
Typing Haskell in Haskell

Mark P. Jones
Oregon Graduate Institute of Science and Technology

mpj@cse.ogi.edu

Haskell Workshop Version: September 1, 1999

Abstract

Haskell benefits from a sophisticated type system, but im-
plementors, programmers, and researchers suffer because it
has no formal description. To remedy this shortcoming, we
present a Haskell program that implements a Haskell type-
checker, thus providing a mathematically rigorous specifica-
tion in a notation that is familiar to Haskell users. We expect
this program to fill a serious gap in current descriptions of
Haskell, both as a starting point for discussions about ex-
isting features of the type system, and as a platform from
which to explore new proposals.

1 Introduction

Haskell1 benefits from one of the most sophisticated type
systems of any widely used programming language. Unfor-
tunately, it also suffers because there is no formal specifica-
tion of what the type system should be. As a result:

• It is hard for Haskell implementors to be sure that their
compilers and interpreters accept the same programs
as other implementations. The informal specification
in the Haskell report [10] leaves too much room for
confusion and misinterpretation. This leads to genuine
discrepancies between implementations, as many sub-
scribers to the Haskell mailing list will have seen.

• It is hard for Haskell programmers to understand the
details of the type system, and to appreciate why
some programs are accepted when others are not. For-
mal presentations of most aspects of the type system
are available in the research literature, but often ab-
stract on specific features that are Haskell-like, but not
Haskell-exact, and do not describe the complete type
system. Moreover, these papers often use disparate and
unfamiliar technical notation and concepts that may be
hard for some Haskell programmers to understand.

• It is hard for Haskell researchers to explore new type
system extensions, or even to study usability issues that
arise with the present type system such as the search
for better type error diagnostics. Work in these areas
requires a clear understanding of the type system and,
ideally, a platform on which to build and experiment

1Throughout, we use ‘Haskell’ as an abbreviation for ‘Haskell 98’.

with prototype implementations. The existing Haskell
implementations are not suitable for this (and were not
intended to be): the nuts and bolts of a type system
are easily obscured by the use of specific data structures
and optimizations, or by the need to integrate smoothly
with other parts of an implementation.

This paper presents a formal description of the Haskell type
system using the notation of Haskell itself as a specification
language. Indeed, the source code for this paper is itself an
executable Haskell program that is passed through a custom
preprocessor and then through LATEX to obtain the typeset
version. The type checker is available in source form on
the Internet at http://www.cse.ogi.edu/~mpj/thih/. We
hope that this will serve as a resource for Haskell implemen-
tors, programmers and researchers, and that it will be a first
step in eliminating most of the problems described above.

One audience whose needs may not be particularly well met
by this paper are researchers in programming language type
systems who do not have experience of Haskell. (We would,
however, encourage anyone in that position to learn more
about Haskell!) Indeed, we do not follow the traditional
route in such settings where the type system might first be
presented in its purest form, and then related to a more
concrete type inference algorithm by soundness and com-
pleteness theorems. Here, we deal only with type inference.
It doesn’t even make sense to ask if our algorithm computes
‘principal’ types: such a question requires a comparison be-
tween two different presentations of a type system, and we
only have one. Nevertheless, we believe that the specifica-
tion in this paper could easily be recast in a more standard,
type-theoretic manner and used to develop a presentation of
Haskell typing in a more traditional style.

The code presented here can be executed with any Haskell
system, but our primary goals have been clarity and simplic-
ity, and the resulting code is not intended to be an efficient
implementation of type inference. Indeed, in some places,
our choice of representation may lead to significant over-
heads and duplicated computation. It would be interesting
to try to derive a more efficient, but provably correct imple-
mentation from the specification given here. We have not
attempted to do this because we expect that it would ob-
scure the key ideas that we want to emphasize. It therefore
remains as a topic for future work, and as a test to assess
the applicability of program transformation and synthesis to
complex, but modestly sized Haskell programs.

1

Another goal for this paper was to give as complete a de-
scription of the Haskell type system as possible, while also
aiming for conciseness. For this to be possible, we have
assumed that certain transformations and checks will have
been made prior to typechecking, and hence that we can
work with a much simpler abstract syntax than the full
source-level syntax of Haskell would suggest. As we ar-
gue informally at various points in the paper, we do not
believe that there would be any significant difficulty in ex-
tending our system to deal with the missing constructs. All
of the fundamental components, including the thorniest as-
pects of Haskell typing, are addressed in the framework that
we present here. Our specification does not attempt to deal
with all of the issues that would occur in the implementa-
tion of a full Haskell implementation. We do not tackle the
problems of interfacing a typechecker with compiler front
ends (to track source code locations in error diagnostics,
for example) or back ends (to describe the implementation
of overloading, for example), nor do we attempt to formal-
ize any of the extensions that are implemented in current
Haskell systems. This is one of things that makes our spec-
ification relatively concise; by comparison, the core parts of
the Hugs typechecker takes some 90+ pages of C code.

Regrettably, length restrictions have prevented us from in-
cluding many examples in this paper to illustrate the defini-
tions at each stage. For the same reason, definitions of a few
constants that represent entities in the standard prelude, as
well as the machinery that we use in testing to display the
results of type inference, are not included in the typeset ver-
sion of this paper. Apart from those details, this paper gives
the full source code.

We expect the program described here to evolve in at least
three different ways.

• Formal specifications are not immune to error, and so
it is possible that changes will be required to correct
bugs in the code presented here. On the other hand,
by writing our specification as a program that can be
typechecked and executed with existing Haskell imple-
mentations, we have a powerful facility for detecting
simple bugs automatically and for testing to expose
deeper problems.

• As it stands, this paper just provides one more inter-
pretation of the Haskell type system. We believe that it
is consistent with the official specification, but because
the latter is given only informally, we cannot establish
the correctness of our presentation here in any rigorous
manner. We hope that this paper will stimulate dis-
cussion in the Haskell community, and would expect to
make changes to the specification as we work towards
some kind of consensus.

• There is no shortage of proposed extensions to the
Haskell type system, some of which have already been
implemented in one or more of the available Haskell
systems. Some of the better known examples of
this include multiple-parameter type classes, existential
types, rank-2 polymorphism, extensible records. We
would like to obtain formal descriptions for as many of
these proposals as possible by extending the core spec-
ification presented here.

It will come as no surprise to learn that some knowledge
of Haskell will be required to read this paper. That said,

Description Symbol Type

kind k , . . . Kind
type constructor tc, . . . Tycon
type variable v , . . . Tyvar
– ‘fixed’ f , . . .
– ‘generic’ g , . . .
type t , . . . Type
class c, . . . Class
predicate p, q , . . . Pred
– ‘deferred’ d , . . .
– ‘retained’ r , . . .
qualified type qt , . . . QualType
scheme sc, . . . Scheme
substitution s, . . . Subst
unifier u, . . . Subst
assumption a, . . . Assump

identifier i , . . . Id
literal l , . . . Literal
pattern pat , . . . Pat
expression e, f , . . . Expr
alternative alt , . . . Alt
binding group bg , . . . BindGroup

Figure 1: Notational Conventions

we have tried to keep the definitions and code as clear and
simple as possible, and although we have made some use
of Haskell overloading and do-notation, we have generally
avoided using the more esoteric features of Haskell. In ad-
dition, some experience with the basics of Hindley-Milner
style type inference [5, 9, 2] will be needed to understand
the algorithms presented here. Although we have aimed to
keep our presentation as simple as possible, some aspects of
the problems that we are trying to address have inherent
complexity or technical depth that cannot be side-stepped.
In short, this paper will probably not be useful as a tutorial
introduction to Hindley-Milner style type inference!

2 Preliminaries

For simplicity, we present the code for our typechecker as
a single Haskell module. The program uses only a handful
of standard prelude functions, like map, concat , all , any ,
mapM , etc., and a few operations from the List library:

module TypingHaskellInHaskell where
import List (nub, (\\), intersect , union, partition)

For the most part, our choice of variable names follows the
notational conventions set out in Figure 1. A trailing s on
a variable name usually indicates a list. Numeric suffices or
primes are used as further decoration where necessary. For
example, we use k or k ′ for a kind, and ks or ks ′ for a list
of kinds. The types and terms appearing in the table are
described more fully in later sections. To distinguish the
code for the typechecker from program fragments that are
used to discuss its behavior, we typeset the former in an
italic font, and the latter in a typewriter font.

Throughout this paper, we implement identifiers as strings,
and assume that there is a simple way to generate new iden-

2

tifiers dynamically using the enumId function:

type Id = String
enumId :: Int → Id
enumId n = “v” ++ show n

3 Kinds

To ensure that they are valid, Haskell type constructors are
classified into different kinds: the kind ∗ (pronounced ‘star’)
represents the set of all simple (i.e., nullary) type expres-
sions, like Int and Char → Bool ; kinds of the form k1 → k2

represent type constructors that take an argument type of
kind k1 to a result type of kind k2. For example, the standard
list, Maybe and IO constructors all have kind ∗ → ∗. Here,
we will represent kinds as values of the following datatype:

data Kind = Star | Kfun Kind Kind
deriving Eq

Kinds play essentially the same role for type constructors as
types do for values, but the kind system is clearly very prim-
itive. There are a number of extensions that would make
interesting topics for future research, including polymorphic
kinds, subkinding, and record/product kinds. A simple ex-
tension of the kind system—adding a new row kind—has
already proved to be useful for the Trex implementation of
extensible records in Hugs [3, 7].

4 Types

The next step is to define a representation for types. Strip-
ping away syntactic sugar, Haskell type expressions are ei-
ther type variables or constants (each of which has an associ-
ated kind), or applications of one type to another: applying
a type of kind k1 → k2 to a type of kind k1 produces a type
of kind k2:

data Type = TVar Tyvar
| TCon Tycon
| TAp Type Type
| TGen Int

deriving Eq

data Tyvar = Tyvar Id Kind
deriving Eq

data Tycon = Tycon Id Kind
deriving Eq

The following examples show how standard primitive
datatypes are represented as type constants:

tChar = TCon (Tycon “Char” Star)
tArrow = TCon (Tycon “(->)” (Kfun Star

(Kfun Star
Star)))

A full Haskell compiler or interpreter might store additional
information with each type constant—such as the the list of

constructor functions for an algebraic datatype—but such
details are not needed during typechecking.

Types of the form TGen n represent ‘generic’, or quantified
type variables; their role is described in Section 8.

We do not provide a representation for type synonyms, as-
suming instead that they have been fully expanded before
typechecking. It is always possible for an implementation to
do this because Haskell prevents the use of a synonym with-
out its full complement of arguments. Moreover, the pro-
cess is guaranteed to terminate because recursive synonym
definitions are prohibited. In practice, however, implemen-
tations are likely to expand synonyms more lazily: in some
cases, type error diagnostics may be easier to understand if
they display synonyms rather than expansions.

We end this section with the definition of two helper func-
tions. The first provides a way to construct function types:

infixr 4 ‘fn‘
fn :: Type → Type → Type
a ‘fn‘ b = TAp (TAp tArrow a) b

The second introduces an overloaded function, kind , that
can be used to determine the kind of a type variable, type
constant, or type expression:

class HasKind t where
kind :: t → Kind

instance HasKind Tyvar where
kind (Tyvar v k) = k

instance HasKind Tycon where
kind (Tycon v k) = k

instance HasKind Type where
kind (TCon tc) = kind tc
kind (TVar u) = kind u
kind (TAp t) = case (kind t) of

(Kfun k) → k

Most of the cases here are straightforward. Notice, however,
that we can calculate the kind of an application (TAp t t ′)
using only the kind of its first argument t : Assuming that
the type is well-formed, t must have a kind k ′ → k , where k ′

is the kind of t ′ and k is the kind of the whole application.
This shows that we need only traverse the leftmost spine of
a type expression to calculate its kind.

5 Substitutions

Substitutions—which are just finite functions, mapping type
variables to types—play a major role in type inference. In
this paper, we represent substitutions using association lists:

type Subst = [(Tyvar , Type)]

To ensure that we work only with well-formed type expres-
sions, we will be careful to construct only kind-preserving
substitutions, in which variables can be mapped only to
types of the same kind.

The simplest substitution is the null substitution, repre-
sented by the empty list, which is obviously kind-preserving:

nullSubst :: Subst
nullSubst = []

3

Almost as simple are the substitutions (u 7→ t)2 that map a
single variable u to a type t of the same kind:

(7→) :: Tyvar → Type → Subst
u 7→ t = [(u, t)]

This is kind-preserving if, and only if, kind u = kind t .

Substitutions can be applied to types—or to anything con-
taining type components—in a natural way. This suggests
that we overload the operation to apply a substitution so
that it can work on different types of object:

class Types t where
apply :: Subst → t → t
tv :: t → [Tyvar]

In each case, the purpose of applying a substitution is the
same: To replace every occurrence of a type variable in the
domain of the substitution with the corresponding type. We
also include a function tv that returns the set of type vari-
ables (i.e., Tyvars) appearing in its argument, listed in order
of first occurrence (from left to right), with no duplicates.
The definitions of these operations for Type are as follows:

instance Types Type where
apply s (TVar u) = case lookup u s of

Just t → t
Nothing → TVar u

apply s (TAp l r) = TAp (apply s l) (apply s r)
apply s t = t

tv (TVar u) = [u]
tv (TAp l r) = tv l ‘union‘ tv r
tv t = []

It is straightforward (and useful!) to extend these operations
to work on lists:

instance Types a ⇒ Types [a] where
apply s = map (apply s)
tv = nub . concat .map tv

The apply function can be used to build more complex sub-
stitutions. For example, composition of substitutions, spec-
ified by apply (s1@@s2) = apply s1 . apply s2, can be defined
more concretely using:

infixr 4 @@
(@@) :: Subst → Subst → Subst
s1@@s2 = [(u, apply s1 t) | (u, t)← s2] ++ s1

We can also form a ‘parallel’ composition s1 ++ s2 of two
substitutions s1 and s2, but the result is ‘left-biased’ because
bindings in s1 take precedence over any bindings for the same
variables in s2. For a more symmetric version of this opera-
tion, we use a merge function, which checks that the two sub-
stitutions agree at every variable in the domain of both and
hence guarantees that apply (s1 ++ s2) = apply (s2 ++ s1).

2The typeset version of the symbol 7→ is written +-> in the concrete
syntax of Haskell.

Clearly, this is a partial function, which we reflect by ar-
ranging for merge to return a result of type Maybe Subst :

merge :: Subst → Subst → Maybe Subst
merge s1 s2 = if agree then Just s else Nothing

where dom s = map fst s
s = s1 ++ s2

agree = all (\v → apply s1 (TVar v) ==
apply s2 (TVar v))

(dom s1 ‘intersect ‘ dom s2)

It is easy to check that both (@@) and merge produce kind-
preserving results from kind-preserving arguments.

6 Unification and Matching

The goal of unification is to find a substitution that makes
two types equal—for example, to ensure that the domain
type of a function matches up with the type of an argument
value. However, it is also important for unification to find as
‘small’ a substitution as possible, because that will also lead
to the most general type. More formally, a substitution s is
a unifier of two types t1 and t2 if apply s t1 == apply s t2.
A most general unifier, or mgu, of two such types is a unifier
u with the property that any other unifier s can be written
as s ′@@u, for some substitution s ′.

The syntax of Haskell types has been carefully chosen to en-
sure that, if two types have any unifying substitutions, then
they also have a most general unifier, which can be calcu-
lated by a simple variant of Robinson’s algorithm [11]. One
of the main reasons for this is that there are no non-trivial
equalities on types. Extending the type system with higher-
order features (such as lambda expressions on types), or with
any other mechanism that allows reductions or rewriting in
the type language, will often make unification undecidable,
non-unitary (meaning that there may not be most general
unifiers), or both. This, for example, is why it is not pos-
sible to allow type synonyms to be partially applied (and
interpreted as some restricted kind of lambda expression).

The calculation of most general unifiers is implemented by
a pair of functions:

mgu :: Type → Type → Maybe Subst
varBind :: Tyvar → Type → Maybe Subst

Both of these return results using Maybe because unification
is a partial function. However, because Maybe is a monad,
the programming task can be simplified by using Haskell’s
monadic do-notation. The main unification algorithm is de-
scribed by mgu, which uses the structure of its arguments
to guide the calculation:

mgu (TAp l r) (TAp l ′ r ′) = do s1 ← mgu l l ′

s2 ← mgu (apply s1 r)
(apply s1 r ′)

Just (s2@@s1)
mgu (TVar u) t = varBind u t
mgu t (TVar u) = varBind u t
mgu (TCon tc1) (TCon tc2)
| tc1 == tc2 = Just nullSubst

mgu t1 t2 = Nothing

4

The varBind function is used for the special case of unifying
a variable u with a type t . At first glance, one might think
that we could just use the substitution (u 7→ t) for this. In
practice, however, tests are required to ensure that this is
valid, including an ‘occurs check’ (u ‘elem‘ tv t) and a test
to ensure that the substitution is kind-preserving:

varBind u t | t == TVar u = Just nullSubst
| u ‘elem‘ tv t = Nothing
| kind u == kind t = Just (u 7→ t)
| otherwise = Nothing

In the following sections, we will also make use of an oper-
ation called matching that is closely related to unification.
Given two types t1 and t2, the goal of matching is to find a
substitution s such that apply s t1 = t2. Because the sub-
stitution is applied only to one type, this operation is often
described as one-way matching. The calculation of matching
substitutions is implemented by a function:

match :: Type → Type → Maybe Subst

Matching follows the same pattern as unification, except
that it uses merge rather than @@ in the case for type ap-
plications, and it does not allow binding of variables in t2:

match (TAp l r) (TAp l ′ r ′) = do sl ← match l l ′

sr ← match r r ′

merge sl sr
match (TVar u) t
| kind u == kind t = Just (u 7→ t)

match (TCon tc1) (TCon tc2)
| tc1 == tc2 = Just nullSubst

match t1 t2 = Nothing

7 Predicates and Qualified Types

Haskell types can be qualified by adding a (possibly empty)
list of predicates, or class constraints, to restrict the ways in
which type variables are instantiated3:

data Qual t = [Pred] :⇒ t
deriving Eq

Predicates themselves consist of a class name, and a type:

data Pred = IsIn Class Type
deriving Eq

Haskell’s classes represent sets of types. For example, a
predicate IsIn c t asserts that t is a member of the class c.
It would be easy to extend the Pred datatype to allow other
forms of predicate, as is done with Trex records in Hugs [7].
Another frequently requested extension is to allow classes
to accept multiple parameters, which would require a list of
Types rather than the single Type in the definition above.

3The typeset version of the symbol :⇒ is written :=> in the con-
crete syntax of Haskell, and corresponds directly to the => symbol
that is used in instance declarations and in types.

The extension of Types to the Qual and Pred datatypes is
straightforward:

instance Types t ⇒ Types (Qual t) where
apply s (ps :⇒ t) = apply s ps :⇒ apply s t
tv (ps :⇒ t) = tv ps ‘union‘ tv t

instance Types Pred where
apply s (IsIn c t) = IsIn c (apply s t)
tv (IsIn c t) = tv t

7.1 Classes and Instances

A Haskell type class can be thought of as a set of types
(of some particular kind), each of which supports a certain
collection of member functions that are specified as part of
the class declaration. The types in each class (known as
instances) are specified by a collection of instance declara-
tions. We will assume that class names appearing in the
original source code have been mapped to values of the fol-
lowing Class datatype prior to typechecking:

data Class = Class {name :: Id ,
super :: [Class],
insts :: [Inst]}

type Inst = Qual Pred

Values of type Class and Inst correspond to source level
class and instance declarations, respectively. Only the de-
tails that are needed for type inference are included in these
representations. A full Haskell implementation would need
to store additional information for each declaration, such as
the member functions for the class, or their implementations
in a particular instance.

A derived equality on Class is not useful because the data
structures may be cyclic and so a test for structural equal-
ity might not terminate when applied to equal arguments.
Instead, we use the name field to define an equality:

instance Eq Class where
c == c′ = name c == name c′

Apart from using a different keyword, Haskell class and in-
stance declarations begin in the same way, with a clause of
the form preds ⇒ pred for some (possibly empty) ‘context’
preds, and a ‘head’ predicate pred . In a class declaration,
the context is used to specify the immediate superclasses,
which we represent more directly by the list of classes in
the field super : If a type is an instance of a class c, then
it must also be an instance of any superclasses of c. Using
only superclass information, we can be sure that, if a given
predicate p holds, then so too must all of the predicates in
the list bySuper p:

bySuper :: Pred → [Pred]
bySuper p@(IsIn c t)

= p : concat (map bySuper supers)
where supers = [IsIn c′ t | c′ ← super c]

The list bySuper p may contain duplicates, but it will al-
ways be finite because restrictions in Haskell ensure that
the superclass hierarchy is acyclic.

5

The final field in each Class structure, insts, is the list of
instance declarations for that particular class. Each such in-
stance declaration is represented by a clause ps :⇒ h. Here,
h is a predicate that describes the form of instances that
the declaration can produce, while the context ps lists any
constraints that it requires. We can use the following func-
tion to see if a particular predicate p can be deduced using
a given instance. The result is either Just ps, where ps is
a list of subgoals that must be established to complete the
proof, or Nothing if the instance does not apply:

byInst :: Pred → Inst → Maybe [Pred]
byInst p (ps :⇒ h) = do u ← matchPred h p

Just (map (apply u) ps)

To see if an instance applies, we use one-way matching on
predicates, which is implemented as follows:

matchPred :: Pred → Pred → Maybe Subst
matchPred (IsIn c t) (IsIn c′ t ′)
| c == c′ = match t t ′

| otherwise = Nothing

We can find all the relevant instances for a given predicate
p = IsIn c t in insts c. So, if there are any ways to apply
an instance to p, then we can find one using:

reducePred :: Pred → Maybe [Pred]
reducePred p@(IsIn c t) = foldr (|||) Nothing poss

where poss = map (byInst p) (insts c)
Nothing |||y = y
Just x |||y = Just x

In fact, because Haskell prevents the definition of overlap-
ping instances, we can be sure that, if reducePreds succeeds,
then we have actually found the only applicable instance.

7.2 Entailment

The information provided by class and instance declarations
can be combined to define an entailment relation on pred-
icates. As in the theory of qualified types [6], we write
ps `̀ p to indicate that the predicate p will hold whenever
all of the predicates in ps are satisfied. To make this more
concrete, we define the following function4:

(`̀) :: [Pred]→ Pred → Bool
ps `̀ p = any (p ‘elem‘) (map bySuper ps) ||

case reducePred p of
Nothing → False
Just qs → all (ps `̀) qs

The first step here is to determine whether p can be deduced
from ps using only superclasses. If that fails, we look for a
matching instance and generate a list of predicates qs as a
new goal, each of which must, in turn, follow from ps.

Conditions specified in the Haskell report—namely that the
class hierarchy is acyclic and that the types in any instance
declaration are strictly smaller than those in the head—are

4The typeset version of the symbol `̀ is written ||- in the concrete
syntax of Haskell.

enough to guarantee that tests for entailment will termi-
nate. Completeness of the algorithm is also important: will
ps `̀ p always return True whenever there is a way to prove
p from ps? In fact our algorithm does not cover all possible
cases: it does not test to see if p is a superclass of some
other predicate q such that ps `̀ q . Extending the algo-
rithm to test for this would be very difficult because there
is no obvious way to choose a particular q , and, in gen-
eral, there will be infinitely many potential candidates to
consider. Fortunately, a technical condition in the Haskell
report [10, Condition 1 on Page 47] reassures us that this is
not necessary: if p can be obtained as an immediate super-
class of some predicate q that was built using an instance
declaration in an entailment ps `̀ q , then ps must already
be strong enough to deduce p. Thus, although we have not
formally proved these properties, we believe that our algo-
rithm is sound, complete, and guaranteed to terminate.

8 Type Schemes

Type schemes are used to describe polymorphic types, and
are represented using a list of kinds and a qualified type:

data Scheme = Forall [Kind] (Qual Type)
deriving Eq

There is no direct equivalent of Forall in the syntax of
Haskell. Instead, implicit quantifiers are inserted as nec-
essary to bind free type variables.

In a type scheme Forall ks qt , each type of the form TGen n
that appears in the qualified type qt represents a generic, or
universally quantified type variable, whose kind is given by
ks !! n. This is the only place where we will allow TGen val-
ues to appear in a type. We had originally hoped that this
restriction could be enforced statically by a careful choice of
the representation for types and type schemes. However, af-
ter considering several other alternatives, we eventually set-
tled for the representation shown here because it allows for
simple implementations of equality and substitution. For ex-
ample, because the implementation of substitution on Type
ignores TGen values, we can be sure that there will be no
variable capture problems in the following definition:

instance Types Scheme where
apply s (Forall ks qt) = Forall ks (apply s qt)
tv (Forall ks qt) = tv qt

Type schemes are constructed by quantifying a qualified
type qt with respect to a list of type variables vs:

quantify :: [Tyvar]→ Qual Type → Scheme
quantify vs qt = Forall ks (apply s qt)

where vs ′ = [v | v ← tv qt , v ‘elem‘ vs]
ks = map kind vs ′

s = zip vs ′ (map TGen [0..])

Note that the order of the kinds in ks is determined by the
order in which the variables v appear in tv qt , and not by
the order in which they appear in vs. So, for example, the
leftmost quantified variable in a type scheme will always be
represented by TGen 0. By insisting that type schemes are

6

constructed in this way, we obtain a unique canonical form
for Scheme values. This is very important because it means
that we can test whether two type schemes are the same—
for example, to determine whether an inferred type agrees
with a declared type—using Haskell’s derived equality.

In practice, we sometimes need to convert a Type into a
Scheme without adding any qualifying predicates or quanti-
fied variables. For this special case, we can use the following
function instead of quantify :

toScheme :: Type → Scheme
toScheme t = Forall [] ([] :⇒ t)

9 Assumptions

Assumptions about the type of a variable are represented
by values of the Assump datatype, each of which pairs a
variable name with a type scheme:

data Assump = Id :>: Scheme

Once again, we can extend the Types class to allow the ap-
plication of a substitution to an assumption:

instance Types Assump where
apply s (i :>: sc) = i :>: (apply s sc)
tv (i :>: sc) = tv sc

Thanks to the instance definition for Types on lists (Sec-
tion 5), we can also use the apply and tv operators on the
lists of assumptions that are used to record the type of each
program variable during type inference. We will also use the
following function to find the type of a particular variable
in a given set of assumptions:

find :: Id → [Assump]→ Scheme
find i as = head [sc | (i ′ :>: sc)← as, i == i ′]

We do not make any allowance here for the possibility that
the variable i might not appear in as, and assume instead
that a previous compiler pass will have detected any occur-
rences of unbound variables.

10 A Type Inference Monad

It is now quite standard to use monads as a way to hide
certain aspects of ‘plumbing’ and to draw attention instead
to more important aspects of a program’s design [12]. The
purpose of this section is to define the monad that will be
used in the description of the main type inference algorithm
in Section 11. Our choice of monad is motivated by the
needs of maintaining a ‘current substitution’ and of gener-
ating fresh type variables during typechecking. In a more
realistic implementation, we might also want to add error
reporting facilities, but in this paper the crude but simple
error function from the Haskell prelude is all that we re-
quire. It follows that we need a simple state monad with
only a substitution and an integer (from which we can gen-

erate new type variables) as its state:

newtype TI a = TI (Subst → Int → (Subst , Int , a))

instance Monad TI where
return x = TI (\s n → (s, n, x))
TI c >>= f = TI (\s n →

let (s ′, m, x) = c s n
TI fx = f x

in fx s ′ m)

runTI :: TI a → a
runTI (TI c) = result

where (s, n, result) = c nullSubst 0

We provide two operations that deal with the current sub-
stitution: getSubst returns the current substitution, while
unify extends it with a most general unifier of its arguments:

getSubst :: TI Subst
getSubst = TI (\s n → (s, n, s))

unify :: Type → Type → TI ()
unify t1 t2 = do s ← getSubst

case mgu (apply s t1) (apply s t2) of
Just u → extSubst u
Nothing → error “unification”

For clarity, we define the operation that extends the substi-
tution as a separate function, even though it is used only
here in the definition of unify :

extSubst :: Subst → TI ()
extSubst s ′ = TI (\s n → (s ′@@s, n, ()))

Overall, the decision to hide the current substitution in the
TI monad makes the presentation of type inference much
clearer. In particular, it avoids heavy use of apply every
time an extension is (or might have been) computed.

There is only one primitive that deals with the integer por-
tion of the state, using it in combination with enumId to
generate a new or fresh type variable of a specified kind:

newTVar :: Kind → TI Type
newTVar k = TI (\s n →

let v = Tyvar (enumId n) k
in (s, n + 1, TVar v))

One place where newTVar is useful is in instantiating a type
scheme with new type variables of appropriate kinds:

freshInst :: Scheme → TI (Qual Type)
freshInst (Forall ks qt) = do ts ← mapM newTVar ks

return (inst ts qt)

The structure of this definition guarantees that ts has ex-
actly the right number of type variables, and each with the
right kind, to match ks. Hence, if the type scheme is well-
formed, then the qualified type returned by freshInst will
not contain any unbound generics of the form TGen n. The
definition relies on an auxiliary function inst , which is a
variation of apply that works on generic variables. In other

7

words, inst ts t replaces each occurrence of a generic vari-
able TGen n in t with ts !! n. Although we use it at only
this one place, it is still convenient to build up the definition
of inst using overloading.

class Instantiate t where
inst :: [Type]→ t → t

instance Instantiate Type where
inst ts (TAp l r) = TAp (inst ts l) (inst ts r)
inst ts (TGen n) = ts !! n
inst ts t = t

instance Instantiate a ⇒ Instantiate [a] where
inst ts = map (inst ts)

instance Instantiate t ⇒ Instantiate (Qual t) where
inst ts (ps :⇒ t) = inst ts ps :⇒ inst ts t

instance Instantiate Pred where
inst ts (IsIn c t) = IsIn c (inst ts t)

11 Type Inference

With this section we have reached the heart of the paper,
detailing our algorithm for type inference. It is here that
we finally see how the machinery that has been built up
in earlier sections is actually put to use. We develop the
complete algorithm in stages, working through the abstract
syntax of the input language from the simplest part (literals)
to the most complex (binding groups). Most of our typing
rules are expressed in terms of the following type synonym:

type Infer e t = [Assump]→ e → TI ([Pred], t)

In more theoretical treatments, it would not be surprising to
see the rules expressed in terms of judgments P | A ` e : t ,
where P is a set of predicates, A is a set of assumptions, e is
an expression, and t is a corresponding type [6]. Judgments
like this can be thought of as 4-tuples, and the typing rules
themselves just correspond to a 4-place relation. Exactly
the same structure shows up in types of the form Infer e t ,
except that by using functions, we distinguish very clearly
between input and output parameters.

11.1 Literals

Like other languages, Haskell provides special syntax for
constant values of certain primitive datatypes, including nu-
merics, characters, and strings. We will represent these lit-
eral expressions as values of the Literal datatype:

data Literal = LitInt Integer
| LitChar Char

Type inference for literals is straightforward. For characters,
we just return typeChar . For integers, we return a new type
variable v together with a predicate to indicate that v must
be an instance of the Num class.

tiLit :: Literal → TI ([Pred], Type)
tiLit (LitChar) = return ([], tChar)
tiLit (LitInt) = do v ← newTVar Star

return ([IsIn cNum v], v)

For this last case, we assume the existence of a constant
cNum :: Class to represent the Haskell class Num, but, for
reasons of space, we do not present the definition here. It is
straightforward to add additional cases for Haskell’s floating
point and String literals.

11.2 Patterns

Patterns are used to inspect and deconstruct data values
in lambda abstractions, function and pattern bindings, list
comprehensions, do notation, and case expressions. We will
represent patterns using values of the Pat datatype:

data Pat = PVar Id
| PLit Literal
| PCon Assump [Pat]

A PVar i pattern matches any value, and binds the result
to the variable i . A PLit l pattern matches only the partic-
ular value denoted by the literal l . A pattern of the form
PCon a pats matches only values that were built using the
constructor function a with a sequence of arguments that
matches pats. We use values of type Assump to represent
constructor functions; all that we really need for typecheck-
ing is the type, although the name is useful for debugging.
A full implementation of Haskell would store additional de-
tails such as arity, and use this to check that constructor
functions in patterns are always fully applied.

Most Haskell patterns have a direct representation in Pat ,
but it would need to be extended to account for patterns us-
ing labeled fields, and for (n + k) patterns. Neither of these
cause any substantial problems, but they do add a little
complexity, which we prefer to avoid in this presentation.

Type inference for patterns has two goals: To calculate a
type for each bound variable, and to determine what type
of values the whole pattern might match. This leads us to
look for a function:

tiPat :: Pat → TI ([Pred], [Assump], Type)

Note that we do not need to pass in a list of assumptions
here; by definition, any occurence of a variable in a pattern
would hide rather than refer to a variable of the same name
in an enclosing scope.

For a variable pattern, PVar i , we just return a new as-
sumption, binding i to a fresh type variable.

tiPat (PVar i) = do v ← newTVar Star
return ([], [i :>: toScheme v], v)

Haskell does not allow multiple use of any variable in a pat-
tern, so we can be sure that this is the first and only occur-
rence of i that we will encounter in the pattern.

For literal patterns, we use tiLit from the previous section:

tiPat (PLit l) = do (ps, t)← tiLit l
return (ps, [], t)

8

The case for constructed patterns is slightly more complex:

tiPat (PCon (i :>: sc) pats)
= do (ps, as, ts)← tiPats pats

t ′ ← newTVar Star
(qs :⇒ t)← freshInst sc
unify t (foldr fn t ′ ts)
return (ps ++ qs, as, t ′)

First we use the tiPats function, defined below, to cal-
culate types ts for each subpattern in pats together with
corresponding lists of assumptions in as and predicates in
ps. Next, we generate a new type variable t ′ that will be
used to capture the (as yet unknown) type of the whole
pattern. From this information, we would expect the con-
structor function at the head of the pattern to have type
foldr fn t ′ ts. We can check that this is possible by instan-
tiating the known type sc of the constructor and unifying.

The tiPats function is a variation of tiPat that takes a list of
patterns as input, and returns a list of types (together with
a list of predicates and a list of assumptions) as its result.

tiPats :: [Pat]→ TI ([Pred], [Assump], [Type])
tiPats pats =

do psasts ← mapM tiPat pats
let ps = [p | (ps, ,)← psasts, p ← ps]

as = [a | (, as,)← psasts, a ← as]
ts = [t | (, , t)← psasts]

return (ps, as, ts)

We have already seen how tiPats was used in the treatment
of PCon patterns above. It is also useful in other situations
where lists of patterns are used, such as on the left hand
side of an equation in a function definition.

11.3 Expressions

Our next step is to describe type inference for expressions,
represented by the Expr datatype:

data Expr = Var Id
| Lit Literal
| Const Assump
| Ap Expr Expr
| Let BindGroup Expr

The Var and Lit constructors are used to represent variables
and literals, respectively. The Const constructor is used
to deal with named constants, such as the constructor or
selector functions associated with a particular datatype or
the member functions that are associated with a particular
class. We use values of type Assump to supply a name
and type scheme, which is all the information that we need
for the purposes of type inference. Function application is
represented using the Ap constructor, while Let is used to
represent let expressions.

Haskell has a much richer syntax of expressions, but they can
all be translated into Expr values. For example, a lambda
expression like \x->e can be rewritten using a local defini-
tion as let f x = e in f, where f is a new variable. Sim-
ilar translations are used for case expressions.

Type inference for expressions is quite straightforward:

tiExpr :: Infer Expr Type

tiExpr as (Var i)
= do let sc = find i as

(ps :⇒ t)← freshInst sc
return (ps, t)

tiExpr as (Const (i :>: sc))
= do (ps :⇒ t)← freshInst sc

return (ps, t)

tiExpr as (Lit l)
= do (ps, t)← tiLit l

return (ps, t)

tiExpr as (Ap e f)
= do (ps, te)← tiExpr as e

(qs, tf)← tiExpr as f
t ← newTVar Star
unify (fn tf t) te
return (ps ++ qs, t)

tiExpr as (Let bg e)
= do (ps, as ′)← tiBindGroup as bg

(qs, t)← tiExpr (as ′++ as) e
return (ps ++ qs, t)

The final case here, for Let expressions, uses the function
tiBindGroup presented in Section 11.6.3, to generate a list of
assumptions as ′ for the variables defined in bg . All of these
variables are in scope when we calculate a type t for the body
e, which also serves as the type of the whole expression.

11.4 Alternatives

The representation of function bindings in following sections
uses alternatives, represented by values of type Alt :

type Alt = ([Pat], Expr)

An Alt specifies the left and right hand sides of a function
definition. With a more complete syntax for Expr , values of
type Alt might also be used in the representation of lambda
and case expressions.

For type inference, we begin by building a new list as ′ of
assumptions for any bound variables, and use it to infer
types for each of the patterns, as described in Section 11.2.
Next, we calculate the type of the body in the scope of the
bound variables, and combine this with the types of each
pattern to obtain a single (function) type for the whole Alt :

tiAlt :: Infer Alt Type
tiAlt as (pats, e)

= do (ps, as ′, ts)← tiPats pats
(qs, t)← tiExpr (as ′++ as) e
return (ps ++ qs, foldr fn t ts)

In practice, we will often need to run the typechecker over
a list of alternatives, alts, and check that the returned type

9

in each case agrees with some known type t . This process
can be packaged up in the following definition:

tiAlts :: [Assump]→ [Alt]→ Type → TI [Pred]
tiAlts as alts t

= do psts ← mapM (tiAlt as) alts
mapM (unify t) (map snd psts)
return (concat (map fst psts))

Although we do not need it here, the signature for tiAlts
would allow an implementation to push the type argument
inside the checking of each Alt , interleaving unification with
type inference instead of leaving it to the end. This is essen-
tial in extensions like the support for rank-2 polymorphism
in Hugs where explicit type information plays a prominent
role. Even in an unextended Haskell implementation, this
could still help to improve the quality of type error messages.

11.5 Context Reduction

We have seen how lists of predicates are accumulated during
type inference. In this section, we will describe how those
predicates are used to construct inferred types. The Haskell
report [10] provides only informal hints about this aspect of
the Haskell typing, where both pragmatics and theory have
important parts to play. We believe therefore that this is
one of the areas where a more formal specification will be
particularly valuable.

To understand the basic problem, suppose that we have run
tiExpr over the body of a function f to obtain a set of pred-
icates ps and a type t . At this point we could infer a type
for f by forming the qualified type qt = (ps :⇒ t), and then
quantifying over any variables in qt that do not appear in
the assumptions. While this is permitted by the theory of
qualified types, it is often not the best thing to do in prac-
tice. For example:

• The syntax of Haskell requires class arguments to be
of the form v t1 . . . tn , where v is a type variable, and
t1,. . . ,tn are types (and n ≥ 0). Predicates that do not
fit this pattern must be broken down using reducePred .
In some cases, this will result in predicates being elimi-
nated. In others, where reducePred fails, it will indicate
that a predicate is unsatisfiable, and will trigger an er-
ror diagnostic.

• Some of the predicates in ps may be repeated or, more
generally, entailed by the other members of ps. These
predicates can safely be deleted, leading to smaller and
simpler inferred types.

• Some of the predicates in ps may contain only ‘fixed’
variables (i.e., variables appearing in the assumptions),
so including those constraints in the inferred type will
not be of any use [6, Section 6.1.4]. These predicates
should be ‘deferred’ to the enclosing bindings.

• Some of the predicates in ps could be ambiguous, and
might require defaulting to avoid a type error.

To deal with all of these issues, we use a process of context
reduction whose purpose is to compute, from a given set of
predicates ps, a set of ‘deferred’ predicates ds and a set of

‘retained’ predicates rs. Only retained predicates will be in-
cluded in inferred types. The complete process is described
by the following function:

reduce :: [Tyvar]→ [Tyvar]→ [Pred]→ ([Pred], [Pred])
reduce fs gs ps = (ds, rs ′)

where (ds, rs) = split fs ps
rs ′ = useDefaults (fs ++ gs) rs

The first stage of this algorithm, which we call context
splitting, is implemented by split and is described in Sec-
tion 11.5.1. Its purpose is to separate the deferred predicates
from the retained predicates, using reducePred as necessary.
The second stage implemented by useDefaults, is described
in Section 11.5.2. Its purpose is to eliminate ambiguities in
the retained predicates, whenever possible. The fs and gs
parameters specify appropriate sets of ‘fixed’ and ‘generic’
type variables, respectively. The former is just the set of
variables appearing free in the assumptions, while the latter
is the set of variables over which we would like to quantify.
Any variable in ps that is not in either fs or gs may cause
ambiguity, as we describe in Section 11.5.2.

11.5.1 Context Splitting

We will describe the process of splitting a context as the
composition of three functions, each corresponding to one
of the bulletted items at the beginning of Section 11.5.

split :: [Tyvar]→ [Pred]→ ([Pred], [Pred])
split fs = partition (all (‘elem‘ fs) . tv)

. simplify []

. toHnfs

The first stage of this pipeline, implemented by toHnfs, uses
reducePred to break down any inferred predicates into the
form that Haskell requires:

toHnfs :: [Pred]→ [Pred]
toHnfs = concat .map toHnf

toHnf :: Pred → [Pred]
toHnf p =

if inHnf p
then [p]
else case reducePred p of

Nothing → error “context reduction”
Just ps → toHnfs ps

The name toHnfs is motivated by similarities with the con-
cept of head-normal forms in λ-calculus. The test to deter-
mine whether a given predicate is in the appropriate form
is implemented by the following function:

inHnf :: Pred → Bool
inHnf (IsIn c t) = hnf t

where hnf (TVar v) = True
hnf (TCon tc) = False
hnf (TAp t) = hnf t

The second stage of the pipeline uses information about
superclasses to eliminate redundant predicates. More pre-
cisely, if the list produced by toHnfs contains some predicate

10

p, then we can eliminate any occurrence of a predicate from
bySuper p in the rest of the list. As a special case, this also
means that we can eliminate any repeated occurrences of
p, which always appears as the first element in bySuper p.
This process is implemented by the simplify function, using
an accumulating parameter to bulid up the final result:

simplify :: [Pred]→ [Pred]→ [Pred]
simplify rs [] = rs
simplify rs (p : ps) = simplify (p : (rs \\ qs)) (ps \\ qs)

where qs = bySuper p
rs \\ qs = [r | r ← rs, r ‘notElem‘ qs]

Note that we have used a modified version of the (\\) oper-
ator; with the standard Haskell semantics for (\\), we could
not guarantee that all duplicate entries would be removed.

The third stage of context reduction uses partition to sep-
arate deferred predicates—i.e., those containing only fixed
variables—from retained predicates. The set of fixed vari-
ables is passed in as the fs argument to split .

11.5.2 Applying Defaults

A type scheme P ⇒ t is said to be ambiguous if P contains
generic variables that do not also appear in t . From the-
oretical studies [1, 6], we know that we cannot guarantee
a well-defined semantics for any term with an ambiguous
type, which is why Haskell will not allow programs contain-
ing such terms. In this section, we describe the mechanisms
that are used to detect ambiguity, and the defaulting mech-
anism that it uses to try to eliminate ambiguity.

Suppose that we are about to qualify a type with a list of
predicates ps and that vs lists all known variables, both
fixed and generic. An ambiguity occurs precisely if there
is a type variable that appears in ps but not in vs. To
determine whether defaults can be applied, we compute a
triple (v , qs, ts) for each ambiguous variable v . In each case,
qs is the list of predicates in ps that involve v , and ts is the
list of types that could be used as a default value for v :

ambig :: [Tyvar]→ [Pred]→ [(Tyvar , [Pred], [Type])]
ambig vs ps

= [(v , qs, defs v qs) |
v ← tv ps \\ vs,
let qs = [p | p ← ps, v ‘elem‘ tv p]]

If the ts component of any one of these triples turns out
to be empty, then defaulting cannot be applied to the cor-
responding variable, and the ambiguity cannot be avoided.
On the other hand, if ts is non-empty, then we will be able
to substitute head ts for v and remove the predicates in qs
from ps.

Given one of these triples (v , qs, ts), and as specified by the
Haskell report [10, Section 4.3.4], defaulting is permitted if,
and only if, all of the following conditions are satisfied:

• All of the predicates in qs are of the form
IsIn c (TVar v) for some class c.

• All of the classes involved in qs are standard classes,
defined either in the standard prelude or standard li-
braries. We assume that the list of these classes is
provided by a constant stdClasses :: [Class].

• At least one of the classes involved in qs is a numeric
class. Again, we assume that the list of these classes is
provided by a constant numClasses :: [Class].

• That there is at least one type in the list of default
types for the enclosing module that is an instance of
all of the classes in qs. We assume that this list of
types is provided in a constant defaults :: [Type].

These conditions are captured rather more succinctly in the
following definition, which we use to calculate the third com-
ponent of each triple:

defs :: Tyvar → [Pred]→ [Type]
defs v qs = [t | all ((TVar v) ==) ts,

all (‘elem‘ stdClasses) cs,
any (‘elem‘ numClasses) cs,
t ← defaults,
and [[] `̀ IsIn c t | c ← cs]]

where cs = [c | (IsIn c t)← qs]
ts = [t | (IsIn c t)← qs]

The defaulting process can now be described by the fol-
lowing function, which generates an error if there are any
ambiguous type variables that cannot be defaulted:

useDefaults :: [Tyvar]→ [Pred]→ [Pred]
useDefaults vs ps
| any null tss = error “ambiguity”
| otherwise = ps \\ ps ′

where ams = ambig vs ps
tss = [ts | (v , qs, ts)← ams]
ps ′ = [p | (v , qs, ts)← ams, p ← qs]

A modified version of this process is required at the top-
level, when type inference for an entire module is complete
[10, Section 4.5.5, Rule 2]. In this case, any remaining type
variables are considered ambiguous, and we need to arrange
for defaulting to return a substitution mapping any such
variables to their defaulted types:

topDefaults :: [Pred]→ Maybe Subst
topDefaults ps
| any null tss = Nothing
| otherwise = Just (zip vs (map head tss))

where ams = ambig [] ps
tss = [ts | (v , qs, ts)← ams]
vs = [v | (v , qs, ts)← ams]

11.6 Binding Groups

The main technical challenge in this paper is to describe
typechecking for binding groups. This area is neglected in
most theoretical treatments of of type inference, often being
regarded as a simple exercise in extending basic ideas. In
Haskell, at least, nothing could be further from the truth!
With interactions between overloading, polymorphic recur-
sion, and the mixing of both explicitly and implicitly typed
bindings, this is the most complex, and most subtle com-
ponent of type inference. We will start by describing the
treatment of explicitly typed bindings and implicitly typed
bindings as separate cases, and then show how these can be
combined.

11

11.6.1 Explicitly Typed Bindings

The simplest case is for explicitly typed bindings, each of
which is described by the name of the function that is being
defined, the declared type scheme, and the list of alternatives
in its definition:

type Expl = (Id , Scheme, [Alt])

Haskell requires that each Alt in the definition of any given
value has the same number of arguments in each left-hand
side, but we do not need to enforce that restriction here.

Type inference for an explicitly typed binding is fairly easy;
we need only check that the declared type is valid, and do
not need to infer a type from first principles. To support the
use of polymorphic recursion [4, 8], we will assume that the
declared typing for i is already included in the assumptions
when we call the following function:

tiExpl :: [Assump]→ Expl → TI [Pred]
tiExpl as (i , sc, alts) =

do (qs :⇒ t)← freshInst sc
ps ← tiAlts as alts t
s ← getSubst
let qs ′ = apply s qs

t ′ = apply s t
ps ′ = [p | p ← apply s ps, not (qs ′ `̀ p)]
fs = tv (apply s as)
gs = tv t ′ \\ fs
(ds, rs) = reduce fs gs ps ′

sc′ = quantify gs (qs ′ :⇒ t ′)
if sc /= sc′ then

error “signature too general”
else if not (null rs) then

error “context too weak”
else

return ds

This code begins by instantiating the declared type scheme
sc and checking each alternative against the resulting type
t . When all of the alternatives have been processed, the
inferred type for i is qs ′ :⇒ t ′. If the type declaration is
accurate, then this should be the same, up to renaming of
generic variables, as the original type qs :⇒ t . If the type
signature is too general, then the calculation of sc′ will result
in a type scheme that is more specific than sc and an error
will be reported.

In the meantime, we must discharge any predicates that
were generated while checking the list of alternatives. Pred-
icates that are entailed by the context qs ′ can be eliminated
without further ado. Any remaining predicates are collected
in ps ′ and passed as arguments to reduce along with the ap-
propriate sets of fixed and generic variables. If there are any
retained predicates after context reduction, then an error is
reported, indicating that the declared context is too weak.

11.6.2 Implicitly Typed Bindings

Two complications occur when we deal with implicitly typed
bindings. The first is that we must deal with groups of mu-
tually recursive bindings as a single unit rather than infer-
ring types for each binding one at a time. The second is

Haskell’s monomorphism restriction, which restricts the use
of overloading in certain cases.

A single implicitly typed binding is described by a pair con-
taining the name of the variable and a list of alternatives:

type Impl = (Id , [Alt])

The monomorphism restriction is invoked when one or more
of the entries in a list of implicitly typed bindings is simple,
meaning that it has an alternative with no left-hand side
patterns. The following function provides a simple way to
test for this condition:

restricted :: [Impl]→ Bool
restricted bs = any simple bs

where simple (i , alts) = any (null . fst) alts

Type inference for groups of mutually recursive, implicitly
typed bindings is described by the following function:

tiImpls :: Infer [Impl] [Assump]
tiImpls as bs =

do ts ← mapM (\ → newTVar Star) bs
let is = map fst bs

scs = map toScheme ts
as ′ = zipWith (:>:) is scs ++ as
altss = map snd bs

pss ← sequence (zipWith (tiAlts as ′) altss ts)
s ← getSubst
let ps ′ = apply s (concat pss)

ts ′ = apply s ts
fs = tv (apply s as)
vss = map tv ts ′

gs = foldr1 union vss \\ fs
(ds, rs) = reduce fs (foldr1 intersect vss) ps ′

if restricted bs then
let gs ′ = gs \\ tv rs

scs ′ = map (quantify gs ′ . ([] :⇒)) ts ′

in return (ds ++ rs, zipWith (:>:) is scs ′)
else

let scs ′ = map (quantify gs . (rs :⇒)) ts ′

in return (ds, zipWith (:>:) is scs ′)

In the first part of this process, we extend as with assump-
tions binding each identifier defined in bs to a new type
variable, and use these to type check each alternative in
each binding. This is necessary to ensure that each vari-
able is used with the same type at every occurrence within
the defining list of bindings. (Lifting this restriction makes
type inference undecidable [4, 8].) Next we use the process
of context reduction to break the inferred predicates in ps ′

into a list of deferred predicates ds and retained predicates
rs. The list gs collects all the generic variables that ap-
pear in one or more of the inferred types ts ′, but not in
the list fs of fixed variables. Note that a different list is
passed to reduce, including only variables that appear in
all of the inferred types. This is important because all of
those types will eventually be qualified by the same set of
predicates, and we do not want any of the resulting type
schemes to be ambiguous. The final step begins with a test
to see if the monomorphism restriction should be applied,
and then continues to calculate an assumption containing
the principal types for each of the defined values. For an

12

unrestricted binding, this is simply a matter of qualifying
over the retained predicates in rs and quantifying over the
generic variables in gs. If the binding group is restricted,
then we must defer the predicates in rs as well as those in
ds, and hence we can only quantify over variables in gs that
do not appear in rs.

11.6.3 Combined Binding Groups

Haskell requires a process of dependency analysis to break
down complete sets of bindings—either at the top-level of a
program, or within a local definition—into the smallest pos-
sible groups of mutually recursive definitions, and ordered so
that no group depends on the values defined in later groups.
This is necessary to obtain the most general types possi-
ble. For example, consider the following fragment from a
standard prelude for Haskell:

foldr f a (x:xs) = f x (foldr f a xs)
foldr f a [] = a

and xs = foldr (&&) True xs

If these definitions were placed in the same binding group,
then we would not obtain the most general possible type for
foldr; all occurrences of a variable are required to have the
same type at each point within the defining binding group,
which would lead to the following type for foldr:

(Bool -> Bool -> Bool) -> Bool -> [Bool] -> Bool

To avoid this problem, we need only notice that the defini-
tion of foldr does not depend in any way on &&, and hence
we can place the two functions in separate binding groups,
inferring first the most general type for foldr, and then the
correct type for and.

In the presence of explicitly typed bindings, we can refine the
dependency analysis process a little further. For example,
consider the following pair of bindings:

f :: Eq a => a -> Bool
f x = (x==x) || g True
g y = (y<=y) || f True

Although these bindings are mutually recursive, we do not
need to infer types for f and g at the same time. Instead,
we can use the declared type of f to infer a type:

g :: Ord a => a -> Bool

and then use this to check the body of f, ensuring that its
declared type is correct.

Motivated by these observations, we will represent Haskell
binding groups using the following datatype:

type BindGroup = ([Expl], [[Impl]])

The first component in each such pair lists any explicitly
typed bindings in the group, while the second component
breaks down any remaining bindings into a sequence of
smaller, implicitly typed binding groups, arranged in de-
pendency order. In choosing our representation for the ab-
stract syntax, we have assumed that dependency analysis
has been carried out prior to type checking, and that the

bindings in each group have been organized into values of
type BindGroup in an appropriate manner. For a correct
implementation of the semantics specified in the Haskell re-
port, we must place all of the implicitly typed bindings in
a single group, even if a more refined decomposition would
be possible. In addition, if that group is restricted, then we
must also check that none of the explicitly typed bindings
in the same BindGroup have any predicates in their type.
With hindsight, these seem like strange restrictions that we
might prefer to avoid in any further revision of Haskell.

A more serious concern is that the Haskell report does not
indicate clearly whether the previous example defining f and
g should be valid. At the time of writing, some implemen-
tations accept it, while others do not. This is exactly the
kind of problem that can occur when there is no precise,
formal specification! Curiously, however, the report does
indicate that a modification of the example to include an
explicit type for g would be illegal. This is a consequence
of a throw-away comment specifying that all explicit type
signatures in a binding group must have the same context
up to renaming of variables [10, Section 4.5.2]. This is a
syntactic restriction that can easily be checked prior to type
checking. Our comments here, however, suggest that it is
unnecessarily restrictive.

In addition to the function bindings that we have seen al-
ready, Haskell allows variables to be defined using pattern
bindings of the form pat = expr . We do not need to deal di-
rectly with such bindings because they are easily translated
into the simpler framework used in this paper. For example,
a binding:

(x,y) = expr

can be rewritten as:

nv = expr
x = fst nv
y = snd nv

where nv is a new variable. The precise definition of the
monomorphism restriction in Haskell makes specific refer-
ence to pattern bindings, treating any binding group that
includes one as restricted. So, at first glance, it may seem
that the definition of restricted binding groups in this pa-
per is not quite accurate. However, if we use translations as
suggested here, then it turns out to be equivalent: even if
the programmer supplies explicit type signatures for x and
y in the original program, the translation will still contain
an implicitly typed binding for the new variable nv.

Now, at last, we are ready to present the algorithm for type
inference of a complete binding group, as implemented by
the following function:

tiBindGroup :: Infer BindGroup [Assump]
tiBindGroup as (es, iss) =

do let as ′ = [v :>: sc | (v , sc, alts)← es]
(ps, as ′′)← tiSeq tiImpls (as ′++ as) iss
qs ← mapM (tiExpl (as ′′++ as ′++ as)) es
return (ps ++ concat qs, as ′′++ as ′)

The structure of this definition is quite straightforward.
First we form a list of assumptions as ′ for each of the explic-
itly typed bindings in the group. Next, we use this to check

13

each group of implicitly typed bindings, extending the as-
sumption set further at each stage. Finally, we return to the
explicitly typed bindings to verify that each of the declared
types is acceptable. In dealing with the list of implicitly
typed binding groups, we use the following utility function,
which typechecks a list of binding groups and accumulates
assumptions as it runs through the list:

tiSeq :: Infer bg [Assump]→ Infer [bg] [Assump]
tiSeq ti as []

= return ([], [])
tiSeq ti as (bs : bss)

= do (ps, as ′)← ti as bs
(qs, as ′′)← tiSeq ti (as ′++ as) bss
return (ps ++ qs, as ′′++ as ′)

11.6.4 Top-level Binding Groups

At the top-level, a Haskell program can be thought of as a
list of binding groups:

type Program = [BindGroup]

Even the definitions of member functions in class and in-
stance declarations can be included in this representation;
they can be translated into top-level, explicitly typed bind-
ings. The type inference process for a program takes a list of
assumptions giving the types of any primitives, and returns
a set of assumptions for any variables.

tiProgram :: [Assump]→ Program → [Assump]
tiProgram as bgs = runTI $

do (ps, as ′)← tiSeq tiBindGroup as bgs
s ← getSubst
let ([], rs) = split [] (apply s ps)
case topDefaults rs of

Just s ′ → return (apply (s ′@@s) as ′)
Nothing → error “top-level ambiguity”

This completes our presentation of the Haskell type system.

12 Conclusions

We have presented a complete Haskell program that im-
plements a type checker for the Haskell language. In the
process, we have clarified certain aspects of the current de-
sign, as well as identifying some ambiguities in the existing,
informal specification.

The type checker has been developed, type-checked, and
tested using the “Haskell 98 mode” of Hugs 98 [7]. The
full program includes many additional functions, not shown
in this paper, to ease the task of testing, debugging, and dis-
playing results. We have also translated several large Haskell
programs—including the Standard Prelude, the Maybe and
List libraries, and the source code for the type checker
itself—into the representations described in Section 11, and
successfully passed these through the type checker. As a re-
sult of these and other experiments we have good evidence
that the type checker is working as intended, and in accor-
dance with the expectations of Haskell programmers.

We believe that this typechecker can play a useful role, both
as a formal specification for the Haskell type system, and as
a testbed for experimenting with future extensions.

Acknowledgments

This paper has benefited from feedback from Lennart Au-
gustsson, Stephen Eldridge, Tim Sheard, Andy Gordon, and
from an anonymous referee. The research reported in this
paper was supported by the USAF Air Materiel Command,
contract # F19628-96-C-0161.

References

[1] S. M. Blott. An approach to overloading with polymor-
phism. PhD thesis, Department of Computing Science,
University of Glasgow, July 1991. (draft version).

[2] L. Damas and R. Milner. Principal type schemes for
functional programs. In 9th Annual ACM Symposium
on Principles of Programming languages, pages 207–
212, Albuquerque, NM, January 1982.

[3] B. R. Gaster and M. P. Jones. A polymorphic type
system for extensible records and variants. Technical
Report NOTTCS-TR-96-3, Computer Science, Univer-
sity of Nottingham, November 1996.

[4] F. Henglein. Type inference with polymorphic recur-
sion. ACM Transactions on Programming Languages
and Systems, 15(2):253–289, April 1993.

[5] R. Hindley. The principal type-scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, December 1969.

[6] M. P. Jones. Qualified Types: Theory and Practice.
PhD thesis, Programming Research Group, Oxford
University Computing Laboratory, July 1992. Pub-
lished by Cambridge University Press, November 1994.

[7] M. P. Jones and J. C. Peterson. Hugs 98
User Manual, May 1999. Available from
http://www.haskell.org/hugs/.

[8] A. Kfoury, J. Tiuryn, and P. Urzyczyn. Type re-
construction in the presence of polymorphic recursion.
ACM Transactions on Programming Languages and
Systems, 15(2):290–311, April 1993.

[9] R. Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17(3),
1978.

[10] S. Peyton Jones and J. Hughes, editors. Report on
the Programming Language Haskell 98, A Non-strict
Purely Functional Language, February 1999. Available
from http://www.haskell.org/definition/.

[11] J. Robinson. A machine-oriented logic based on the res-
olution principle. Journal of the Association for Com-
puting Machinery, 12, 1965.

[12] P. Wadler. The essence of functional programming (in-
vited talk). In Conference record of the Nineteenth an-
nual ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, pages 1–14, Jan 1992.

14

