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Sensor Net Programming Challenges

Developing sensor network applications is notoriously difficult
• Bandwidth and energy limitations force in-network processing
• Infeasible to send all data to central location
• Requires complex distributed algorithms to be implemented in the network itself

Often requires coordination within local regions of the network
• Coordinated detection of localized phenomena
• Aggregation of sensor readings for bandwidth reduction

Examples of spatial coordination:
• Finding average or max sensor reading amongst a group of nodes
• Propagating data up a spanning tree to a base station
• Comparing sensor values to nearby neighbors

Sensor network programming is a nascent area of research
• Not much work on general-purpose programming models in this environment
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Accuracy/Overhead Tradeoff

Our focus is on extremely resource-constrained devices
• MICA2 “mote:” 7.3 MHz CPU, 4 KB RAM, 128 KB ROM, 38.4 Kbps radio
• Powered by 2 AA batteries
• TinyOS: Event-driven OS for mote-class devices

Inherent tradeoff between resource consumption and accuracy
• More messages→ increased energy and bandwidth→ greater precision

But, sensor nodes have limited energy budget
• Cannot consume arbitrary energy to achieve reliable communication

Apps must deal with lossy communication, imperfect results
• Limited energy and bandwidth budget mandates statistical design
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Macroprogramming Goals

Develop an aggregate programming model for sensor networks
• Current programming models are node centric and low level
• Scientists don’t want to think about gronky details of radios, timers, battery life, etc.
• Like implementing Linux by toggling switches on a PDP-11

Requires flexible communication primitives
• Reduce programming effort to construct applications
• Abstract low-level details of local coordination
• Focus on spatial computation within local neighborhoods
• Neighborhood maintenance, routing, and collective communication

Allow application to tune resource/accuracy tradeoff
• Application must have control over resource usage
• Don’t hide settings of complex parameters inside lower layer
• Provide feedback to applications:

. Timeouts on communication operations

. Accuracy and completeness of collective operations

• Feedback used to adapt to changing network conditions
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Abstract Regions

Group of nodes with some geographic or topological relationship
• e.g., All nodes within distance d from node k

• Neighbors forming a planar mesh based on radio connectivity
• Spanning tree rooted at node k

d

Geographic Planar Spanning
neighborhood mesh tree

Regions capture common idioms in sensor net programming
• Flexible addressing of “local” nodes
• Sharing state across groups of nodes
• Efficient aggregation of data across a region
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Region Operations

Neighbor discovery identifies nodes
• Continuous background process, can be terminated or restarted
• Each node is notified of changes to region membership
• e.g., Nodes moving, joining, or leaving network

Shared variables support inter-node coordination
• Tuple-space like programming model:
• get(k,n) retrieves value of v from node n

• put(v,l) stores value l in variable v locally
• Implementation may broadcast, pull requested data, or gossip

Reductions support aggregation of shared variables
• Combine shared variables in region to a single value
• reduce(op,v,d) reduces variable v using operator op and stores in shared variable d

• Example operators: min, max, average, count, etc.
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Radio and Geographic Neighborhoods

Nodes within n radio hops, k-nearest neighbors, etc.

Node discovery implementation
• Nodes emit periodic beacons with node ID and (optionally) location
• Filter received beacons to determine neighbors (e.g., k nearest nodes)
• Application can tune rate and number of beacons

Shared variable implementation
• put() operation stores value in local hashtable
• Fixed number of keys can be stored per node
• get() operation sends a fetch message to corresponding node
• Alternate implementation: put() broadcasts, while get() is local

Reduction implementation
• Broadcast get() request for all values of shared variable
• Collect replies and perform reduction after all responses received
• Application can specify timeout for shared variable and reduction operations
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Approximate Planar Mesh
Useful construct for spatial computing

• Divide space into nonoverlapping cells
• Also used for geographic routing (e.g., GPSR): send message to node closest to

given geographic location
• Different planarity tests yield different graphs:
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Pruned Yao Gabriel RNG

True planarity is difficult to achieve
• Requires information on location and edges from all nearby neighbors
• Rather, strive for approximate planarity: allow some crossed edges
• Number of crossed edges depends on accuracy of neighborhood determination
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Adaptive Spanning Tree

Useful for aggregating data to a single point in the network
• Nodes continually evaluate link quality to neighbors and select ideal parent node
• Responds rapidly to changes in network topology
• Demonstrates layering : Spanning tree implemented on top of radio neighborhood

Shared variable and reduction semantics:
• put() at the root floods data to all nodes in tree
• get() at root fetches data from specific child node
• Reductions always store resulting value at the root
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Quality feedback and tuning

Region operations are inherently statistical
• Reduction may time out or contact subset of nodes
• Collective operations report yield : fraction of nodes that responded to a request
• Each operation also provides a timeout

Programmer can tune many parameters affecting resource usage:
• Maximum number of retransmission attempts
• Delay between retransmissions
• Maximum number of neighbors to consider in region formation
• Frequency of beacons for radio region formation
• Number of beacons to send during region formation
• Threshold used to remove neighbor from set
• Timeout for various region operations

Tuning parameters support adaptive applications
• Applications can turn knobs to meet targets of latency, accuracy, or lifetime
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Object tracking using regions

Track location of vehicle using magentometers attached to sensors
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Object tracking using regions

Nodes near the vehicle detect high magnetometer value
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Object tracking using regions

Each node forms k-nearest-neighbor region

Store local sensor reading as shared variable

Matt Welsh, Harvard University 13



Object tracking using regions

Node with highest sensor value calculates centroid of neighbor’s
readings
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Object tracking accuracy and overhead
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• TOSSIM sensor network simulator with realistic radio model
• Object moving in circular path through sensor net
• Tuning knob: Number of neighbors in k-nearest neighbor region
• Size of neighborhood increases both accuracy and message overhead
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Contour finding

Determine location of threshold between sensor readings
• Construct approximate planar mesh of nodes
• Nodes above threshold compare values with neighbors
• Contour defined as midpoints of edges crossing threshold
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Contour detection accuracy and overhead
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Contour finding accuracy is a function of node advertisements
• Form approximate planar mesh region
• More advertisements→ fewer crossed edges
• Mean error directly correllated with mesh quality
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Geographic routing using GPSR
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Greedy routing Perimeter routing

Route messages based on location of destination
• Nodes only maintain location of immediate neighbors
• Initially route message to neighbor closest to destination (“greedy routing”)
• Requires planar graph when stuck in local minima (“perimeter routing”)

Easy to implement using radio and planar mesh regions
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Directed diffusion

Mechanism for distributed event detection and reporting
• Sink floods interests to nodes in spanning tree region

• Nodes with matching data send results up tree to sink

• Relies on semantics of shared variable get() and put() in spanning tree

Implementation based on spanning tree region
• Only 188 lines of code for directed diffusion layer
• But ... 937 lines in the spanning tree region!
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Conclusion

How do you program a entire network of distributed,
volatile, resource-limited sensors?

• Program “the network” rather than individual nodes
• Requires appropriate programming models and communication primitives

Spatial programming and communication using abstract regions
• Communication and aggregation within local regions
• Region formation maintains neighborhood set
• Shared variables provide simple data sharing
• Reductions provide data aggregation

Exposing the resource-accuracy tradeoff to applications is crucial
• Sensor network communication is inherently statistical
• Applications must adapt to changing network conditions
• Abstract region operations provide accuracy feedback and tuning knobs

For more information:
http://www.eecs.harvard.edu/~mdw/proj/mp
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Backup Slides Follow
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Typical Applications

Moving vehicle tracking and pursuit
• Sensors take magentometer readings, locate object using centroid of readings
• Base station informs automated pursuer of object location

Great Duck Island - habitat monitoring
• Gather temp, humidity, IR readings from petrel nests
• Determine occupancy of nests to understand breeding/migration behavior

Spatial contour/region detection
• Detect frontier of phenomenon of interest (e.g., contaminant flow in groundwater)
• Sensors communicate locally to detect contour
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Object tracking using regions
location = get_location();
region = k_nearest_region.create(8);

while (true) {
reading = get_sensor_reading();

/* Store local data as shared variables */
region.putvar(reading_key, reading);
region.putvar(reg_x_key, reading * location.x);
region.putvar(reg_y_key, reading * location.y);

if (reading > threshold) {
/* ID of the node with the max value */
max_id = region.reduce(OP_MAXID, reading_key);

/* If I am the leader node ... */
if (max_id == my_id) {
/* Perform reductions and compute centroid */
sum = region.reduce(OP_SUM, reading_key);
sum_x = region.reduce(OP_SUM, reg_x_key);
sum_y = region.reduce(OP_SUM, reg_y_key);
centroid.x = sum_x / sum;
centroid.y = sum_y / sum;
send_to_basestation(centroid);

}
}
sleep(periodic_delay);

}
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Affect of retransmission count

Adjusting message retransmission count affects reduction yield and
message overhead:
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Adaptive reduction
Tune overhead of reduce operation to meet a target yield

• Idea: Don’t need to contact all neighbors, but some majority
• Adjust message retransmission attempts to meet target
• Additive increase/additive decrease algorithm
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Tuning Parameters

Lots of knobs the programmer can turn:
• Maximum number of retransmission attempts
• Delay between retransmission attempts
• Maximum number of neighbors to consider in region formation
• Frequency of beacons for radio region formation
• Number of beacons to send during region formation
• Threshold used to remove neighbor from set
• Timeout for region formation operations
• Timeout for reduction operations
• Timeout for shared variable operations
• Timeout for retrieving location from neighbor nodes
• Timeout for waiting for edge invalidation messages

Leads to complex optimization strategy!
• Claim: Lots of knobs are better than no knobs
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Fibers: Blocking operations in TinyOS

TinyOS is entirely event-driven
• Greatly complicates implementation of complex services
• Programmer must break code into multiple continuations and maintain state manually
• Difficult to check for timing errors and race conditions

Fibers: lightweight, thread-like abstraction for TinyOS
• Allows one blocking fiber in addition to standard event-driven TinyOS fiber
• Both fibers share the same stack!
• 150 instructions to context switch, 24 bytes overhead per fiber

Blocking calls greatly simplify application design
• No more need for multiple event handlers, manual continuation management
• Tracking application w/o fibers: 369 lines, 5 event handlers, 11 continuations
• Tracking application with fibers: 134 lines, one main loop
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Evaluation environment

TOSSIM simulation with realistic radio model
• 100 nodes distributed as irregular grid in 20x20’ area
• Radio model derived from trace of MICA nodes in outdoor setting
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Event detection accuracy using diffusion
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Reliability of event detection as function of retransmission count
• Construct approximate planar mesh of nodes
• Nodes above threshold compare values with neighbors
• Contour defined as midpoints of edges crossing threshold
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TinyDB
Sam Madden, Wei Hong, Joe Hellerstein, Intel Research/UCB

Express global queries on entire sensor network

SELECT nodeid, max(light) FROM sensors
WHERE light > 40
EPOCH DURATION 1sec

Nodes perform in-network aggregation
• Data flows along spanning tree from nodes to root
• Nodes aggregate data with their children

58 49 32 45 6173

6537

6653

53
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TinyDB
Sam Madden, Wei Hong, Joe Hellerstein, Intel Research/UCB

Express global queries on entire sensor network

SELECT nodeid, max(light) FROM sensors
WHERE light > 40
EPOCH DURATION 1sec

Nodes perform in-network aggregation
• Data flows along spanning tree from nodes to root
• Nodes aggregate data with their children

58 49 32 45 6173

6537

6653

53
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TinyDB
Sam Madden, Wei Hong, Joe Hellerstein, Intel Research/UCB

Express global queries on entire sensor network

SELECT nodeid, max(light) FROM sensors
WHERE light > 40
EPOCH DURATION 1sec

Nodes perform in-network aggregation
• Data flows along spanning tree from nodes to root
• Nodes aggregate data with their children

49 32 6173

6537

6653

53

4558
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TinyDB
Sam Madden, Wei Hong, Joe Hellerstein, Intel Research/UCB

Express global queries on entire sensor network

SELECT nodeid, max(light) FROM sensors
WHERE light > 40
EPOCH DURATION 1sec

Nodes perform in-network aggregation
• Data flows along spanning tree from nodes to root
• Nodes aggregate data with their children

49 6173

6537

6653

53

58 45 73

58 32 45
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TinyDB
Sam Madden, Wei Hong, Joe Hellerstein, Intel Research/UCB

Express global queries on entire sensor network

SELECT nodeid, max(light) FROM sensors
WHERE light > 40
EPOCH DURATION 1sec

Nodes perform in-network aggregation
• Data flows along spanning tree from nodes to root
• Nodes aggregate data with their children

49 6173

6537

6653

53

58 32 45

58 73
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Query interface limitations

Not general enough to capture arbitrary in-network processing
• Focus on streaming results to root of tree
• More sophisticated inter-node operations difficult to express
• e.g., detecting edges of regions in network

Purely declarative programming model
• Query processor drives execution and makes implicit tradeoffs
• e.g., How to adapt sampling rate when interesting events happen?
• Would like explicit control over network operation

Difficult to express actuation
• Sensor networks may be used for complex control scenarios
• Network takes local action based on sensor readings
• e.g., Distributed control of unmanned pursuit vehicle
• Nodes joining/leaving/moving, etc. difficult to capture
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Component Structure

TuningCTimer

GenericComm

RadioRegionC

RRRegion RRReduceRRTupleSpace

Tuning

RecvMsg
SendMsg

RecvMsg
SendMsg
Tuning

Timer

Tuning
TupleSpace

QueuedSend

Reg ion TupleSpace Reduce

Application
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Application Line Counts
Application With fibers Without fibers
Tracking 134 lines 369 lines
Contour finding 175 lines 350 lines
Directed diffusion – 313 lines

Region
Radio 938 lines
k-nearest 340 lines
Spantree 937 lines
Pruned Yao graph 659 lines

• Most of the complexity captured by region substrate

• Use of blocking fibers greatly simplifies code
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Approximate planar mesh construction
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Planar mesh overhead related to number of node broadcasts
• Quality of mesh increases with additional advertisements
• Overhead of mesh construction increases with node density
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SplitNesC Language
Linguistic support for SIMD programming using abstract regions

• Inspired by Split-C – parallel C variant with global pointers
• Support region operations as first-class operations
• Compile down to NesC components
• Generate necessary dependencies, AM handlers, etc.

region onehop {
uint16_t my_reading;
uint16_t sum_value;

} myregion;

/* Read remote values */
localvar1 = myregion.myreading[node1];
localvar2 = myregion.myreading[node2];
if (!myregion.sync(TIMEOUT)) { // Error ... }

/* Set local value */
myregion.sum_value = localvar1 + localvar2;

/* Perform reduction */
localvar3 = myregion.reduce(OP_MAX, my_reading);
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Market-oriented Programming

Induce global behavior using market-based algorithm design
• Balancing sampling, communication, and sleeping is a complex optimization process
• Nodes act as self-interested agents with simple behaviors
• e.g., Take sensor reading, broadcast value, aggregate, or sleep
• Nodes do not have knowledge of high-level program!
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