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Primary focus

* Review main features of the seL4 microkernel

* With some implementation hints: not exactly what you'll
find in the selL4 source code ... but representative

* Based on publicly distributed descriptions:
* seL4 documentation and code from http://sel4.systems

* Gernot Heiser's presentation on an "Introduction to selL4"
[http://www.cse.unsw.edu.au/~cs9242/14/lectures/O | -intro.pdf]

* Dhamika Elkaduwe’s PhD dissertation on "A Principled
Approach to Kernel Memory Management”
[https://ts.datab | .csiro.au/publications/papers/Elkaduwe:phd.pdf]

seL4 from 30,000 feet

* A microkernel that uses capabilities throughout for access
control and resource management

* latest versions even use capabilities to manage allocation
of CPU time and scheduling

* seL4 was designed with formal verification in mind, and
intended to serve as a foundation for building secure systems

* Runs on ARM and |A32 platforms, among others; only the
ARM version is formally verified at this time
* In practice, managing lots of capabilities by hand is painful:

* seL4 programmers can take advantage of user-level
libraries that simplify the task of working with capabilities




Kernel objects in selL4

* Types of kernel objects include:

* Untyped memory
* TCB obijects for representing threads
* Endpoint and Notification objects for IPC

* Memory objects (PageDirectory, PageTable, Frame) for
building address spaces

* CNode objects for building capability spaces
e and more ...

* Capabilities are used to manage user-level access to all of
these different types of object

System calls in seL4

 Conceptually, seL4 has an "object-oriented" API with just
three system calls:

* Send a message to an object (via a capability)
» Wait for a message from an object (via a capability)

* Yield (does not require an object/capability)

* For example:

* send a message to an Endpoint object to communicate
with another thread

* send a message to a TCB object to configure the thread

* In practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns




Threads

Thread Control Blocks (TCBs) in selL4

* Threads are represented in the kernel by TCB objects

* Each TCB contains:
* A context (stores CPU register values for the thread)
* A pointer to the virtual address space (page directory)
* A pointer to the capability space (cspace)
* Scheduling parameters (priority, timeslice, etc.)
* A pointer to the IPC buffer (MRs) for the thread
* A capability to a fault handler endpoint for the thread

* Unlike L4: no a priori limit on the number of threads in an
address space, no global thread ids, ...




Operations involving TCBs

* Allocate TCBs (from untyped memory)
* Configure a TCB
* set registers, vspace, cspace, fault handler, priority, etc...

* [If two threads run in the same address space, they
should be configured to use different locations in
memory for data areas, stacks, etc.]

* Resume/pause a thread
* resume will add the thread to the run queue

* pause will remove the thread from the run queue

The run queue

* The run queue data structure is an array of circular linked
lists of TCBs for runnable threads, one for each priority:

runqueue

0 P q 255

* Every TCB includes space for the two pointers that are used
to store it in the run queue (no extra storage is required)

* At a context switch, the scheduler:

* moves the current thread to the back of its list
* switches to the first thread in the highest priority non-
empty list




IPC and Endpoints

How to support capability-based IPC?

message .
sender » recelver

* How can interprocess communication (IPC) be controlled
and protected using capabilities?

* One option would be to use capabilities to TCB objects

* These are useful for other purposes anyway (e.g.,
reading/modifying thread status, starting, suspending, ...)

* Could use send / receive permissions on TCB capabilities
to determine which IPC actions are allowed

* But this is also inflexible:
* Single thread to single thread communication is limiting

* Lacks fine-grained control: if you can contact a thread for
one purpose, you can contact it for any purpose




IPC via endpoints

* Interprocess communication (IPC) in seL4 passes messages
between threads using (capabilities to) an endpoint object:

r recelver;
sender ~~_, /

/,endpoin”u receiver;
Sendei”z N endpointz s‘.

* Allows flexible communication patterns

A 4

receivers

* multiple senders and/or receivers on a single endpoint
* multiple endpoints between communication partners

* Messages are transferred synchronously when both sender
and receiver are ready ("rendez-vous")

* Multiple senders or receivers can be queued at each endpoint
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IPC messages

* Each thread can have a region of memory in its address space
that is designated as its “IPC buffer”

* The IPC buffer holds “Message Registers” (MRs)

MRO | MRI | MR2 | MR3 | MR4 | MR5 | MR6
\

message tag

* Each thread can read or write values directly in its IPC buffer
* Each MR holds a single 32 bit word

* Some of the slots in the IPC buffer are reserved for sending
or receiving capabilities via IPC




Typical IPC process

* Sending thread writes message into its IPC buffer and invokes
a Send system call using a capability to an endpoint

* Receiving thread invokes a Wait system call using a capability
to the same endpoint

* When both parties are ready, the kernel copies the message
from the sender’s MRs to the receiver’s MRs

* A small number of MRs are passed in CPU registers, which is
fast and avoids the need for an IPC buffer

Endpoints are thread queues

* An endpoint just provides a place to collect a queue of
threads that are all waiting either to send or to receive

ep ep’

[ T-T-T-] [ T-T-T-]

‘waitqueue ‘ sending=1 ‘ ‘waitqueue ‘ sending=0 ‘

Q =
NN

Q

D

* No thread can be both runnable and blocked (waiting to send
or receive a message), so one pair of TCB pointers suffices

* An endpoint doesn’t require all 16 bytes of storage: that’s just
the smallest size allowed for any kernel object




Client-server communication

* Practical systems often use a client-server architecture in
which one "server" thread performs work for many "clients"

P repr o
client ~—_
/,endpoin’u »| server
client, "
A
.............................. re pz ol

* What if the client needs a reply? How will the server know
where to send it?

* The client could send a capability to a "reply" endpoint as
part of its request. But this makes extra work for the client,
and could be abused by a malicious (or buggy) server.

Reply capabilities

* seL4 tackles this problem by introducing a special "Reply"
capability type:

rep|

client;

~
/

endpoint

—

™

server

clienty

* The Call system call combines a Send and a Wait

* The kernel gives a new "reply capability" to the receiver
* The receiver can move but not copy the reply capability
* The receiver can send a message to the reply capability

* The reply capability is deleted after its first (hence only) use




Asynchronous (non-blocking) IPC

* seL4 also supports (limited) asynchronous/non-blocking IPC
via "notification objects" (aka "Asynchronous Endpoints/AEPs)

* How is this possible without an unbounded buffer to store all
messages that have been sent but not yet received?

* Each notification object holds a single data word

* When you Send to a notification object:
* you provide a single word of data that is ORed with
the data in the notification
* the sender can resume immediately

* A receiver can:
* Poll a notification to read the current data word
* Wait on a notification, reading and clearing the data
word when data becomes available

Notifications (asynchronous endpoints)

* A notification object (asynchronous endpoint) provides a
place to collect a queue of threads that are waiting to receive

aep aep’

L (o [v]-] L I-1T-T-1
1] |waitqueve | 0|
Eo—|
]
E 2 |
e @

* No blocking on threads that send: the endpoint just collects
the badge (b) and value (v) bits of any sender until a receiver
collects them
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Handling hardware interrupts in seL4

IRQControl

|. request a handler for
the interrupt number used

7

4, when an
interrupt occurs,
the kernel sets
the relevant bit

by the device in question l in the AEP
IRQHandler : AEP
‘ 2. specify a
notification 3. configure an
object/AEP to interrupt handler
associate with the thread to wait for
interrupt notifications
TCB

5.the handler thread responds as

necessary and then signals IRQHandler to re-enable interrupt

21

Data Representation
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Kernel objects
The kernel deals with a range of different kernel objects:

* Platform independent:

* Untyped memory, TCBs, Endpoints (synchronous and
asynchronous), CNodes, ...

* Architecture specific:
* Page table, Page directory, Page, Superpage
* |OPort range
* ASID (address space identifier) table
* IRQ Handler and Control objects
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Kernel object size and alignment

* Every kernel object takes 2s bytes for some s

* All kernel objects must be size aligned:

* If the kernel object has size 2s, then its address must be
some number of the form 2sn

* So every kernel address has a bit-level representation/layout
of the form:

pointer to object s

objptr O|O|O|0|O|0

* In practice, we can use the least significant bits to store

additional information:
pointer to object tag bits

objptr

24




Kernel object pointers

* The entries in each cspace table are object pointers

* We can use the low order bits to encode the type of the
object that is pointed to by the high order bits

* An empty slot can be represented by a null pointer

* Different objects have different sizes; these can be integrated
by using carefully designed bit-level encodings. Examples:

pointer to object tag bits

0

pointer to object tag bits
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Kernel object sizes

Object Size
Untyped Memory 2" bytes,n>2
CNode 16 x 2" bytes, n> |
Endpoint |6 bytes
IRQ Handler -
Thread Control Block (TCB) IKB
1A32 4K Frame (page) 4KB
IA32 4M Frame (superpage) 4MB
IA32 Page Directory 4KB
IA32 Page Table 4KB
IA32 ASID Table

IA32 Port

* No variable size objects

* Reserve extra fields in data structures to avoid the need for
“dynamic” allocation

* No room for metadata ... where can it be stored?

26




Capability Metadata

27

Storing metadata in capabilities

* The same endpoint may be accessed via multiple capability
entries, with different access permissions

sender cspace receiver cspace

I L]

write only read only

ep

* The obvious place to store the permission settings is in the
individual capability objects

cap

objptr

S »| capdata

28




Metadata for untyped memory

* In early designs, there was no metadata for untyped memory
UntypedCap untyped

objptr

» At some point, somebody realized that the metadata could be

used to store a next pointer
UntypedCap untyped

objptr allocated

next

* Complication: we cannot have multiple capability objects
pointing to the same untyped memory with different next
pointers
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System calls for managing paging structures

* Map a page in to an address space

seL4 TIA32 Page Map(pgcap, pdcap, vaddr, rights, attrs)

* Unmap a page from an address space how do we find the
page directory where

selL4 IA32 Page Unmap(pgcap) , , ,
this mapping is stored?

* Map a page table in to an address space

selL4 IA32 PageTable Map(ptcap, pdcap, vaddr, attrs)

* Unmap a page table from an address space (and zero it out)

seL4 IA32 PageTable Unmap(ptcap)

* User level code must map a page table into an address space
before it can map a 4KB page

30




Paging structures

asids asidTable

’ASIDTableObj}—ff‘f»

pdcap pdir

PageDir0bj %A,,A,ﬁ KPDEs
spcap sp

SuperPageObj+fffAfﬁ
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Paging structures, with metadata

asids asidTable lo hi

ASIDTableObj | - - - { | |

1o ‘ hi

pdcap pdir

PageDir0bj *f‘f*‘% KPDEs

Unmapped

spcap sp

SuperPageObj»fffAfﬁ

Unmapped
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Paging structures, with metadata

asids asidTable lo hi

ASIDTableObj | - - - { | | a | | ‘

lo ‘ hi

pdcap pdir

PageDirObj --- ﬁ ‘ i ‘ KPDEs

Unmapped

spcap sp
SuperPageObj - - - - ﬁ ‘

Unmapped

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir
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Paging structures

asids asidTable 1o hi
ASIDTableObj - - - - { | | @ | | ‘
lo ‘ hi : X .
| mm e first mapping
|
|
|
\
l
pdcap l pdir
PageDirObj r--- ﬁ i KPDEs

::> MappedPD (a)

spcap sp
SuperPageObj - - - - ﬁ ‘

Unmapped

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir
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Paging structures

—>

—

Suppose we want to associate pdir with address space a, and

asids

asidTable lo hi

ASIDTableObj

- |l

lo ‘ hi

pdcap

pdir

PageDirObj

KPDEs

I
Vo __
[~

MappedPD (a)

spcap

4]
el

SuperPage0bj

T

1

1

I
N __

Mapped (i,a)

then map sp at index i in pdir
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Paging structures

—>

—

asids

asidTable lo hi

ASIDTableObj

- |l

lo ‘ hi

pdcap

pdir

PageDirObj

I
Vo __
[~

KPDEs

MappedPD (a)

spcap

4]
el

SuperPage0bj

T

1

1

I
N __

Mapped (i,a)

The metadata in spcap can be used to locate the appropriate
page directory if the user subsequently unmaps spcap
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Paging structures

=>

=>

Multiple

asids asidTable lo hi
ASIDTableObj - - - +| | | a | | |
T
lo | hi !
fm e + first mapping
I
I
I
I
I
I
I
pdcap ¢pdir
PageDir0bj |- - - | 1] KPDEs
T
MappedPD (a) !

spcap

T

1

1

1
N __

SuperPage0bj

Mapped (i,a)

copies of spcap are needed to map sp in multiple

places (likely increasing complexity of user level code)
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Metadata summary

Object Size Metadata

Untyped Memory 2" bytes,n>2 "next" pointer

CNode 16 x 2n bytes, n> | guard

Endpoint 16 bytes permissions, badge

IRQ Handler - IRQ number

Thread Control Block IKB permissions

IA32 4K Frame (page) 4KB

IA32 4M Frame 4MB ASID and virt'ual a.ddre'ss
- for where this object is

IA32 Page Directory 4KB mapped, if any

IA32 Page Table 4KB

IA32 ASID Table - lo and hi range

IA32 Port - port number

* A single word of metadata goes a long way ...
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Capability Spaces
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Capability spaces

* Every thread has a “capability space”, which is a table mapping
capability indexes to kernel objects

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* If a thread doesn’t have a capability to an object in its
capability space, then it cannot directly access that object

* (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

40




Page tables

0x00806231

4_,//A\\\_,

0x002 0x006 0x231

o N

K 10 bits j K 10 bits j \ 12 bits /

Y Y
0x000
0x002 ~
0x000
0006 . 4k Page
Ox3FF
Ox3FF

(Diagram credit: seL4 documentation) d
“Page tables” for capabilities
—
T Y g
o000
o

(Diagram credit: seL4 documentation)




“Guarded page tables” for capabilities

0x00806231
/ 0x0020 0x062 0x31 \
\ 14 bits / k 10 bits / K 8 bits j
8 bit guard value 0x00 5 bit guard value 0x03 No guard
0x00
0x20 ~
Y
0x00
fffffffff
| 0x02 ®
|
|
| Y
: 0x00
v 0x3f
!
! 0x31
L ey
!
| |
| i 0x1f
CNodes oo
OxFF

(Diagram credit: seL4 documentation)

where should we
store the guards?
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Representing CNodes

* An object pointer to a CNode includes the size of the CNode

as part of the pointer representation

pointer to array log size of array

* The capdata for a CNode specifies a guard

capdata [0 1 100 « + « « « « + v e 100101‘
T T T I R

I
[«

guard gﬂﬁard lengﬂth

* (This is not the exact representation used in selL4, but is
sufficient to illustrate the key concepts)




General capability addressing

0x0 (4 bi
Guaordoo Cap Address (hex)
0x0F | L2 CNode Cap ¢ A 0_60 XXXXX, depth 32
Guard | 0x0 (4 bits) R
0x00 [ L3 CNode Cap ¢ B 0_OF_0_60_ XX, depth 32
0x60 Cap A
Guard 0 bits C O_OF_O_O 0_6 0, depth 32
0x00
0x60 Cap B C-G 0_OF _0_00_60,window size 5
0x60
Cap G, D, E,F, G L2 CNode |0_OF XXXXX,depth I2
OxXFF
0x64
- L3 CNode 0_OF_0_00_XX,depth 24

O0xFF

* General form of capability address uses:
*a 32 bit “root” CPtr to a CNode in the caller’s cspace
 An index, relative to that root
* A depth (number of bits to decode, required for CNode)
* A window size (to specify a range of capabilities)

(Diagram credit: seL4 documentation) "

Performance critical?

* Efficient capability lookup is important because every system
call (exceptYield) requires at least one lookup operation

* Wouldn't it be nice if the hardware could do this for us?
(an exercise in appreciating the role of a traditional MMU!)

* |s assembly language required to obtain good performance!?

* If so, then representation transparency is also important!

46




Derived Capabilities
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Derived capabilities

* In some situations, we might want to create derived versions
of a capability with restricted permissions

asids

ASIDTableObj

o | 285
1 r
ASIDTableObj ASIDTableObj
0 | 191 64 | 255

* Another example: root task creates a new endpoint and then
hands out two copies of that capability to child threads, one
with write permission and one with read permission, to
implement a form of “pipe”

* The resulting structure is called the capability derivation tree
or CDT

48




Representing the capability derivation tree

root

* CDT nodes can have arbitrarily many children
* A conventional implementation would require:
* unbounded storage per node
* unbounded recursion (stack) to traverse all children

49

Representing the capability derivation tree

root root

v
v
(e
[N
o
o=
L%

0 - 0 - 0

* A clever implementation represents the tree as a doubly
linked list with “depth” information at each node

* Fixed storage (two pointers + depth) per node
* (Limited) traversal of tree structure without recursion

d e f d Le f
- - - - - - L - 2 - 2 - 2 le—> ...
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General form

cap
objptr
capdata
«— prev lo [«
—> next hi —

* Every capability holds:

* a pointer to a kernel object + bits giving the object type

* some metadata

* doubly linked list pointers
* depth information (hi and lo bits)

* Total size: 4 words, 16 bytes
* This is why a CNode with 2 entries requires 16 x 2" bytes
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Moving capabilities

src

objptr

capdata

bef lo [«

aft

bef
Before

aft hi
dst
NullObj
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Inserting a sibling

sibling
NullObj
bef - cap
objptr
Before opaats
bef lo |«
next hiF—
53
L L4
Inserting a child
child
NullObj
cap - aft
objptr
Before e
«— prev lo
> aft hi
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Visiting a subtree

bef root aft
s all capabilities in this list/subtree ;-

objptr have a greater depth than root

* Pattern for traversing the descendants of a capability:

visitChildren(root) {
curr = root.next;
while (curr#null && curr.depth>root.depth) {
. curr is a child of root ..

curr = curr.next;

}

* Typical uses: revoking or deleting a capability
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Application: implementing reply capabilities

ReplyCap

0 0

* Reply capabilities are a new capability type that store a
pointer to the sending TCB

* Every TCB contains two capability slots:
* a “replyroot” capability that holds a ReplyCap
* a“reply” slot that is initially empty
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Application: implementing reply capabilities

send recv
ReplyCap ReplyCap
0 0 1
0 0 0
send.replyroot recv.reply

* If one thread makes a “Call” to another, the kernel will insert
a child of the sender’s master capability in receiver’s reply slot

* The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

* The kernel can revoke the master reply capability, to remove
the child, even if the receiver has moved it to a different slot
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Application: allocating from untyped memory

* Retyping is a fundamental operation that user-level threads
can use to repurpose an untyped memory area

‘ u

‘ untyped

ul

u3 ud

o L a ey
‘ untypedil ‘ untyped2 ‘ untyped3d ‘ untyped4 ‘

u2
ceere /N

ola olb ol 02

v 4
‘ untypedl ‘objl ‘obj2 ‘ untyped3 ‘ untyped4 ‘ // \\

ol 1d

* Kernel tracks use via the “capability derivation tree” (CDT)

* Cannot retype an untyped memory area if it is already in use
(i.e., if it has children in the CDT)
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The retype system call

selL4 Untyped Retype(

CPtr service, } Capability to untyped memory
int type,

int size bits, } Type of object to create
CbPtr root,

int node index, } CNode where new capabilities
: - should be stored

int node depth,

int node_offset, } Window in CNode where new
int num objects) | capabilities should be stored
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Retype, in pictures

user space | kernel space current
TCB cspace
CNode
service ’5
CNode
node
offset, | ui
num
CNode
size
type align ‘/’ |
next
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Summary

* seL4 represents nearly two decades of experience and
evolution in L4 microkernel development

* Fundamental abstractions: threads, address spaces, IPC, and
physical memory

* Fine-grained access control via capabilities
* Novel approach to resource management

* no dynamic memory allocation in the kernel; shifts
responsibility to user level
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