101111 .
01010 Languages & Low-Level Programming

X)gf;;gig CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 8: sel4 - capabilities in practice

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Primary focus

* Review main features of the seL4 microkernel

* With some implementation hints: not exactly what you'll
find in the selL4 source code ... but representative

* Based on publicly distributed descriptions:
* seL4 documentation and code from http://sel4.systems

* Gernot Heiser's presentation on an "Introduction to selL4"
[http://www.cse.unsw.edu.au/~cs9242/14/lectures/O | -intro.pdf]

* Dhamika Elkaduwe’s PhD dissertation on "A Principled
Approach to Kernel Memory Management”
[https://ts.datab | .csiro.au/publications/papers/Elkaduwe:phd.pdf]

seL4 from 30,000 feet

* A microkernel that uses capabilities throughout for access
control and resource management

* latest versions even use capabilities to manage allocation
of CPU time and scheduling

* seL4 was designed with formal verification in mind, and
intended to serve as a foundation for building secure systems

* Runs on ARM and |A32 platforms, among others; only the
ARM version is formally verified at this time
* In practice, managing lots of capabilities by hand is painful:

* seL4 programmers can take advantage of user-level
libraries that simplify the task of working with capabilities

Kernel objects in selL4

* Types of kernel objects include:

* Untyped memory
* TCB obijects for representing threads
* Endpoint and Notification objects for IPC

* Memory objects (PageDirectory, PageTable, Frame) for
building address spaces

* CNode objects for building capability spaces
e and more ...

* Capabilities are used to manage user-level access to all of
these different types of object

System calls in seL4

 Conceptually, seL4 has an "object-oriented" API with just
three system calls:

* Send a message to an object (via a capability)
» Wait for a message from an object (via a capability)

* Yield (does not require an object/capability)

* For example:

* send a message to an Endpoint object to communicate
with another thread

* send a message to a TCB object to configure the thread

* In practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns

Threads

Thread Control Blocks (TCBs) in selL4

* Threads are represented in the kernel by TCB objects

* Each TCB contains:
* A context (stores CPU register values for the thread)
* A pointer to the virtual address space (page directory)
* A pointer to the capability space (cspace)
* Scheduling parameters (priority, timeslice, etc.)
* A pointer to the IPC buffer (MRs) for the thread
* A capability to a fault handler endpoint for the thread

* Unlike L4: no a priori limit on the number of threads in an
address space, no global thread ids, ...

Operations involving TCBs

* Allocate TCBs (from untyped memory)
* Configure a TCB
* set registers, vspace, cspace, fault handler, priority, etc...

* [If two threads run in the same address space, they
should be configured to use different locations in
memory for data areas, stacks, etc.]

* Resume/pause a thread
* resume will add the thread to the run queue

* pause will remove the thread from the run queue

The run queue

* The run queue data structure is an array of circular linked
lists of TCBs for runnable threads, one for each priority:

runqueue

0 P q 255

* Every TCB includes space for the two pointers that are used
to store it in the run queue (no extra storage is required)

* At a context switch, the scheduler:

* moves the current thread to the back of its list
* switches to the first thread in the highest priority non-
empty list

IPC and Endpoints

How to support capability-based IPC?

message .
sender » recelver

* How can interprocess communication (IPC) be controlled
and protected using capabilities?

* One option would be to use capabilities to TCB objects

* These are useful for other purposes anyway (e.g.,
reading/modifying thread status, starting, suspending, ...)

* Could use send / receive permissions on TCB capabilities
to determine which IPC actions are allowed

* But this is also inflexible:
* Single thread to single thread communication is limiting

* Lacks fine-grained control: if you can contact a thread for
one purpose, you can contact it for any purpose

IPC via endpoints

* Interprocess communication (IPC) in seL4 passes messages
between threads using (capabilities to) an endpoint object:

r recelver;
sender ~~_, /

/,endpoin”u receiver;
Sendei”z N endpointz s‘.

* Allows flexible communication patterns

A 4

receivers

* multiple senders and/or receivers on a single endpoint
* multiple endpoints between communication partners

* Messages are transferred synchronously when both sender
and receiver are ready ("rendez-vous")

* Multiple senders or receivers can be queued at each endpoint

13

IPC messages

* Each thread can have a region of memory in its address space
that is designated as its “IPC buffer”

* The IPC buffer holds “Message Registers” (MRs)

MRO | MRI | MR2 | MR3 | MR4 | MR5 | MR6
\

message tag

* Each thread can read or write values directly in its IPC buffer
* Each MR holds a single 32 bit word

* Some of the slots in the IPC buffer are reserved for sending
or receiving capabilities via IPC

Typical IPC process

* Sending thread writes message into its IPC buffer and invokes
a Send system call using a capability to an endpoint

* Receiving thread invokes a Wait system call using a capability
to the same endpoint

* When both parties are ready, the kernel copies the message
from the sender’s MRs to the receiver’s MRs

* A small number of MRs are passed in CPU registers, which is
fast and avoids the need for an IPC buffer

Endpoints are thread queues

* An endpoint just provides a place to collect a queue of
threads that are all waiting either to send or to receive

ep ep’

[T-T-T-] [T-T-T-]

‘waitqueue ‘ sending=1 ‘ ‘waitqueue ‘ sending=0 ‘

Q =
NN

Q

D

* No thread can be both runnable and blocked (waiting to send
or receive a message), so one pair of TCB pointers suffices

* An endpoint doesn’t require all 16 bytes of storage: that’s just
the smallest size allowed for any kernel object

Client-server communication

* Practical systems often use a client-server architecture in
which one "server" thread performs work for many "clients"

P repr o
client ~—_
/,endpoin’u »| server
client, "
A
.............................. re pz ol

* What if the client needs a reply? How will the server know
where to send it?

* The client could send a capability to a "reply" endpoint as
part of its request. But this makes extra work for the client,
and could be abused by a malicious (or buggy) server.

Reply capabilities

* seL4 tackles this problem by introducing a special "Reply"
capability type:

rep|

client;

~
/

endpoint

—

™

server

clienty

* The Call system call combines a Send and a Wait

* The kernel gives a new "reply capability" to the receiver
* The receiver can move but not copy the reply capability
* The receiver can send a message to the reply capability

* The reply capability is deleted after its first (hence only) use

Asynchronous (non-blocking) IPC

* seL4 also supports (limited) asynchronous/non-blocking IPC
via "notification objects" (aka "Asynchronous Endpoints/AEPs)

* How is this possible without an unbounded buffer to store all
messages that have been sent but not yet received?

* Each notification object holds a single data word

* When you Send to a notification object:
* you provide a single word of data that is ORed with
the data in the notification
* the sender can resume immediately

* A receiver can:
* Poll a notification to read the current data word
* Wait on a notification, reading and clearing the data
word when data becomes available

Notifications (asynchronous endpoints)

* A notification object (asynchronous endpoint) provides a
place to collect a queue of threads that are waiting to receive

aep aep’

L (o [v]-] L I-1T-T-1
1] |waitqueve | 0|
Eo—|
]
E 2 |
e @

* No blocking on threads that send: the endpoint just collects
the badge (b) and value (v) bits of any sender until a receiver
collects them

20

Handling hardware interrupts in seL4

IRQControl

|. request a handler for
the interrupt number used

7

4, when an
interrupt occurs,
the kernel sets
the relevant bit

by the device in question l in the AEP
IRQHandler : AEP
‘ 2. specify a
notification 3. configure an
object/AEP to interrupt handler
associate with the thread to wait for
interrupt notifications
TCB

5.the handler thread responds as

necessary and then signals IRQHandler to re-enable interrupt

21

Data Representation

22

Kernel objects
The kernel deals with a range of different kernel objects:

* Platform independent:

* Untyped memory, TCBs, Endpoints (synchronous and
asynchronous), CNodes, ...

* Architecture specific:
* Page table, Page directory, Page, Superpage
* |OPort range
* ASID (address space identifier) table
* IRQ Handler and Control objects

23

Kernel object size and alignment

* Every kernel object takes 2s bytes for some s

* All kernel objects must be size aligned:

* If the kernel object has size 2s, then its address must be
some number of the form 2sn

* So every kernel address has a bit-level representation/layout
of the form:

pointer to object s

objptr O|O|O|0|O|0

* In practice, we can use the least significant bits to store

additional information:
pointer to object tag bits

objptr

24

Kernel object pointers

* The entries in each cspace table are object pointers

* We can use the low order bits to encode the type of the
object that is pointed to by the high order bits

* An empty slot can be represented by a null pointer

* Different objects have different sizes; these can be integrated
by using carefully designed bit-level encodings. Examples:

pointer to object tag bits

0

pointer to object tag bits

25

Kernel object sizes

Object Size
Untyped Memory 2" bytes,n>2
CNode 16 x 2" bytes, n> |
Endpoint |6 bytes
IRQ Handler -
Thread Control Block (TCB) IKB
1A32 4K Frame (page) 4KB
IA32 4M Frame (superpage) 4MB
IA32 Page Directory 4KB
IA32 Page Table 4KB
IA32 ASID Table

IA32 Port

* No variable size objects

* Reserve extra fields in data structures to avoid the need for
“dynamic” allocation

* No room for metadata ... where can it be stored?

26

Capability Metadata

27

Storing metadata in capabilities

* The same endpoint may be accessed via multiple capability
entries, with different access permissions

sender cspace receiver cspace

I L]

write only read only

ep

* The obvious place to store the permission settings is in the
individual capability objects

cap

objptr

S »| capdata

28

Metadata for untyped memory

* In early designs, there was no metadata for untyped memory
UntypedCap untyped

objptr

» At some point, somebody realized that the metadata could be

used to store a next pointer
UntypedCap untyped

objptr allocated

next

* Complication: we cannot have multiple capability objects
pointing to the same untyped memory with different next
pointers

29

System calls for managing paging structures

* Map a page in to an address space

seL4 TIA32 Page Map(pgcap, pdcap, vaddr, rights, attrs)

* Unmap a page from an address space how do we find the
page directory where

selL4 IA32 Page Unmap(pgcap) , , ,
this mapping is stored?

* Map a page table in to an address space

selL4 IA32 PageTable Map(ptcap, pdcap, vaddr, attrs)

* Unmap a page table from an address space (and zero it out)

seL4 IA32 PageTable Unmap(ptcap)

* User level code must map a page table into an address space
before it can map a 4KB page

30

Paging structures

asids asidTable

’ASIDTableObj}—ff‘f»

pdcap pdir

PageDir0bj %A,,A,ﬁ KPDEs
spcap sp

SuperPageObj+fffAfﬁ

31

Paging structures, with metadata

asids asidTable lo hi

ASIDTableObj | - - - { | |

1o ‘ hi

pdcap pdir

PageDir0bj *f‘f*‘% KPDEs

Unmapped

spcap sp

SuperPageObj»fffAfﬁ

Unmapped

32

Paging structures, with metadata

asids asidTable lo hi

ASIDTableObj | - - - { | | a | | ‘

lo ‘ hi

pdcap pdir

PageDirObj --- ﬁ ‘ i ‘ KPDEs

Unmapped

spcap sp
SuperPageObj - - - - ﬁ ‘

Unmapped

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir

33

Paging structures

asids asidTable 1o hi
ASIDTableObj - - - - { | | @ | | ‘
lo ‘ hi : X .
| mm e first mapping
|
|
|
\
l
pdcap l pdir
PageDirObj r--- ﬁ i KPDEs

::> MappedPD (a)

spcap sp
SuperPageObj - - - - ﬁ ‘

Unmapped

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir

34

Paging structures

—>

—

Suppose we want to associate pdir with address space a, and

asids

asidTable lo hi

ASIDTableObj

- |l

lo ‘ hi

pdcap

pdir

PageDirObj

KPDEs

I
Vo __
[~

MappedPD (a)

spcap

4]
el

SuperPage0bj

T

1

1

I
N __

Mapped (i,a)

then map sp at index i in pdir

35

Paging structures

—>

—

asids

asidTable lo hi

ASIDTableObj

- |l

lo ‘ hi

pdcap

pdir

PageDirObj

I
Vo __
[~

KPDEs

MappedPD (a)

spcap

4]
el

SuperPage0bj

T

1

1

I
N __

Mapped (i,a)

The metadata in spcap can be used to locate the appropriate
page directory if the user subsequently unmaps spcap

36

Paging structures

=>

=>

Multiple

asids asidTable lo hi
ASIDTableObj - - - +| | | a | | |
T
lo | hi !
fm e + first mapping
I
I
I
I
I
I
I
pdcap ¢pdir
PageDir0bj |- - - | 1] KPDEs
T
MappedPD (a) !

spcap

T

1

1

1
N __

SuperPage0bj

Mapped (i,a)

copies of spcap are needed to map sp in multiple

places (likely increasing complexity of user level code)

37

Metadata summary

Object Size Metadata

Untyped Memory 2" bytes,n>2 "next" pointer

CNode 16 x 2n bytes, n> | guard

Endpoint 16 bytes permissions, badge

IRQ Handler - IRQ number

Thread Control Block IKB permissions

IA32 4K Frame (page) 4KB

IA32 4M Frame 4MB ASID and virt'ual a.ddre'ss
- for where this object is

IA32 Page Directory 4KB mapped, if any

IA32 Page Table 4KB

IA32 ASID Table - lo and hi range

IA32 Port - port number

* A single word of metadata goes a long way ...

38

Capability Spaces

39

Capability spaces

* Every thread has a “capability space”, which is a table mapping
capability indexes to kernel objects

,,

,,

* If a thread doesn’t have a capability to an object in its
capability space, then it cannot directly access that object

* (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

40

Page tables

0x00806231

4_,//A_,

0x002 0x006 0x231

o N

K 10 bits j K 10 bits j \ 12 bits /

Y Y
0x000
0x002 ~
0x000
0006 . 4k Page
Ox3FF
Ox3FF

(Diagram credit: seL4 documentation) d
“Page tables” for capabilities
—
T Y g
o000
o

(Diagram credit: seL4 documentation)

“Guarded page tables” for capabilities

0x00806231
/ 0x0020 0x062 0x31 \
\ 14 bits / k 10 bits / K 8 bits j
8 bit guard value 0x00 5 bit guard value 0x03 No guard
0x00
0x20 ~
Y
0x00
fffffffff
| 0x02 ®
|
|
| Y
: 0x00
v 0x3f
!
! 0x31
L ey
!
| |
| i 0x1f
CNodes oo
OxFF

(Diagram credit: seL4 documentation)

where should we
store the guards?

43

Representing CNodes

* An object pointer to a CNode includes the size of the CNode

as part of the pointer representation

pointer to array log size of array

* The capdata for a CNode specifies a guard

capdata [0 1 100 « + « « « « + v e 100101‘
T T T I R

I
[«

guard gﬂﬁard lengﬂth

* (This is not the exact representation used in selL4, but is
sufficient to illustrate the key concepts)

General capability addressing

0x0 (4 bi
Guaordoo Cap Address (hex)
0x0F | L2 CNode Cap ¢ A 0_60 XXXXX, depth 32
Guard | 0x0 (4 bits) R
0x00 [L3 CNode Cap ¢ B 0_OF_0_60_ XX, depth 32
0x60 Cap A
Guard 0 bits C O_OF_O_O 0_6 0, depth 32
0x00
0x60 Cap B C-G 0_OF _0_00_60,window size 5
0x60
Cap G, D, E,F, G L2 CNode |0_OF XXXXX,depth I2
OxXFF
0x64
- L3 CNode 0_OF_0_00_XX,depth 24

O0xFF

* General form of capability address uses:
*a 32 bit “root” CPtr to a CNode in the caller’s cspace
 An index, relative to that root
* A depth (number of bits to decode, required for CNode)
* A window size (to specify a range of capabilities)

(Diagram credit: seL4 documentation) "

Performance critical?

* Efficient capability lookup is important because every system
call (exceptYield) requires at least one lookup operation

* Wouldn't it be nice if the hardware could do this for us?
(an exercise in appreciating the role of a traditional MMU!)

* |s assembly language required to obtain good performance!?

* If so, then representation transparency is also important!

46

Derived Capabilities

47

Derived capabilities

* In some situations, we might want to create derived versions
of a capability with restricted permissions

asids

ASIDTableObj

o | 285
1 r
ASIDTableObj ASIDTableObj
0 | 191 64 | 255

* Another example: root task creates a new endpoint and then
hands out two copies of that capability to child threads, one
with write permission and one with read permission, to
implement a form of “pipe”

* The resulting structure is called the capability derivation tree
or CDT

48

Representing the capability derivation tree

root

* CDT nodes can have arbitrarily many children
* A conventional implementation would require:
* unbounded storage per node
* unbounded recursion (stack) to traverse all children

49

Representing the capability derivation tree

root root

v
v
(e
[N
o
o=
L%

0 - 0 - 0

* A clever implementation represents the tree as a doubly
linked list with “depth” information at each node

* Fixed storage (two pointers + depth) per node
* (Limited) traversal of tree structure without recursion

d e f d Le f
- - - - - - L - 2 - 2 - 2 le—> ...

50

General form

cap
objptr
capdata
«— prev lo [«
—> next hi —

* Every capability holds:

* a pointer to a kernel object + bits giving the object type

* some metadata

* doubly linked list pointers
* depth information (hi and lo bits)

* Total size: 4 words, 16 bytes
* This is why a CNode with 2 entries requires 16 x 2" bytes

51

Moving capabilities

src

objptr

capdata

bef lo [«

aft

bef
Before

aft hi
dst
NullObj

52

Inserting a sibling

sibling
NullObj
bef - cap
objptr
Before opaats
bef lo |«
next hiF—
53
L L4
Inserting a child
child
NullObj
cap - aft
objptr
Before e
«— prev lo
> aft hi

54

Visiting a subtree

bef root aft
s all capabilities in this list/subtree ;-

objptr have a greater depth than root

* Pattern for traversing the descendants of a capability:

visitChildren(root) {
curr = root.next;
while (curr#null && curr.depth>root.depth) {
. curr is a child of root ..

curr = curr.next;

}

* Typical uses: revoking or deleting a capability

55

Application: implementing reply capabilities

ReplyCap

0 0

* Reply capabilities are a new capability type that store a
pointer to the sending TCB

* Every TCB contains two capability slots:
* a “replyroot” capability that holds a ReplyCap
* a“reply” slot that is initially empty

56

Application: implementing reply capabilities

send recv
ReplyCap ReplyCap
0 0 1
0 0 0
send.replyroot recv.reply

* If one thread makes a “Call” to another, the kernel will insert
a child of the sender’s master capability in receiver’s reply slot

* The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

* The kernel can revoke the master reply capability, to remove
the child, even if the receiver has moved it to a different slot

57

Application: allocating from untyped memory

* Retyping is a fundamental operation that user-level threads
can use to repurpose an untyped memory area

‘ u

‘ untyped

ul

u3 ud

o L a ey
‘ untypedil ‘ untyped2 ‘ untyped3d ‘ untyped4 ‘

u2
ceere /N

ola olb ol 02

v 4
‘ untypedl ‘objl ‘obj2 ‘ untyped3 ‘ untyped4 ‘ // \\

ol 1d

* Kernel tracks use via the “capability derivation tree” (CDT)

* Cannot retype an untyped memory area if it is already in use
(i.e., if it has children in the CDT)

58

The retype system call

selL4 Untyped Retype(

CPtr service, } Capability to untyped memory
int type,

int size bits, } Type of object to create
CbPtr root,

int node index, } CNode where new capabilities
: - should be stored

int node depth,

int node_offset, } Window in CNode where new
int num objects) | capabilities should be stored

59

Retype, in pictures

user space | kernel space current
TCB cspace
CNode
service ’5
CNode
node
offset, | ui
num
CNode
size
type align ‘/’ |
next

60

Summary

* seL4 represents nearly two decades of experience and
evolution in L4 microkernel development

* Fundamental abstractions: threads, address spaces, IPC, and
physical memory

* Fine-grained access control via capabilities
* Novel approach to resource management

* no dynamic memory allocation in the kernel; shifts
responsibility to user level

6l

