
ZU064-05-FPR SnakeCube 22 August 2012 21:38

Under consideration for publication in J. Functional Programming 1

F U N C T I O N A L P E A R L
Solving the Snake Cube Puzzle in Haskell

MARK P. JONES
Department of Computer Science

Portland State University, Portland, Oregon, USA
(e-mail: mpj@cs.pdx.edu)

Abstract

We describe a concise and elegant functional program, written in Haskell, that computes solutions
for a classic puzzle known as the “snake cube”. The program reflects some of the fundamental
characteristics of the functional style, identifying key abstractions, and defining a small collection of
operators for manipulating and working with the associated values. Well-suited for an introductory
course on functional programming, this example highlights the use of visualization tools to explain
and demonstrate the choices of data structures and algorithms that are used in the development.

1 Introduction

A popular wooden puzzle, the “snake cube” comprises a string of 27 small cubes, typically
alternating between dark and light colors, that is solved by folding the puzzle in on itself
so that the pieces form a single, large, 3×3×3 cube. The following diagram illustrates a
partially folded version of the puzzle on the left and the solved form on the right:

Although the task can be accomplished in just a few seconds with prior knowledge,
figuring out a solution from scratch can be quite difficult. (The author writes from the
experience of his own struggles as well as the experience of watching others attempt to
solve it.) In this paper, we present a concise and elegant functional program, written in
Haskell (Peyton Jones, 2003), that computes solutions to the standard snake cube, and is
readily adapted to other variants. The development is well-suited for use in an introductory

ZU064-05-FPR SnakeCube 22 August 2012 21:38

2 M. P. Jones

course on Haskell programming: beyond the obvious visual appeal of the problem, and the
ability for students to hold and experiment with a physical puzzle while they are working
through the code, the program also provides a good introduction to important tools and
techniques of functional programming. This includes, for example, built-in data structures
such as tuples and lists; basic language constructs, particularly list comprehensions; and a
novel demonstration of Wadler’s programming technique for ‘replacing failure by a list of
successes’ (Wadler, 1985).

2 Constructing the Snake Cube

Before we set about the process of computing solutions, it is useful to capture the structure
of the puzzle in more detail. Although other methods are possible, the snake cube is usually
constructed by threading the small cubes together with an elasticated cord that stretches
from one end to the other, entering and exiting individual pieces of the puzzle through
centered holes in the faces of the small cubes. In some cases, the entry and exit are on
opposite faces, but in others they are on adjacent faces, effectively creating a 90◦ change
in direction. The result of this is to break the snake into straight sections, each of which
includes either two or three neighboring cubes. (These sections must fit within the final
3×3×3 cube and cannot be folded, so they can be at most 3 cubes in length.) The following
diagram shows the structure of a standard snake cube once it has been flattened out, and
makes it easy to see the sections of two or three cubes along the length of the puzzle:

The essential details of this structure can be captured by a list of integers. In the following,
we choose arbitrarily to list the sections of the snake from left to right; reversing the list
would, of course, result in an equivalent description of the same puzzle.

snake :: [Int]
snake = [3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3]

As a sanity check, we can verify that sum snake− (length snake−1) = 27, the total num-
ber of small cubes in the puzzle. This formula works because sum snake overcounts the
total by including each of the (length snake−1) corner pieces twice.

It is fairly easy to see that the last cube on the right of the diagram above must end up
in one of the eight corners of the final 3×3×3 cube in any solution; otherwise, there is no
way to fit the last four sections (each of length 3) into the final cube. In fact, the first cube
on the left must also end up in a corner of the final solution. Readers with good spatial
reasoning skills may be able to deduce this from the diagram alone, but it quickly becomes
obvious once you have the puzzle in your hands and begin to experiment.

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 3

3 Moving in to Three Dimensions

As we start to think about assembling the puzzle in three dimensions, it is natural to adopt
a conventional coordinate system as illustrated in Fig. 1. Note that we can use vectors like

x

(1,0,0)

y

(0,1,0)

z (0,0,1)

(1,1,1)

(2,1,1) (3,1,1)

Fig. 1. Using vectors to represent Positions and Directions within the snake cube puzzle.

(1,0,0), (0,1,0), and (0,0,1) to represent directions within the large cube corresponding
to the x, y, and z axes, respectively. We can also use vectors to reference each of the smaller
cube positions within the assembled puzzle. In what follows, we have chosen, somewhat
arbitrarily, to represent each small cube by the coordinates of its furthest point from the
origin. Thus the corner cube that is closest to the origin is (1,1,1) and its immediate
neighbors along the positive x axis are (2,1,1) and (3,1,1). Note that all of the vectors that
we are dealing with here have integer coordinates, so they can be represented by values of
the following types:

type Direction = (Int, Int, Int)
type Position = (Int, Int, Int)

In this paper, we will only use six different Direction values, corresponding in Fig. 1 to
right/left (x axis), up/down (y axis), and forward/backward (z axis). In numerical terms,
these are the vectors in which one coordinate is either 1 or −1 and the others are both zero.
To describe which Position values correspond to valid locations within the solved puzzle,
we will use a predicate, inCube 3, that is defined as follows:

inCube :: Int → Position → Bool

inCube n (x, y, z) = inRange x && inRange y && inRange z

where inRange i = 1 ≤ i && i ≤ n

Making n a parameter in this definition will allow us to generalize later to more complex
versions of the puzzle, including the “king snake”, which has a string of 64 small cubes
that can be assembled in to a large 4×4×4 cube.

ZU064-05-FPR SnakeCube 22 August 2012 21:38

4 M. P. Jones

4 Describing Solutions

We will represent solutions to the snake cube puzzle as sequences of steps that fit each
of the puzzle pieces into its final place, moving from the first section to the last. With a
physical puzzle in hand, it may actually be necessary to perform the steps in a slightly
different order to avoid conflicts between the pieces of the puzzle that have already been
placed and the ‘dangling tail’ that comprises the remaining puzzle sections. Although this
can occur in practice, it is usually easy to work around with the puzzle in hand. And in some
cases, just reversing the order of the list of sections—so that we start working from the
opposite end—can make the puzzle easier to assemble (see the description of reversePuzzle

in Section 7). For these reasons, we will not worry about modeling the dangling tail in our
attempts to compute puzzle solutions.

The diagram in Fig. 2 illustrates a sequence of steps for fitting three puzzle sections,
each containing 3 small cubes, into the space of the large cube. As a special case, we begin

soln0 = [[(1, 1, 1)]] soln1 = [(1, 3, 1), (1, 2, 1)] : soln0

soln2 = [(3, 3, 1), (2, 3, 1)] : soln1 soln3 = [(3, 3, 3), (3, 3, 2)] : soln2

Fig. 2. A sequence of steps placing three sections, each of length 3, within a 3×3×3 cube.

by placing the first small cube at (1,1,1) in soln0. Then, for each of the three sections, we
add a separate list that describes the two new pieces in that section with the position of
the most recently placed small cube at the front. This will allow us to build up solutions
incrementally: any solution, s, that fits (n+ 1) sections will include a solution, tail s, that
fits the first n sections (assuming n ≥ 1).

type Solution = [Section]
type Section = [Position]

The pieces within each section are also ordered with the most recently placed small cube
first, so we can always find the Position of the most recently placed small cube in a full

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 5

solution, s :: Solution, by using head (head s). This also means that we can obtain a list
of all the positions that have been filled in a given solution, s, from first to last (and with
alternating dark and light colors, if we wish to model that aspect of the puzzle) by using
reverse (concat s). For example, with the steps illustrated in Fig. 2, we have:

reverse (concat soln3)
= [(1, 1, 1), (1, 2, 1), (1, 3, 1), (2, 3, 1), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

5 Building Sections

The sequence of cubes that appear in any given section is determined: by the position,
start, of the first cube (which is also the last cube in the previous section); by the direction,
(u, v, w), of the section; and by its length, len.

section :: Position → Direction → Int → Section

section start (u, v, w) len = reverse (tail (take len pieces))
where pieces = iterate (\(x, y, z)→ (x+u, y+ v, z+w)) start

The local definition here produces an infinite list, pieces, of positions with the required
start and direction. Using take len, we truncate the list to the length of the section, and then
use tail to discard the first position (which will, again, have already been included in the
previous section). Finally, we use reverse to ensure that the list is ordered with the most
recently placed cube first. For example, the first two full sections from Fig. 2, which appear
at the heads of soln1 and soln2, respectively, can be calculated as follows:

section (1, 1, 1) (0, 1, 0) 3 = [(1, 3, 1), (1, 2, 1)]
section (1, 3, 1) (1, 0, 0) 3 = [(3, 3, 1), (2, 3, 1)]

6 Changing Directions

It remains to account for the change of direction between adjacent puzzle sections. As an
example, if we begin with a section that has direction (1,0,0), then there are four possible
directions for the next section—forwards (0,0,1), backwards (0,0,−1), up (0,1,0), and
down (0,−1,0)—as illustrated in the following diagram:

(1,0,0)

(0,0,1) (0,0,−1) (0,1,0) (0,−1,0)

ZU064-05-FPR SnakeCube 22 August 2012 21:38

6 M. P. Jones

More generally, in any given case, the new directions can be obtained from the old by rotat-
ing the coordinates of the old direction to the left (using the function left (x, y, z) = (y, z, x)
to permute the tuple coordinates) or to the right (using right (x, y, z) = (z, x, y)), and then
either optionally flipping the sign (using inv (x, y, z) = (−x,−y,−z), or else the identity
function, id, if no sign change is required). In the diagram, for example, the two new
directions on the left are obtained using a left rotation of the coordinates, while those on
the right use a right rotation. In addition, the second and fourth new directions involve
a change of sign, while the first and third keep the same sign as the original. Given this
observation, we can define the following function that computes all of the new directions
that are possible after a section with direction dir.

newDirs :: Direction → [Direction]
newDirs dir = [sig (rot dir) | rot ← [left, right], sig ← [id, inv]]

where left, right, inv :: Direction → Direction

left (x, y, z) = (y, z, x)
right (x, y, z) = (z, x, y)
inv (x, y, z) = (−x,−y,−z)

Note that we do not require this definition to work for arbitrary inputs, just for the six
specific Direction vectors in which one coordinate is either 1 or −1 and the others are zero.

In practice, by expanding the list comprehension and inlining the uses of left, right, id,
and inv, we can show that the definition of newDirs can be written more compactly as:

newDirs (x, y, z) = [(y, z, x), (−y,−z,−x), (z, x, y), (−z,−x,−y)]

Nevertheless, as a matter of (admittedly subjective) programming style, we prefer the
original definition because it provides useful structural information that is lost in the pro-
cess of deriving the shorter version. For example, the use of a list comprehension in the
first definition makes it easy to see, at a glance, that each of the results is produced by
combining a rotation (either left or right) with an optional sign change (either id or inv).
By comparison, the form of the second definition provides no direct insight as to why each
of the four elements in the result list was chosen, and it requires a more careful inspection
to check that the details are correct.

7 Describing Complete Puzzles

Building on the definitions in the previous sections, we can now give a general framework
for describing instances of the snake cube puzzle as values of the following datatype.

data Puzzle = Puzzle { sections :: [Int],
valid :: Position → Bool,
initSoln :: Solution,
initDir :: Direction }

Each puzzle specifies a list of sections that describes the flattened puzzle structure as well
as a predicate that identifies the valid positions within the solved three-dimensional puzzle.
We also include a field, initSoln, that will be used as the starting point for any solutions that
we compute. This will typically only be used to specify the position of the first small cube,

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 7

but it can also be used to constrain a puzzle by fixing the positions of some initial sections.
(See Section 9 for one application of this.) Finally, each puzzle specifies an initial direction,
initDir, that should fit the initial solution. In particular, the first section of a puzzle p must
always be placed along one of the directions in newDirs (initDir p).

For example, the standard snake puzzle that is shown in the preceding illustrations can
be described as follows (we have already argued that the first small cube must be placed in
one of the corners of the large cube, hence the choice of [[(1, 1, 1)]] as an initial solution):

standard :: Puzzle

standard = Puzzle { valid = inCube 3,
initSoln = [[(1, 1, 1)]],
initDir = (0, 0, 1),
sections = snake }

Other variations of the puzzle can be described as modifications to this basic structure. For
example, Creative Crafthouse, a Florida company that distributes a wide range of wooden
puzzles, manufactures a “Mean Green” variant that they characterize as being more difficult
than the standard snake. One possible explanation for the increased difficulty is that this
version has only 16 sections instead of the 17 sections in the standard snake, potentially
giving less flexibility for folding.

meanGreen :: Puzzle

meanGreen = standard { sections = [3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3] }

This example, like most of the others in this section, uses Haskell’s update syntax; in this
case, we define meanGreen as a variant of standard that differs only in its list of sections.

The previously-mentioned king cube variant of the puzzle can also be described in this
framework. It differs from the standard by targeting a 4×4×4 cube with 46 individual
sections, each of which contains either 2, 3, or 4 small cubes.

king :: Puzzle

king = standard { valid = inCube 4,
sections = [3, 2, 3, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 2, 2,

2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 4, 2,
2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2] }

Unlike standard, where we can be sure that the first small cube will be placed in the corner
of the large cube in any valid solution, it is possible to find solutions for the king cube
where neither the first or the last small cube are corners in the solved puzzle. To allow
for this in our framework, we must define distinct Puzzle values for each different starting
position. Given the specific numbers in sections king, however, we can argue by symmetry
that there are only two other starting positions that need to be considered in a search for all
possible solutions (and, in fact, it turns out that king2 has no solutions):

king1, king2 :: Puzzle

king1 = king { initSoln = [[(2, 1, 1)]] }
king2 = king { initSoln = [[(1, 2, 2)]] }

ZU064-05-FPR SnakeCube 22 August 2012 21:38

8 M. P. Jones

Another way to create a variant of a puzzle is by reversing the order of the sections:

reversePuzzle :: Puzzle → Puzzle

reversePuzzle p = p { sections = reverse (sections p) }

For puzzles like standard and king, where the only solutions both begin and end with
pieces in the corners of the larger cube, applying reversePuzzle does not change any
fundamental aspects of solvability. However, we sometimes find that the sequences of
assembly instructions that we get for reversePuzzle p using the methods in Section 8 are
easier to follow in practice than those that we get for p. (Or, conversely, harder to follow;
for example, there is a certain point in our solution for reversePuzzle standard that requires
some awkward manipulation to avoid a conflict with the ‘dangling tail’, as suggested in
Section 4. The solution that we obtain for standard, however, can be followed without
any such problems.) For this reason, reversePuzzle can be a useful tool in finding practical
solutions to snake cube puzzles. Reversing a puzzle can also have a significant impact on
the running time of our solver because it forces a different view of the search space. For
example, in the next section, we will see that it takes approximately eight times longer
to enumerate the solutions to reversePuzzle king than it does to enumerate essentially the
same set of solutions to king.

One more challenge that can be applied to any of the previous puzzles is to find the
most-compact, flat form that has all of the sections in a single level. We can construct the
flat variant of a puzzle by using a valid predicate that only allows Positions with z == 1.

flat :: Puzzle → Puzzle

flat p = p { valid = (\(x, y, z)→ z == 1) }

Using the tools presented in the next section, we can determine that there are 22,768 distinct
solutions to flat standard, for example, but only 16 that give the most compact layout
possible. Once we allow for the inherent symmetries (generated by a reflection, and by
rotations through multiples of 90◦), we can divide these numbers by a factor of 8, and see
that there are really only two distinct, most-compact solutions out of 2,846, as shown in
the following diagrams.

These diagrams were constructed by (i) using the function described in the next section
to enumerate all solutions to flat standard; (ii) scanning that list to find the most compact
solutions (a simple but useful programming exercise for the reader); and then (iii) using
the methods that will be described in Section 10 to produce the illustrations.

8 Solving Puzzles

In this section we describe a method for solving the snake cube and related puzzles using
a simple, brute force algorithm.

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 9

Suppose that we have a particular puzzle, p; that we have already placed a number of sec-
tions to construct a given (partial) solution, soln; and that the next section has length len. In
this setting, we can find the start position for the next section using start = head (head soln).
If we pick a particular direction, dir, for the new section, then we can calculate the positions
sect = section start dir len that the new section will occupy and use that to produce an
extended solution, sect : soln. Of course, for this to be acceptable, we must ensure that all
of the positions in sect are valid in the given puzzle, and we must also check that none of
the positions in sect have already been occupied by other sections in the starting solution,
soln. The following definition captures these ideas:

extend :: Puzzle → Solution → Direction → Int → [Solution]
extend p soln dir len = [sect : soln | let start = head (head soln)

sect = section start dir len,
all (valid p) sect,
all (‘notElem‘ concat soln) sect]

Note that our definition of extend uses a special form of list comprehension that has only
a local definition and two Boolean guards to the right of the vertical bar. This is an elegant
and compact Haskell idiom for describing a list with at most one element; the extended
solution, sect : soln, is included only when both of the guards are True.

We can now construct the desired function that solves an arbitrary puzzle, enumerating
the list of all of its solutions:

solutions :: Puzzle → [Solution]
solutions p = solve (initSoln p) (initDir p) (sections p)

where solve :: Solution → Direction → [Int]→ [Solution]
solve soln dir [] = [soln]
solve soln dir (len : lens)

= concat [solve soln
�

newdir lens

| newdir ← newDirs dir,
soln

� ← extend p soln newdir len]

The main function defined here, solutions, is simply a wrapper that extracts the necessary
components of the input puzzle that are needed as arguments to a worker function, solve.
The latter maintains a partial solution, soln, and a current direction, dir, as it iterates
through the list of puzzle sections. If there are no remaining puzzle sections, then we have
placed all of the puzzle pieces and can output soln as a full solution. Otherwise, there is at
least one puzzle section of length len that must still be placed: we consider each possible
direction, newdir, for that section; try to extend the current solution; and then recurse to
find places for the remaining puzzle sections.

Our use of lists and list comprehensions gives us a particularly compact and elegant
way to describe these functions. In effect, solutions is constructing and searching a large
tree structure, but all we see as the output is a lazily generated list of complete solutions.
Experienced readers will recognize this approach as an instance of the programming tech-
nique that was described by Wadler (1985) as showing “How to replace failure by a list of
successes”. This same idea has been used in other areas, for example, as an alternative to

ZU064-05-FPR SnakeCube 22 August 2012 21:38

10 M. P. Jones

exception handling; in the implementation of theorem proving tactics; and as a foundation
for the construction of parser combinator libraries.

Using these functions, we can compute length (solutions standard) = 4, and we can
enumerate the sequence of steps in any one of those solutions, such as:

head (solutions standard)
= [[(3, 3, 3), (2, 3, 3)], [(1, 3, 3)], [(1, 2, 3)], [(2, 2, 3), (2, 2, 2)],

[(2, 2, 1)], [(2, 1, 1), (2, 1, 2)], [(2, 1, 3)], [(1, 1, 3)], [(1, 1, 2), (1, 2, 2)],
[(1, 3, 2), (2, 3, 2)], [(3, 3, 2)], [(3, 2, 2)], [(3, 2, 3)], [(3, 1, 3), (3, 1, 2)],
[(3, 1, 1), (3, 2, 1)], [(3, 3, 1), (2, 3, 1)], [(1, 3, 1), (1, 2, 1)], [(1, 1, 1)]]

These results are produced almost immediately, even in the Hugs interpreter. The other
puzzles described in Section 7 can be solved in the same way. Solving the mighty king
snake, however, requires considerably more patience: reflecting the larger search space—a
search tree of depth 46 rather than 17—it takes a little under seven minutes to compute
solutions king on a fairly typical laptop, and an astonishing 55 minutes if we switch to
solutions (reversePuzzle king), even when the solver is compiled using GHC.

Of course, it is a little disappointing to present a solution to the snake cube as a list of
lists of tuples; we would much prefer to be able to visualize the solution in graphical form.
Fortunately, it is not too difficult to convert our computed solution into the sequence of
graphics shown in Fig. 3, adding one additional puzzle section at each step. This version is
much easier to follow in practice than the original sequence of tuples. Then again, it is hard
to capture the precise details of a solution in a sequence of three-dimensional sketches. For
example, the reader may notice that there is no apparent difference between the diagrams
for Steps 11 and 12. But, once again, if you have the puzzle in hand and, in this case, look
ahead to the diagram for Step 13, then it is easy to infer the appropriate action for Step 12,
and then proceed to complete the puzzle. Success!

Further details about the methods that we use to construct the diagrams shown in Fig. 3,
as well as some of the other illustrations in this paper, are provided in Section 10.

9 Leveraging Symmetry to Eliminate Solutions

As mentioned in the previous section, our algorithm finds four solutions to the standard
snake cube puzzle. But, in fact, these are really just four variations of the same solution
that are equivalent under symmetry. To see why this occurs, note that there are two pos-
sible directions for the first puzzle section (either (1,0,0) or (0,1,0), because we have
chosen initDir standard = (0, 0, 1)). And in each of those two cases, there are two possible
choices of direction for the second puzzle section. This gives four distinct ways to start a
solution to the puzzle, but all of them include the L-shaped configuration, possibly rotated
or reflected, that was shown in Step 2 of Fig. 3. As we proceed with each subsequent step
on any one of those four configurations, there is a corresponding step in each of the others.

The redundancy that we see here is a consequence of the inherent symmetries of the
cube, or, from a different perspective, of the essentially arbitrary choices that we have
made in selecting our coordinate system. One way to avoid this is to fix the positions of the
first two puzzle sections before attempting to solve the rest. And although the details can
be a little fiddly, it is not too difficult, in principle, to adjust the description of any specific

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 11

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17

Fig. 3. A Solution to the Snake Cube Puzzle

puzzle in this way, changing the initSoln field to include specific positions for the initial
sections and dropping the corresponding entries from the sections field. Happily, we can
describe this process in a general manner as a transformation on Puzzle values:

advance :: Puzzle → Puzzle

advance p = head [p { initDir = newdir,
initSoln = soln

�,
sections = tail (sections p) }

| newdir ← newDirs (initDir p),
soln

� ← extend p (initSoln p) newdir (head (sections p))]

The key idea here is that advance p represents the same puzzle as p, but forces an arbitrary
choice for the first step towards a solution. The overall structure seen here is very similar
to the definition of the solutions function that was described in the previous section, and
it uses the same extend operator to find valid extensions of the initial solution in p. The
essential differences are that (1) instead of making a recursive call, we package up the

ZU064-05-FPR SnakeCube 22 August 2012 21:38

12 M. P. Jones

results in a new Puzzle; and that (2) instead of exploring the list of all possible solutions,
we make an ‘arbitrary’ choice by using head to pick the first valid extension.

The advance operation can be used, for example, to show that there is really only one
way to solve the standard snake cube puzzle:

(length · solutions · advance · advance) standard = 1

Given the intuition that motivates advance, this approach seems more appealing than sim-
ply noticing that solutions standard includes multiple elements and hoping that the head

will be a good representative for all of them. On the other hand, there are also situations
where advance is not appropriate because it could inadvertently eliminate portions of
the search space, potentially causing us to miss the solutions that we were seeking. One
example of this occurs with the king1 puzzle: it would not be a good idea to make an
arbitrary choice between the two possible positions for the first puzzle section in this case
because they are not related by a symmetry within the overall cube. As such, advance

should be used with care.

10 Visualizing Solutions to the Snake Cube Puzzle

One of the attractive aspects of working on the problems described in this paper is the
ability to hold and play with an actual, physical snake cube puzzle as you think about and
develop a program for solving it. This works particularly well in a classroom setting where
it is possible to hand out copies of the puzzle for the students to experiment with. But even
without a physical copy, the snake cube puzzle still has a strong visual appeal, as illustrated
by some of the diagrams in this paper.

In this section, we give a brief overview of how these diagrams were constructed. In
most cases, we started by writing some Haskell code—to process computed solutions, for
example. But the real work was done using Gene Ressler’s Sketch tool (Ressler, 2012) and
Till Tantau’s TikZ package (Tantau, 2010). The former takes text files containing simple
three-dimensional scene or object descriptions and uses those to generate code for the
latter, which will render the images in a LATEX document. For example, the code in Fig. 4
shows how we can take a list of Position values, each describing a small cube, and generate
a corresponding list of polygon definitions for use with Sketch. The showCubes function
essentially just pairs up each small cube with a color, alternating between brown and
white, and concatenates the resulting list of Sketch commands into a single Haskell String.
The cube2sk function generates the Sketch code for individual cubes, each of which is
described by a list of six (square) polygons, one for each face. (Sketch uses hidden surface
removal techniques, together with a specification of the camera position and orientation, to
determine exactly which of these faces will be visible in each generated diagram.) The only
subtlety here is that, by default, Sketch polygons are one-sided, and only visible on the side
from which the vertices appear in a counter clockwise order. The small diagram shows our
scheme for labeling the eight vertices of the cube, which can also be used to check that
each of the faces is described correctly. For example, the expression showCubes [(1, 1, 1)]
produces a string containing the following Sketch code.

polygon[fill=brown](1,1,1)(0,1,1)(0,0,1)(1,0,1)
polygon[fill=brown](1,1,0)(1,0,0)(0,0,0)(0,1,0)

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 13

showCubes :: [Position]→ String

showCubes = unlines · concat · zipWith cube2sk (cycle [“brown”, “white”])

cube2sk :: String → Position → [String]
cube2sk col a = [prefix++concat (map show f) | f ← faces]

where prefix = “polygon[fill=”++col++“]”
faces = [[a, d, g, c], [b, e, h, f], [a, b, f , d],

[c, g, h, e], [a, c, e, b], [d, f , h, g]]
(x, y, z) = a

b = (x, y, z−1)
c = (x, y−1, z)
d = (x−1, y, z)
e = (x, y−1, z−1)
f = (x−1, y, z−1)
g = (x−1, y−1, z)
h = (x−1, y−1, z−1)

a

b

c

d

e

f

g

h

Fig. 4. Functions for generating a Sketch diagram from a list of small cube positions

polygon[fill=brown](1,1,1)(1,1,0)(0,1,0)(0,1,1)
polygon[fill=brown](1,0,1)(0,0,1)(0,0,0)(1,0,0)
polygon[fill=brown](1,1,1)(1,0,1)(1,0,0)(1,1,0)
polygon[fill=brown](0,1,1)(0,1,0)(0,0,0)(0,0,1)

For a given Solution, we can construct a list of lists of Position values to describe the set
of cubes that have been placed at each step in the solution (as seen, of course, in Fig. 3).
The task of converting a Solution into a list of that type can be described using standard
Haskell list processing functions.

steps :: Solution → [[Position]]
steps = tail · reverse · map reverse · scanr1 (++)

The most important detail here is to ensure that the small cubes in each output list are
correctly ordered so that each one appears with the appropriate color when displayed using
showCubes. This is accomplished by using scanr1 to build up a list of “partial sums”,
starting from the right of the solution, and then mapping the reverse function over each
resulting list. The leftmost use of reverse ensures that the solutions are displayed in the
appropriate order, ending with the completed puzzle. Finally, we use tail to drop the very
first step in the solution, which, otherwise, would just show the position of the initial small
cube (as in the diagram for soln0 in Fig. 2). With these tools in place, we can define a
function that takes a puzzle as input and generates a sequence of Sketch diagrams, each
described by a single string, for the first complete solution:

showSteps :: Puzzle → [String]
showSteps = map showCubes · steps · head · solutions

To complete the task, we require some additional Sketch code (to draw grid lines, and
set appropriate perspective views, for example) and some more Haskell code (to wrap the
outputs from showSteps with the Sketch code and write the results to a corresponding
sequence of output files). None of this, however, is difficult (or interesting!), and so, for

ZU064-05-FPR SnakeCube 22 August 2012 21:38

14 M. P. Jones

further details, we refer the reader instead to the source code (with more solutions and other
related materials) that is available at http://web.cecs.pdx.edu/~mpj/snakecube.

11 Further Development

In this paper, we have described a concise and elegant functional program, written in
Haskell, that computes solutions for the snake cube puzzle and is readily adapted to other
variants. These tools provide a platform for investigating and understanding a range of
snake cube puzzles. For example, we have use the solver to compute four distinct solutions
for the 4×4×4 cube (one for king and three for king1). Based on available resources and
published solutions on the Internet, it is possible that only three of these solutions were
previously known. Our program is also attractive in an educational setting. One reason
for this is that the code reflects some fundamental characteristics of the functional style,
identifying key abstractions such as Positions, Directions, Solutions, and Puzzles, and
defining a small collection of operators for manipulating and working with these values. In
addition, we benefit from working on a problem that not only has visual appeal, but also a
strong tactile component for those with access to a physical copy of the puzzle.

There are several opportunities for building on the ideas presented here. On a practical
front, for example, it would be useful, particularly for the larger examples, to show multiple
views of a puzzle at each step of assembly so that there are fewer (or, ideally, no) places
where details of the next step are hidden from view. One way to accomplish this is by
applying a geometric transformation to the cubes in any given solution step. For example,
given a list cubes :: [Position], the following expression will add in a second copy of the
same step, but rotated through 90◦, and translated to the right of the original.

cubes++map (\(x, y, z)→ (z+7, y, 4− x)) cubes

(In practice, we need to do some additional work to account for coloring, but the same basic
methods/transformations still apply.) An alternative approach would be to make use of a
3D graphics library, such as OpenGL, to build an interactive viewer for puzzle solutions.

A shortcoming of the approach that we have used in this paper is the need to specify
an initial direction and cube position as part of each Puzzle data structure. By providing
these details explicitly, we encode some geometric insights about the structure of individual
puzzles, and we can avoid generating large sets of solutions that are all equivalent up
to symmetry. We do not know, however, if a more elegant approach is possible, perhaps
starting from a slightly higher-level description of a puzzle, and computing a full set of
solutions automatically, without the need to explore multiple options by hand.

Another practical concern is the ‘dangling tail’ problem that was described in Section 4.
This can occur because our method of finding solutions does not account for the possibility
that unplaced sections of the puzzle might conflict with parts of the puzzle that have
already been put in position. What is needed here, however, is not a new method of finding
solutions, but instead an algorithm for finding an appropriate set of folding steps, with
a previously calculated final solution as the goal, and the flexibility to adjust the angle
between any pair of adjacent sections at each step in the assembly.

In this paper, we have described two distinct versions of the 3×3×3 snake cube puzzle:
standard and meanGreen. Several others have been manufactured as physical puzzles. But,

ZU064-05-FPR SnakeCube 22 August 2012 21:38

Functional pearl 15

as a final challenge, particularly for those with an interest in combinatorics, how many
distinct variants are possible, and how many of those have only one unique solution once
we account for symmetry? These questions could potentially be tackled by a brute force
method, generating all of the possible integer lists containing 2s and 3s that satisfy the
sanity check described in Section 2, and then feeding those candidate designs as inputs to
our solver. But is there a more efficient solution? And can such an approach be scaled up
to larger cube sizes, or even to more general n×m×p puzzles?

Acknowledgments

The author wishes to thank the Campbell family for introducing him to the snake cube
puzzle. Thanks also to Jeremy Gibbons and to the anonymous referees for their comments
that have helped to improve the presentation. Finally, we note that the original snake cube
design—under the name “Block Puzzle”, and credited to Allen F. Dreyer of Richmond,
California—was submitted to the United States Patent Office on June 11, 1962, and was
eventually awarded as patent number 3,222,072 on December 7, 1965.

References

Peyton Jones, Simon (ed). (2003). Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press.

Ressler, Gene. (2012). Sketch: Simple 3D Sketching, Version 0.3. Available online from http:
//www.frontiernet.net/~eugene.ressler/.

Tantau, Till. (2010). The TikZ and PGF Packages Manual for version 2.10. Institut für
Theoretische Informatik, Universität zu Lübeck. Available online from http://sourceforge.
net/projects/pgf.

Wadler, Philip. (1985). How to replace failure by a list of successes. The Second International

Conference on Functional Programming Languages and Computer Architecture (FPCA 1985).
Nancy, France: Springer-Verlag, Lecture Notes in Computer Science (LNCS 201).

