In fact, in this case, yA is a vector consist-
ing of A’s measurements d(�1, t1) and d(�2, t2).

At the central server the reconstruction module ac-
cumulates the projected values from all volunteers in a
vector y = [yA, yB ]T and forms the projection matrix,
Φ = [φT

A, φT
B ]. The reconstruction proceeds in two steps.

In the first step, the central server solves the following
optimization problem:

ĝ = arg min
g∈RN

�g�1 such that y = ΦΨg (5)

where Ψ is a transform basis in which the noise profile
x is compressible. In [19], we provide some evidence
that the noise profile x is compressible in the Discrete
Cosine Transform (DCT) basis. In the second step, an
estimate of the noise profile x is given by Ψĝ. Note that
the optimization problem (5) is a convex optimization
and there exist efficient numerical routines for this class
of problems.

In our current implementation we used a simplified
“query to grid resolver”, which is essentially a look up
table, to store the grid indices of the road segments. In
our prototype implementation, we only stored the grid
indices of the road segments where our experiments were



(a) (b)

Figure 3: Screenshots of (a) Ear-Phone applica-
tion running on Nokia N95 (b) Signal processing
module running on HP iPAQ 6965.

conducted. We used widely available open-source soft-
ware for query manager and communication manager,
therefore we do not describe these components in fur-
ther detail.

4. IMPLEMENTATION AND EVALUATION
In this section, we first describe the Ear-Phone imple-

mentation. Then, we evaluate the system performance
in terms of noise-level measurement accuracy, resource
(CPU, RAM and energy) consumption and noise-map
generation, which demonstrates that Ear-Phone is an
effective end-to-end system for measuring noise pollu-
tion from incomplete and random samples inherent in
participatory sensing.

4.1 System Implementation
We have implemented the mobile phone components

on two hardware platforms - the Nokia N95 and the HP
iPAQ (Fig. 3). We choose Java as the programming lan-
guage because it is platform independent. The various
mobile components are implemented as separate appli-
cation threads (e.g., GPS thread and signal processing
thread) in Java. We used the raw-data method (see
Section 3.2.3) as the sensing strategy for the current
Ear-Phone prototype. The server component consists
of a MySQL database and PHP server-side scripting.
We used the MySQL database to store both the col-
lected noise level data and the reconstructed noise level
data. We used a PHP script to implement the server-
side modules such as the communication manager, GPS
MGRS converter, noise signal reconstruction module,
and query manager (see Section 2 for the description of
these modules).

4.2 Measurement Accuracy
Recall from Section 3 (Eq.(4)) that we need to know

the calibration offset to measure LAeq,T . We deter-
mine this offset by conducting a simple calibration ex-
periment. We use the freely available Audacity tool [4]
to produce a chain of one second wide pulses of varying
amplitudes and compare the responses of our algorithm
(when computing LAeq,1s ) on a Nokia N95 and a HP
iPAQ with the responses of a commercial sound level
meter, Center-322 SLM [7] (see Fig. 4(a)). We use the
mean of the difference in readings between the com-
mercial meter (we refer it by RefSLM ) and our mobile
based SLM, as the offset. After adding the computed
offset, we repeat the experiment and plot the responses
in Fig. 4(b). We observe that our mobile phone based
SLMs have a precision of ±2.7 dB. Note that a differ-
ence of 3 dBA is imperceptible to the human ear. Note
also that we found that phones from the same model
could have different calibration offsets. This essentially
means that a calibration technique needs to be devel-
oped to automatically calibrate the mobile phones of
volunteers.
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Figure 4: Measurement Accuracy of Ear-Phone

In our current prototype deployment, we assume that
phones are carried in the volunteer’s palm or in a man-
ner such that the microphone is not obstructed. How-
ever, we have also conducted experiments to investi-
gate how the positions of the phone affect the mea-
surement accuracy. In these experiments we kept a

Figure 5: Power consumption of Ear-Phone on
Nokia N95 for a two-minute period.
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Figure 6: This figure shows the noise level (in dBA) when the MobSLM is carried (a) inside a shirt
pocket (b) around the waist (c) inside a backpack. A RefSLM and a MobSLM are used as references.

MobSLM in three different positions: inside a volun-
teer’s shirt pocket, on his waist belt, and in his back-
pack, and recorded roadside noise levels. In order to
compare the noise measurement, the volunteer also car-
ried a MobSLM in one hand and the RefSLM in the
other hand. Fig. 6 summarizes the experimental results.
If the MobSLM is being held in our palm, then its ac-
curacy is within 2.7dB of the RefSLM. If the phone is in
a shirt pocket or carried around the waist, the accuracy
is within 3.4 dB of the RefSLM. The additional error of
0.7dB is small compared with the actual noise level of
about 67dB. If the phone is carried in a backpack, then
the accuracy is within 4.1dB of the RefSLM. An inter-
esting observation of the results in Fig. 6 is that the ef-
fect of placing the MobSLM in the shirt pocket, around
the waist and in a bag is not a lower noise level due to
increased attenuation, rather the variance of the noise
level becomes larger. A physical explanation of this ob-
servation is yet to be investigated but these results show
that there is an opportunity to embed context-awareness
to assist the MobSLM.

4.3 Resource Usage

4.3.1 Power Benchmarks
We measure the power consumption of Ear-Phone us-

ing the Nokia Energy Profiler, a standard software tool
provided by Nokia specifically for measuring energy us-
age of applications running on Nokia hardware. The
profiler measures battery voltage, current, and temper-
ature approximately every fourth of a second and stores
the results in the RAM. Fig. 5 shows the typical contri-
bution of Ear-Phone to the overall energy budget during
a two minute period with power consumption in Watts
on the y axis. The highest spikes shown on the plot are
due to the upload of data to the central server. How-
ever, a 30-second cycle is evident from this plot, wherein
the high power consumption during the first half of this
cycle is due to the concurrent execution of the GPS and
signal processing threads, and in the second half, power
consumption is due to the standalone execution of the

Table 2: CPU and RAM usage
CPU Load (%) RAM (MB)

Phone Idle 2±0.79 32.86
Ear-phone 5.22±3.03 38.06
(Signal processing
(thread only)
Ear-phone 98.15±11.40 38.28
(Signal processing
& GPS threads)

signal processing thread. Note that due to resource lim-
itations we can only get one GPS coordinate every 30
seconds on the Nokia N95 platform.

4.3.2 Memory and CPU Benchmarks
We also carried out benchmark experiments to quan-

tify the RAM and CPU usage of Ear-Phone running on
the N95 using the Nokia Energy Profiler tool. To pre-
cisely measure the resource consumption, we enable the
screen saver to disassociate the resource occupation of
the N95 LCD. We first measure the amount of RAM and
CPU usage when the phone is idle. Then, we repeat the
measurement to determine the power consumption of
Ear-Phone with only the signal processing thread run-
ning. Finally, we repeat with both the signal processing
and GPS threads running concurrently. The results in
Table 2 show that Ear-Phone uses less than 40% of sys-
tem RAM. Furthermore, Table 2 shows that the GPS
thread dominates the CPU usage of Ear-Phone.

The current Ear-Phone implementation is not opti-
mized for CPU utilization or power consumption since
our main concern at this stage is the accuracy of the
noise map. Proper techniques can be designed to mini-
mize usage of these resources.

4.4 Performance Evaluation
To evaluate the performance of Ear-Phone as an end-

to-end system, we conducted several outdoor experi-
ments. Our primary goal is to investigate the impact
of data availability on reconstruction performance. In
the experiments, we reconstructed the noise map along a



major road intersection in Brisbane, Australia. This in-
tersection includes Mogill Road, a major artery that car-
ries significant traffic and is thus noisy, and Bainbridge
Drive, which is a branch road that leads to a residen-
tial neighborhood and is hence much quieter. We recon-
structed the hourly noise map for time periods (off peak:
14:00 - 15:00 and peak: 8:00 - 9:00) along these road seg-
ments. To collect noise samples, we walked along these
segments several times within the one hour period with
Ear-Phone running on the Nokia N95. The path used is
marked with arrows in Fig 7. The travel time was ap-
proximately 5 minutes for each walk (from start to end
of the segment) and we traveled 8 times during a one
hour period. Each walk represents a different person
walking along the segment and contributing data.

To investigate the impact of data availability on the
reconstruction, we reconstruct the noise profile by vary-
ing the number of contributing persons, and includ-
ing the data contributed by the corresponding persons.
For each person, we reconstructed the noise profile dur-
ing his 5-minute travel. We reconstructed separately
for Mogill Rd and Bainbbridge Drive. Using the re-
constructed LAeq,T , we computed LAeq,LT=1hr using
Eq.(4). We repeated this process to compute LAeq,1hr

using measurements from multiple people. Figs. 8 and
9 show the impact of measurements included from a
varying number of persons on the reconstruction accu-
racy during off-peak and peak hours respectively.

When we use data from only one person, the recon-
struction does not reveal any distinct patterns along the
noisy and quiet streets. In fact, the reconstruction ap-
pears to be random (In our experiments, a single per-
son collects only a small amount of information of the
temporal-spatial noise profile, which is not sufficient for
the Compressive sensing based reconstruction algorithm
to succeed. This is why the reconstruction is random.).
However, when we include data from multiple persons,
the reconstruction gradually reveals the contrast be-
tween the noisy and quiet streets. Furthermore, after a
certain threshold, increasing data contributors does not
improve the reconstruction accuracy significantly. For
example, comparing Fig. 8(c) and Fig. 8(d), it is evident
that the reconstruction achieved by data from 4 people
is similar to that from 6 people. A similar behavior can
be seen in Fig. 9(c) and Fig. 9(d).

During these experiments, we simultaneously mea-
sured the LAeq,LT using our commercial sound level
meters placed midway along Mogill Rd and Bainbridge
drive. Comparing the reconstructed noise map with the
commercial sound level meter readings, we find that we
need measurements from at least 5 people during peak
hour and from a minimum of 4 people during off-peak
hour, for a reconstruction comparable to the commer-
cial sound level meter. Note that data from 4/5 users
was sufficient for the noise profile we considered in our
experiments. It may change for different noise profiles.
The amount of data needed depends on both the noise
profile and the percentage of missing data. This topic
is studied in the following section.

Figure 7: Data collection route

(a) (b)

(c) (d)

Figure 8: Noise map reconstruction during an
off peak hour (2:00pm-3:00pm) using data from
(a) 1 person, (b) 2 persons, (c) 4 persons and (d)
6 persons.



(a) (b)

(c) (d)

Figure 9: Noise map reconstruction during a
peak hour (8:00am-9:00am) using data from (a)
1 person, (b) 3 persons, (c) 5 persons and (d) 7
persons.

5. SIMULATION
Real experiments certainly provide valuable informa-

tion. However, real experiments are not repeatable.
Conducting a real experiment on a large scale is expen-
sive and time consuming. We therefore conduct simula-
tion experiments where factors such as the number and
mobility patterns of volunteers, sensing strategies (see
Section 3.2.3) etc. can be varied easily. In this section,
we will first describe how we perform measurement cam-
paigns to collect noise profiles which will be fed into the
simulation as ground truth. Next, we will describe the
simulation itself and performance evaluation in terms of
reconstruction accuracies.

5.1 Simulation Design
As in Section 4, we limit our consideration to noise

measurements along a road, which can be modeled as
a scalar field over a uniform 2-dimensional grid of cells
with one spatial and one temporal dimension. We as-

sume that each cell has a spatial width of D meters and
a temporal width of T seconds. We use the ordered pair
(i, j) to refer to the cell bounded by the spatial inter-
val [(i − 1)D, iD] and temporal interval [(j − 1)T, jT ].
Assuming that i ∈ Ns = {1, 2, ..., ns} and j ∈ Nt =
{1, 2, ..., nt}, the reference grid covers a length of nsD
meters and a duration of ntT seconds. We assume that
the equivalent noise level LAeq,T measured over each cell
is almost constant. Now let d(i, j) denote the equivalent
noise level LAeq,T measured in cell (i, j), then a noise
profile S is defined as the set of all LAeq,T measured
over the defined grid, i.e. S = {d(i, j)}(i,j)∈Ns×Nt

.
Our first task is to conduct a number of measurement

campaigns to obtain reference noise profiles which we
can feed into the simulation as ground truth. We con-
ducted four experiments to collect LAeq,1s under a va-
riety of noise conditions and settings. The experimental
conditions and parameters used are summarized in Ta-
ble 3. During each of these experiments, we measured
LAeq,1s along Anzac Parade, which is a major artery
road in Sydney. This road has two-way traffic with 3
lanes in each direction. The traffic flow was reasonably
high as indicated by the mean noise level in Table 3. We
used 6 MobSLMs (HP iPAQ) to capture the reference
noise profile and placed them in 6 equidistant locations
along the road with the microphone pointed towards the
road. Different spatial separations are used in the ex-
periments, see Table 3. The clocks on the phones were
synchronized to ensure that all phones start and stop
sampling at the same time. The MobSLMs measured
LAeq,1s during the experiment and stored the data in a
text file which was downloaded to a computer at the end
of the experiment. From each experiment, we created
a reference noise profile, where |Ns| = 6 and |Nt| is the
experimental duration in seconds. We deliberately con-
ducted one experiment (see Table 3) with a side road
between the mobiles to create a reference profile with
high noise variation (side road divides the traffic flow,
therefore noise levels on either side of the road typically
have high difference.).

Our simulation considers only discrete agent (we re-
fer to simulated volunteers as agents) movements. Let
di ∈ [0, nsD] denote the position of the agent at time iT
seconds. The location of this agent at time (i + 1)T is
given by di+1 = di + ViT where Vi is the average speed
(in ms−1) of the agent in the time interval [iT, (i+1)T ].
The value of Vi is assumed to be uniformly distributed
in [0, 1.11] where 1.11 ms−1 = 4 km/hr is the typical
walking speed [3]. The sign of Vi determines the direc-
tion of movement. In our setting, the agent is in cell
(�di

D �, i) ∈ Ns × Nt at time iT , where �u� denotes the
smallest integer that is greater than or equal to u. We
consider a particular agent and let W ⊂ Ns×Nt denote
all the cells visited by this particular agent. To simulate
urban sensing, we assume that an agent does not take
samples at all visited cells (Due to privacy concerns, vol-
unteers may not contribute samples near their home or
office. The microphone may be in use for conversation).



Let W̃ ⊂ W denote the set of all cells whose data is
contributed by this agent.

5.1.1 Simulating Sensing Strategies
In the projection method, an agent uses the LAeq,1s

samples collected in the cells in W̃ to form a projection.
Recall from Section 3 that a projection is essentially a
linear combination of the data. The agent computes

ỹ =
�

(i,j)∈W̃

d(i, j)η(i, j) (6)

where d(i, j) is the LAeq,1s sample collected at cell
(i, j) and η(i, j)’s (with (i, j) ∈ W̃ ) are |W̃ | random
numbers drawn from the standard Gaussian distribu-
tion. The agent transmits the projected value ỹ to
the central server, along with the seed used to gener-
ate the random coefficients of the projection vector. In
the raw-data method, the agent sends d(i, j) values and
(i, j) ∈ W̃ (note that i and j represents location and
time respectively) to the central server.

Let S̃ = {d(i, j)}(i,j)∈W̃ ⊂ S be the LAeq,1s samples
collected by volunteers. The reconstruction operation
can be viewed as the estimation of the missing samples
in the noise profile S from the information in S̃. Let Ŝ =
{d̂(i, j)}(i,j)∈Ns×Nt

be a reconstruction of S. Then we
compute root mean square (RMS) reconstruction error
by:

Srms =
�

1
ns × nt

�

1≤i<ns,1≤j<nt

�
d (i, j)− d̂ (i, j)

�2
(7)

5.2 Performance Evaluation
As discussed earlier, the key benefit of using com-

pressive sensing is the ability to accurately reconstruct
the spatio-temporal sensed field from incomplete and
random samples. We now proceed to study the trade-
off between the reconstruction accuracy, communication
overhead and the percentage of missing data for the two
sensing strategies discussed in the paper namely: (i)
the raw-data method and (ii) the projection method.
We used the 4 different noise profiles as a reference and
evaluated the reconstruction performance under varied
mobility patterns and number of agents. In Figs. 10(a)
to 10(d) we plot the reconstruction accuracy as a func-
tion of sampling requirements for our reference noise
profiles. We observe that the raw-data method has bet-
ter reconstruction accuracy for all 4 reference profiles,
specifically when the amount of missing samples is large.
We observe that due to the aggregation of data, re-
construction becomes difficult in the projection method
(Note that the aggregation inevitably leads to loss of
information, but the projection method can reduce the
communication requirements, see the next paragraph.).
Except for profile 4, Ear-Phone can reconstruct the pro-
files to within 3dBA error with 40% or fewer missing
samples. The increase in sampling requirements from
profile 1 to profile 4 can be explained in terms of the

profile compressibility. One way to determine the com-
pressibility of a profile is to study the percentage of
transform coefficients needed to approximate a profile
to a given level of accuracy. The last column of Table
3 shows that profile 1 is the most compressible while
profile 4 is the least compressible.

To demonstrate the reconstruction quality, we plot a
section of the reconstructed profile in Fig. 11. A total of
3 sections are shown in Fig. 11 for different percentages
of missing samples for the raw-data method. Note that
the reconstruction is pretty accurate at the cell level.

We now discuss the communication requirements of
the raw-data and projection methods as a function of
their reconstruction accuracy. Let Cref denote the num-
ber of bytes returned, if LAeq,1s samples from all the
cells of our profile are returned and let Cmethod denote
the corresponding number of bytes returned by either
raw-data or projection method. Fig. 12 shows a typi-
cal plot of (we plot only the result from experiment 4
due to space restrictions) Cmethod/Cref as a function of
the reconstruction error. We observe that, to limit the
reconstruction error within 3dBA (what humans can-
not perceive), the projection method and the raw data
method reduce the communication costs by 30% and
20% respectively compared to the state-of-the-art sam-
pling technique. However, for a high reconstruction er-
ror (an increased amount of missing information), the
raw-data method is more communication efficient than
the projection method.

6. RELATED WORK
There are a number of efforts in the deployment of ur-

ban sensing applications, on the study of incentives to
improve participation in human computation systems,
and on improving the trustworthiness of participatory
sensing. However, we focus our attention on the follow-
ing.

In [21], the authors survey technical issues influenc-
ing the design and implementation of systems that use
mobile phones to assess noise pollution. However, they
do not provide an end-to-end system, and they do not
study the problem of reconstructing the noise map from
incomplete and random samples.

Noisetube [16] is a recently developed platform to gen-
erate a collective noise map by aggregating measure-
ments collected by the public. As the authors do not
provide any details on how they perform data aggrega-
tion, we cannot contrast EarPhone with this work.

Recent research in plenacoustic functions [2] studies
the sampling requirement of an acoustic field. While the
work in [2] deals with a continuous signal, our work con-
siders a discrete signal over time and space. Specifically,
we consider the equivalent noise level over a physical
area and time duration.

Work presented in [13] studies the compressibility of
acoustic signals in both spatial and temporal dimen-
sions. A limitation of their work is that it is based on
a single acoustic source in a laboratory setting. In ad-
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Figure 10: Percentage of missing data (x-axis) and its impact on reconstruction accuracy expressed
in RMS error (y-axis).
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Figure 12: Reconstruction accuracy VS commu-
nication overhead

dition, they aim to reconstruct the pressure waveform.
This is different from our focus on studying the com-
pressibility of temporal-spatial field of noise levels in an
outdoor environment, which are influenced by multiple
acoustic sources.

Community Sensing [15] uses a traditional interpola-
tion framework to estimate missing data, when data is
obtained via crowdsourcing. In contrast, we apply com-

pressive sensing to show that temporal-spatial noise pro-
files are in fact compressible and clarify the sampling-
accuracy trade-off.

Compressive sensing has so far been applied in tra-
ditional low-power wireless sensor networks [18, 8, 5].
For example, Compressive Wireless Sensing (CWS) [5]
derives a method to compute the projection using the
wireless channel. However, CWS cannot be applied to
urban sensing because CWS requires the entire data set
to form the projection. In this paper, we have proposed
sensing strategies that are suitable for urban sensing.

7. CONCLUSIONS AND DISCUSSION
In this paper, we presented the design, implementa-

tion and evaluation of Ear-Phone, an end-to-end noise
pollution mapping system based on participatory urban
sensing. Ear-Phone comprises signal processing soft-
ware to measure noise pollution at the mobile phone,
as well as signal reconstruction software and query pro-
cessing software at the central server. To address the
problem of noise map reconstruction from incomplete
data samples, a key issue in crowdsourced sensor data
collection, we exploit the compressibility of the spatial-
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Figure 11: This figure shows the reconstruction performance at the cell level. Each row of this figure
consists of 5 sub-figures (ai), (bi), ..., (ei) where i = 1, .., 3. Each row (i = 1, 2, 3) shows the reconstruction
of a section of the profile for a given percentage of missing data. The percentage of data used for
rows 1, 2, 3 are, respectively, 18.42%,34.73% and 45.03%. Sub-figure (ai) shows a section of the
reference profile. Note that each section consists of 6 locations (l1,...,l6) over a duration of 6 seconds
(t1,..,t6). The same reference profile is used for all 3 rows. (c) The scale of noise levels (di) * in a
cell means the LAeq,1s sample from that cell is used in the reconstruction. (ei) Reconstruction error.
A black-filled cell indicates that the error for that cell is more than 3 dBA. The more white cells the
better reconstruction.



Exp No. Date and time Mean, Standard Spatial Duration Continuous road % of DCT coefficients needed
Deviation of separation (min) segment without to approximate the profile to within

sound level (dBA) (meters) side roads 1 dBA RMS error
1 21/08/08 3:00 pm 73.05,2.95 10 20 yes 27.83
2 21/08/08 4:30 pm 70.09,4.43 10 15 yes 35.15
3 29/08/08 5:14 pm 70.43,5.16 50 15 yes 39.94
4 01/09/08 6:24 pm 71.22,5.55 50 10 no 44.14

Table 3: Experimental settings for collecting the reference noise profiles

temporal noise profile and apply recently developed re-
construction methods from compressive sensing. We
study the sensing and communication requirements of
Ear-Phone. Using simulation experiments, we show that
Ear-Phone can recover a noise map with high accu-
racy, allowing nearly 40% missing samples while reduc-
ing communication costs by 30%. Two different noise
mapping experiments report that Ear-Phone can accu-
rately characterize the noise levels along roads using in-
complete samples.

Mobile phones are often carried inside bags or pockets,
while our experiments were conducted with a phones
held in a volunteer’s palm. In future work, we plan to
incorporate context-awareness in our system such that
Ear-Phone only samples ambient noise when the phone
is in the right environment.
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