
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 9: Language Design

Fall 2018

 1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Questions for today
• Why do we have so many languages?

• How can we evaluate or compare language designs?

• What criteria should we use in selecting a language for a task?

• How can we approach the design of new languages?

• How can design languages to suit specific domains?

• example domain: low-level, bare metal development?

• There are many answers to these questions!

 3

Why so many languages?
• Diversity

• Different purposes / domains

• Different paradigms / ways to think about programming

• Different judgements about language goals and aesthetics

• Different platforms and environments

• Evolution

• Improve on existing languages by adding/removing features

• New languages provide a clean slate

• Prototype new features and explore their interactions

 4

A short history of the automobile

 5

1900 1920 1940 1960 1980 2000 2020

Utility

Comfort

Capacity

Luxury

Fins

Compact

Power

Recreation

Time  
Travel

Speed

Hybrid

Personality

Electric

• Faster
• Safer
• More

comfortable

• More efficient
• More reliable
• More capable
• …

• Modern cars are:

• Unsurprisingly, most drivers today prefer
to drive modern cars

(Images via Wikipedia, subject to Creative Commons and Public Domain licenses)

A short history of programming languages

 6

1955 1965 1975 1985 1995 2005 2015

Lisp Clojure

F#

Haskell Scala

Fortran

COBOL

BASIC

Pascal

C

Ada

Simula

C++

Java

C#Python

JavaScript

PHP

Smalltalk

Swift

Go

RustAn early systems programming
language, sometimes described

as “portable assembler”

Still the most widely used
systems programming language,

45 years later!

It’s as if everyone
is still driving a
Ford Model T!

• Higher-level
• Feature rich
• Type safe
• Memory safe

• Less error prone
• Well-designed
• Well-defined
• …

• Modern programming languages are:

• Surprisingly, most systems programmers
today are still using C …

Classifying programming languages
• One way to understand a collection of items is to classify them

in ways that exhibit their similarities and their differences

• How might we classify programming languages?

• By paradigm

• By expressivity

• By contrasting domain specific vs general purpose

• By contrasting high level vs low level

• ...

• In practice, classifications often require subjective judgement ...

 7

A short history of programming languages

 8

1955 1965 1975 1985 1995 2005 2015

Lisp Clojure

F#

Haskell Scala

Fortran

COBOL

BASIC

Pascal

C

Ada

Simula

C++

Java

C#Python

JavaScript

PHP

Smalltalk

Swift

Go

Rust

Object-
Oriented

Imperative Functional

Classification by "Paradigm"

 9

Lisp

Clojure

F#

Haskell

Scala

Fortran

COBOL

BASIC

Pascal

C

Ada

Simula C++

Java

C#

Python

JavaScriptPHP

Smalltalk

Swift

Go

Rust

Expressivity

 10

Limited
expressivity

Turing
complete

HTML
regexps
grub.cfg

loader scripts
...

Turing machines
lambda calculus

C
C++
Java

Python
C#

Haskell
Go

Rust
Game of Life

MineCraft
...

In general:

• groups many languages together,
limiting benefits of classification

• is there a way to measure
expressivity per source
character?

Domain Specific

 11

specialized use,
focussed on
the needs,

notations, etc.
of a particular

"domain"

applicable in
a wide

variety of
domains

SQL
HTML
PHP 
yacc

regexps
make

grub.cfg
loader scripts

...

C
C++
Java

Python
C#

Haskell
Go

Rust
...

vs General Purpose

In general:

• it's a "design space", not a linear "spectrum"

• determining where any specific language fits is subjective

Domain specific languages in the hello demo

 12

hello.c

/* --
 * hello.c: hello, kernel world
 *
 * Mark P. Jones, February 2008
 */

/*---
 * Video RAM:
 */
#define COLUMNS 80
#define LINES 25
#define ATTRIBUTE 12
#define VIDEO 0xB8000

typedef unsigned char single[2];
typedef single row[COLUMNS];
typedef row screen[LINES];

...

/*---
 * Main program:
 */
void hello() {
 int i;
 cls();
 for (i=0; i<2; i++) {
 puts("hhhh hhhh\n");
 puts(" hh hhh lll lll\n");
 puts(" hh hh eeee ll ll oooo\n");
 puts(" hhhhhhhh ee ee ll ll oo oo\n");
 puts(" hh hh eeeeeee ll ll oo oo\n");
 puts(" hh hh ee ll ll oo oo\n");
 puts("hhh hhhh eeee ll ll oooo\n");
 puts("\n");
 puts(" K e r n e l W o r l d\n");
 puts("\n on October 3rd\n");
 }
}

A language
for specifying
application

functionality

boot.s

Domain specific languages in the hello demo

 13

hello.c

#---
boot.s: Multiboot startup file
#
Mark P. Jones, March 2006

#-- Multiboot header: --

 .set MB_MAGIC, 0x1BADB002
 .set MB_ALIGN, 1<<0 # Align modules on page boundaries
 .set MB_MEMMAP, 1<<1 # Request memory map
 .set MB_FLAGS, MB_ALIGN|MB_MEMMAP

 .section .multiboot
 .align 4 # Multiboot header
multiboot_header:
 .long MB_MAGIC # multiboot magic number
 .long MB_FLAGS # multiboot flags
 .long -(MB_MAGIC + MB_FLAGS) # checksum

 .globl mbi # cache for multiboot info pointer
mbi: .long 0
 .globl mbi_magic # cache for multiboot magic number
mbi_magic:
 .long 0

#-- Entry point --

 .text
 .globl entry
entry: cli # Turn off interrupts
 movl %eax, mbi_magic # Save multiboot information
 movl %ebx, mbi
 leal stack, %esp # Set up initial kernel stack
 call hello
1: hlt # Catch all, in case hello returns
 jmp 1b

 .data # Make space for initial stack
 .space 4096
stack:

#-- Done ---

A language for creating
multiboot headers

boot.s

Domain specific languages in the hello demo

 14

hello.c

hello.ld

OUTPUT_FORMAT(elf32-i386)
ENTRY(entry)

SECTIONS {
 . = 0x100000; /* Load hello at 1MB */
 .text : {
 _text_start = .; *(.multiboot) *(.text) _text_end = .;
 _data_start = .; *(.rodata) *(.data) _data_end = .;
 _bss_start = .; *(COMMON) *(.bss) _bss_end = .;
 }
}

A language for describing
executable file layout

boot.s

Domain specific languages in the hello demo

 15

hello.c

hello.ld
grub.cfg

set timeout=15
#set default=0

menuentry "Hello, kernel world everybody" {
 multiboot /hello
}

A language for configuring
the boot process

boot.s

Domain specific languages in the hello demo

 16

hello.c Makefile

hello.ld
grub.cfg

#--
Makefile for a simple bare metal program
#--
Basic settings:

CC = gcc -m32
CCOPTS = -std=gnu99 -O -Wall -nostdlib -nostdinc -Winline \

 -nostartfiles -nodefaultlibs -fno-builtin -fomit-frame-pointer \
 -fno-stack-protector -freg-struct-return

LD = ld -melf_i386
QEMU = qemu-system-i386

#--
Build rules:
...
hello: ${OBJS} hello.ld

$(LD) -T hello.ld -o hello ${OBJS} --print-map > hello.map
strip hello

boot.o: boot.s
$(CC) -Wa,-alsm=boot.lst -c -o boot.o boot.s

hello.o: hello.c
$(CC) ${CCOPTS} -o hello.o -c hello.c

#--
tidy up after ourselves ...
clean:

-rm -rf cdrom cdrom.iso hello *.o *.lst *.map

#--

A language
for

describing
the build
process

boot.s

Domain specific languages in the hello demo

 17

hello.c Makefile

hello.ld
grub.cfg

Five "domain specific languages" (DSLs), each serving a different
role, but working together to describe a complete program

Low Level

 18

limited
abstractions,
reflecting the
characteristics
of machines on
which programs

are executed

built-in and
user-defined
abstractions,
reflecting the

ways that
programmers
express ideas

assembly
machine code

...

Smalltalk
Java

Python 
Haskell
Prolog

...

vs High Level

Again, in general:

• it's a "design space", not a linear "spectrum"

• determining where any specific language fits is subjective

C
C++
Ada
...

Low Level

 19

limited
abstractions,

reflecting
characteristics
of machines on
which programs

are executed

built-in and
user-defined
abstractions,
reflecting the

ways that
programmers
express ideas

assembly
machine code

...

Smalltalk
Java

Python 
Haskell
Prolog

...

vs High Level

• Historically, low-level development has tended to focus on
the use of lower-level languages. Why is this?

• How can we expect to write bare metal programs using
languages that intentionally abstract away from hardware?

C
C++
Ada
...

Invalid classifications
• Confusing languages with implementations:

• Compiled vs Interpreted

• Fast vs Slow

• These are properties of implementations, not languages!

• Inherently subjective classifications:

• Readability

• Familiarity

• Ease of use

• These are judgements that individual programmers make
based on their experience, background, and preferences ...

 20

Choosing an existing language
• Factors that might influence the choice of a particular

language for a given project include:

• Availability of implementation for target environment

• Availability of trained programmers

• Availability of documentation

• Availability of tools (IDEs, debuggers, ...)

• Availability of libraries

• Developer / customer / platform requirements

• Familiarity / experience

• ...

 21

Designing a new language - Why?
• Why design a new language?

• Explore ideas without concern for backward compatibility

• Address a need that is not met by current designs

• Learn general principles about programming languages

• Have some fun!

 22

Designing a new language - How?
• How to design a new language?

• Identify a need / shortcoming with existing languages

• Start from a clean slate (uncommon)

• Improve / borrow from existing languages

• Write out a language definition

• Evaluate the design:

• Write programs

• Develop tools (compilers, interpreters, etc...)

• Formalize and prove properties

• ...

• Refine, revise, repeat!

 23

Language design
is not (yet) a

precise science!

A language for low-level programming
• We've spent the past eight weeks studying bare-metal

development and microkernel design and implementation

• How might we design a language for this domain?

• Is a new language even necessary?

• If so:

• What features should the language provide?

• How should we evaluate the new design?

 24

C is great … what more could you want?
• Programming in C gives systems developers:

• Good (usually predictable) performance characteristics

• Low-level access to hardware when needed

• A familiar and well-established notation for writing
imperative programs that will get the job done

• What can you do in modern languages that you can’t already
do with C?

• Do you really need the fancy features of newer object-
oriented or functional languages?

• Are there any downsides to programming in C?

 25

How could a different language help? (1)
• Increase programmer productivity (reduce development time)

• Reduce boilerplate (duplicating code is error prone and
increases maintenance costs)

• Reduce cross cutting concerns (when the implementation
of a single feature is "tangled" with the implementations of
other features and spread across the source code, making
the code harder to read and harder to maintain)

• ...

 26

Example: bitdata types

class mempage_t {
public:
 union {
 struct {
 BITFIELD7(word_t,
 execute : 1,
 write : 1,
 read : 1,
 reserved : 1,
 size : 6,
 base : L4_FPAGE_BASE_BITS,
 : BITS_WORD - L4_FPAGE_BASE_BITS - 10
);
 } x __attribute__((packed));
 word_t raw;
 };
};

 27

base22 size6 ~ r w x

From L4Ka::Pistachio, a mature L4
implementation in C++ from the
University of Karlsruhe, Germany

BITFIELD macro
adjusts for

variations between
C/C++compilers …

Permission values
inlined

macros for sizes

gcc specific attribute:  
“a variable or structure field

should have the smallest possible
alignment”

Example: bitdata types
typedef unsigned Perms;

#define R (4)
#define W (2)
#define X (1)

typedef unsigned Fpage;

static inline Fpage fpage(unsigned base, unsigned size, Perms perms) {
 return alignTo(base, size) | (size<<4) | perms;
}

static inline unsigned fpageMask(Fpage fp) {
 return fpmask[(fp>>4)&0x3f];
}

static inline unsigned fpageStart(Fpage fp) {
 return fp & ~fpageMask(fp);
}

static inline unsigned fpageEnd(Fpage fp) {
 return fp | fpageMask(fp);
}

 28

base22 size6 ~ r w x

From pork, implemented in C  
(no reliance on non standard features)Constants for

individual
permission bits

Fpage is a synonym for unsigned, which
could prevent type errors from being detected

"constructor"

"selectors"

Bit-level layout is hard-coded
via shift and mask constants

in functions that are
expected to be inlined for

fast execution

Example: bitdata types
block fpage {
 field_high base_address 20
 field size 6
 padding 1
 field read 1
 field write 1
 field exec 1
}

 29

base22 size6 ~ r w x

The designers of seL4 use a lot of types
like this ... so they created a "bitfields"

DSL for describing bitdata types

A parser, written in Python,
reads .bf files and generates C code

for manipulating data structures
(also used for verification work)

Why write boring code, when you
can write a more interesting
program to write it for you?

Still translates to C code that
doesn't distinguish between the

types of different fields

Example: bitdata types

bitdata Perms = Perms [r, w, x :: Bool]

bitdata Fpage = Fpage [base :: Bit 22 | size :: Bit 6
 | reserved :: Bit 1 | perms :: Perms]

 30

base22 size6 ~ r w x

Using Habit, a functional language
for low-level systems programming

Bit-level data layout

Rich type system:  
 Bit 22, Bit 6, Bit 1, Perms,

and Page are distinct types.

Mixing these incorrectly will
trigger a compile time error!

Mimics familiar box
notation for bitdata types

Relying on language support complicates the compiler ...
but simplifies the application code ...

How could a different language help? (2)
• Improve software quality (eliminate avoidable bugs)

• Type confusion ... for example:

• confusing physical and virtual addresses

• confusing boolean and unsigned: (v & 0x81 == 0x1)
gives the wrong result because of precedence, but could
have been avoided by checking types

• Unchecked runtime exceptions (divide by zero, null pointer
dereference, out of bounds array access, ...)

• using (v & 0x3fff) to calculate a 10 bit index for a
page table ... will actually produce a 14 bit value ...

• Memory bugs (e.g., use after free, space leak, ...)

 31 32

Could a different language
make it impossible to

write programs with errors
like these ?

House (2005)
Kernel, GUI, drivers, network stack, and apps 

Boots and runs in a 
bare metal environment 

… all written in Haskell,  
a “purely functional” 
programming language 
that is known for:
• type safety
• memory safety
• high-level abstractions

 33

Hasp Project

-- |Support for access to raw physical pages of all kinds

module H.Pages(Page,pageSize,allocPage,freePage,registerPage,zeroPage,validPage)
where

import Kernel.Debug(putStrLn)
import H.Monad(H,liftIO)
import Control.Monad
import Data.Word(Word8,Word32)
import H.Unsafe(unsafePerformH)
import H.Concurrency
import H.AdHocMem(Ptr,peek,poke,plusPtr,castPtr)
import H.Mutable
import H.Utils(validPtr,alignedPtr)
import qualified System.Mem.Weak as W

--------------------------INTERFACE-------------------

type Page a = Ptr a

pageSize :: Int
pageSize = 4096 -- bytes

allocPage :: H (Maybe (Page a))
freePage :: Page a -> H () -- caller must ensure arg is valid
registerPage :: Page a -> b -> (Page a -> H()) -> H ()
zeroPage :: Page a -> H()
validPage :: Page a -> Bool

------------PRIVATE IMPLEMENTATION FOLLOWS---------------

allocPage = do cleanRegisteredPages

!34

Managing pages in House

Hasp Project

 [] -> return Nothing
 (page:rest) -> do writeRef freeList rest

 -- putStrLn ("newPage:" ++ (show page))

 return (Just page)

--freePageToList :: Ptr a -> H ()

freePageToList page =
 withQSem pageSem $

 do modifyRef freeList (page:)

 -- putStrLn ("freePage:" ++ (show page))

-- Weak page register

{-# NOINLINE registered #-}

registered :: Ref [(Page a,Weak (),Page a -> H())]

registered = unsafePerformH (newRef [])

registerPage p k f =
 do w <- mkSimpleWeak k

 withQSem pageSem $

 modifyRef registered ((p,w,f):)

-- note we are careful to release the lock before we begin to finalize
-- pages (since finalizers typically need the lock).

cleanRegisteredPages =

 do cs <- withQSem pageSem $

 do rs <- readRef registered
 (rs',cs) <- spanM check rs

 writeRef registered rs'

 return cs
 mapM_ clean cs

 where check (_,w,_) =

 do s <- deRefWeak w
 return (s /= Nothing)

 clean (p,_,f) = f p

 spanM q [] = return ([],[])

 spanM q (x:xs) =
 do (ys,zs) <- spanM q xs

 keep <- q x

 if keep
 then

 return (x:ys,zs)

 else
 return (ys,x:zs)

zeroPage p = sequence_ [poke ((castPtr p) `plusPtr` i) (0::Word8) | i <- [0..pageSize-1]]

type Weak v = W.Weak v

mkSimpleWeak :: k -> H(Weak ())

mkSimpleWeak k = liftIO $ W.mkWeak k () Nothing

deRefWeak :: Weak v -> H (Maybe v)

deRefWeak w = liftIO $ W.deRefWeak w

-- #hide, prune, ingore-exports
-- |Support for access to raw physical pages of all kinds

-- Not for direct use by H clients

module H.Pages(Page,pageSize,allocPage,freePage,registerPage,zeroPage,validPage) where

import Kernel.Debug(putStrLn)

import H.Monad(H,liftIO)

import Control.Monad
import Data.Word(Word8,Word32)

import H.Unsafe(unsafePerformH)

import H.Concurrency
import H.AdHocMem(Ptr,peek,poke,plusPtr,castPtr)

import H.Mutable

import H.Utils(validPtr,alignedPtr)

import qualified System.Mem.Weak as W

--------------------------INTERFACE-------------------

type Page a = Ptr a

pageSize :: Int
pageSize = 4096 -- bytes

allocPage :: H (Maybe (Page a))
freePage :: Page a -> H () -- caller must ensure arg is valid

registerPage :: Page a -> b -> (Page a -> H()) -> H ()

zeroPage :: Page a -> H()
validPage :: Page a -> Bool

------------PRIVATE IMPLEMENTATION FOLLOWS---------------

allocPage = do cleanRegisteredPages
 allocPageFromList

freePage a = freePageToList a

-- Following specify absolute range of available pages.

-- Can safely assume these contain constants.

foreign import ccall unsafe "userspace.h & min_user_addr" minAddrRef :: Ptr (Ptr a)

foreign import ccall unsafe "userspace.h & max_user_addr" maxAddrRef :: Ptr (Ptr a)

minAddr, maxAddr :: Ptr a
minAddr = unsafePerformH(peek minAddrRef)

maxAddr = unsafePerformH(peek maxAddrRef)

validPage p = validPtr (minAddr,maxAddr) p && alignedPtr pageSize p

{-# NOINLINE freeList #-}

freeList :: Ref [Ptr a]

freeList = unsafePerformH $ newRef allPages
 where

 allPages = enumPages minAddr

 enumPages a = if a<maxAddr

 then a:enumPages (a `plusPtr` pageSize)
 else []

{-# NOINLINE pageSem #-}
pageSem :: QSem

pageSem = unsafePerformH $ newQSem 1

--allocPageFromList :: H (Maybe (Ptr a))

allocPageFromList =
 withQSem pageSem $

 do pages <- readRef freeList

 case pages of

zeroPage p
 = sequence_ [poke ((castPtr p) `plusPtr` i)(0::Word8)
 | i <- [0..pageSize]]

!35

Managing pages in House

Gratuitously
inefficient?

Gratuitously
inefficient!Unsafe! Unsafe!

WRONG!

It all type checks, it all runs, it
must be right ...

A summary of the "House Experience"
• Many positives ...

• But also some serious negatives:

• Large, untrusted runtime system

• Reliance on unsafe operations for essential low-level
primitives

• Weak type system

• Resource management issues

• Performance concerns

• Can we keep the positives but eliminate the negatives?

 36

The Habit programming language
• “a dialect of Haskell that is designed to meet the needs of

high assurance systems programming”

Habit = Haskell + bits

• Habit, like Haskell, is a functional programming language

• For people trained in using C, the syntax and features of
Habit may be unfamiliar

• I won’t assume much familiarity with functional programming

• We'll use Habit as an example to show how types can
detect and prevent common types of programming errors

 37

Wiring 101

 38

Take Care!

Avoid Shorts!

Match Voltages!

Follow Color Codes!

(Plug and Pray)

Plug and Play

 39

Simple, fast connections

Enforce correct usage

Guarantee safety

Higher-level interfaces

Can we emulate this strategy
in software, ensuring correct
usage and preventing common
types of bugs by construction?

Division
• You can divide an integer by an integer to get an integer result

• In Habit:

div :: Int ⟶ Int ⟶ Int

• This is a lie!

• Correction: You can divide an integer by a non-zero
integer to get an integer result

• In Habit:

div :: Int ⟶ NonZero Int ⟶ Int

• But where do NonZero Int values come from?

 40

1st arg 2nd arg result“has type”

Where do NonZero values come from?
• Option 1: Integer literals - numbers like 1, 7, 63, and 128

are clearly all NonZero integers

• Option 2: By checking at runtime

nonzero :: Int ⟶ Maybe (NonZero Int)

• These are the only two ways to get a NonZero Int!

• NonZero is an abstract datatype
 41

Values of type Maybe t are either:
• Nothing
• Just x for some x of type t

• Calculating the average of two values:

ave :: Int ⟶ Int ⟶ Int  
ave n m = (n + m) `div` 2

• Calculating the average of a list of integers:

average :: List Int ⟶ Maybe Int  
average nums  
 = case nonzero (length nums) of  
 Just d ⟶ Just (sum nums `div` d)  
 Nothing ⟶ Nothing

• Key point: If you forget the check, your code will not compile!

Examples using NonZero values

 42

a non zero literal

checked!

Null pointer dereferences
• In C, a value of type T* is a pointer to an object of type T

• But this may be a lie!

• A null pointer has type T*, but does NOT point to an
object of type T

• Attempting to read or write the value pointed to by a null
pointer is called a “null pointer dereference” and often
results in system crashes, vulnerabilities, or memory
corruption

• Described by Tony Hoare (who introduced null pointers in
the ALGOL W language in 1965) as his “billion dollar mistake”

 43

Pointers and reference types
• Lesson learned: We should distinguish between:

• References (of type Ref t) that are guaranteed to point to
values of type t

• Physical addresses (of type PhysAddr t)

• Pointers (of type Ptr t): either a reference or a null

• C groups all these types together as t*

• In Habit, they are distinct: Ptr t = Maybe (Ref t)

• You can only read or write values via a reference

• Code that tries to read via a pointer will fail to compile!

• Goodbye null pointer dereferences!

• Goodbye physical/virtual address confusion!
 44

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an
attempt to access a[i] could lead to a system crash, memory
corruption, …

• A common path to “arbitrary code execution”

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• If i is not a valid index (an “out of bounds index”), then an
attempt to access a[i] could lead to a system crash, memory
corruption, buffer overflows, …

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, … and dangerous!

• Arrays are collections of values stored in contiguous locations
in memory

• Address of a[i] = start address of a + i*(size of element)

• Simple, fast, …

Arrays and out of bounds indexes

 45

pointer to start 
of array a

offset i

Array bounds checking
• The designers of C knew that this was a potential problem …

but chose not to address it in the language design:

• We would need to store a length field in every array

• We would need to check for valid indexes at runtime

• This would slow program execution

• The designers of Java knew that this was a potential problem
… and chose to address it in the language design:

• Store a length field in every array

• Check for valid indexes at runtime

• Performance OR Safety … pick one!
 46

☹

Arrays in Habit
• Key idea: make array size part of the array and index type, do

not allow arbitrary indexes:

 @ :: Ref (Array n t) ⟶ Ix n ⟶ Ref t

• Fast, no need for a runtime check, no need for a stored length

• Ix n is another abstract type:

maybeIx :: Int ⟶ Maybe (Ix n)  
modIx :: Int ⟶ Ix n  
incIx :: Ix n ⟶ Maybe (Ix n)

 47

start address index element address

a[i] is written
as a@i in Habit

guaranteed to be
≥ 0 and < n

array length, as
part of the type

"

• Given two 32 bit input values:

• base:

• limit:

• Calculate a 64 bit descriptor:

• Needed for the calculation of IA32 Global Descriptor Table
(GDT) entries

Bit twiddling

 48

0 0 0

lowhigh

5 3 2

Each box is one nibble (4 bits),
least significant bits on the right

In assembly

low

 49

movl base, %eax
movl limit, %ebx

mov %eax, %edx
shl $16, %eax
mov %bx, %ax
movl %eax, low

shr $16, %edx
mov %edx, %ecx
andl $0xff, %ecx
xorl %ecx, %edx
shl $16,%edx
orl %ecx, %edx
andl $0xf0000, %ebx
orl %ebx, %edx
orl $0x503200, %edx
movl %edx, high

%edx

mov 0 0 0 0

shl 16
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16 %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16
%edx

0 0 0 0

or%edx

%eax mov

0 0 0

%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor
%edx

low

high 5 3 2

0 0 0

or%edx

5 3 2

or 0x503200%edx

In C

 50

low = (base << 16) // purple
 | (limit & 0xffff); // blue
high = (base & 0xff000000) // pink
 | (limit & 0xf0000) // green
 | ((base >> 16) & 0xff) // yellow
 | 0x503200; // white

limit

0 0 0

base

lowhigh

5 3 2

• Examples like this show why we use high-level languages
instead of assembly!

• But let’s hope we don’t get those offsets and masks wrong …

• Because there is not much of a safety net if we mess up …

In Habit

 51

limit

0 0 0

base

lowhigh

5 3 2

• Compiler tracks types and automatically figures out
appropriate offsets and masks:

bitdata GDT  
 = GDT [pink :: Bit 8 | 0x5 :: Bit 4  
 | green :: Bit 4 | 0x32 :: Bit 8  
 | yellow :: Bit 8 | purple, blue :: Bit 16]

makeGDT :: Unsigned ⟶ Unsigned ⟶ GDT  
makeGDT (pink # yellow # purple) -- base  
 (0 # green # blue) -- limit  
 = GDT [pink|green|yellow|purple|blue]

silly :: GDT ⟶ Bit 8  
silly gdt = gdt.pink + gdt.yellow

• Programmer describes layout in a type definition:

Additional examples
• Layout, alignment, and initialization of memory-based tables

and data structures

• Tracking (and limiting) side effects

• ensuring some sections of code are “read only”

• identifying/limiting code that uses privileged operations

• preventing code that sleeps while holding a lock

• isolating functions that can only be used during initialization

• …

• Reusable methods for concise and consistent input
validation…

• …

 52

Summary
• The art of language design:

• drawing inspiration from prior work

• tastefully adding/subtracting/refining

• evaluating and iterating (e.g., by comparing programs and
reflecting on improvements in productivity and quality)

• DSLs are designed to meet the needs of specific application
domains by providing features that reflect the notations,
patterns, and challenges of programming in that domain

• But what are the benefits and costs of modern languages?

• Can advanced abstractions be put to good use?

• Is it still possible to get acceptable performance?

 53

methods for
lang design

• consider the
purpose

• what can it do
differently?

• compare with
existing langs

• user surveys

• Turing
completeness/
expressivity

• Formal semantics

• Writing programs

• Taking courses on
language

• start simple,
expand from there

• orthogonality

• consistency

• different concepts look
different, reduce confusion

• simple syntax

• type system

• safety and security

• usable errors/diagnostics

• portability

• human readable specification

• simplicity

• tutorials

• avoid ambiguity

• expandable: libraries, macros,
modularity

• supporting infrastructure
(libraries, docs, ...)

• fun! experimentation

• debugging, testing, ...

• power/weight ratio

• generic/polymorphic code

• toggle language features and
extensions

• abstraction, and target level
of abstraction

• specific data
structures (page
tables, etc.)

• efficiency

• transparency
around
performance

• static error
checking

• linkage to assembly/
machine lang

• hints to compiler
(pragmas)

• exception handlers

• compiler intrinsics

• concurrency

• bitfields

•

• learn quickly

• surveys

• verbosity

• profiling
implementations

• compiler
correctness

• community

• comparative
testing, user
study

• metacircular
interpreter

• safety analysis

general  
goals

LLP specific  
goals

methods for
evaluation

