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Loose Ends

The Week 3 Lab: Context Switching

kernel user user2

0 IMB 2MB 3MB 4MB 5MB 6MB 7™MB 8MB

QEMU

userl code is at 0x411098 in userl code

user2 code is at Ox421098 userl console ()utputfronn

user data segment is Ox3b userl console ' .

user code segment is 0x33 userl console first user tlmer
user data segment is Ox3b userl console process .

user code segment is 0x33 |r]'ter‘|"up't
hello, from userl

1 called yield Userl code does not return

hello, from user2

O called yield

hello, from userl ()utputfrorn

1 called yield K I
hello, from user2 erne in userZ code

O called yield userZ console
hello, from useril userZ console
1 called yield userZ console
hello, from user2 userZ console

0 called yield Output from

hello, from userl
1 called yield second user

hello, from user2 process
O called yield




Port |/O

Memory mapped I/O

address

CPU v w

ROM RAM

IO

data l ‘ N

Memory address space |[RAM| /O

ROM

0 8KB 16KB 24KB 32KB 40KB 48KB

56KB

64KB




Memory mapped I/O

address
Y ¢
ROM RAM
data I] 1
1 1
Memory address space |RAM ROM
0 8KB 16KB 24KB 32KB 40KB 56KB 64KB
Port I/O
port
address address
J ¢
I/O
ROM RAM
1 data
4 data I i
$ 1
Memory address space |RAM ROM
0 8KB 16KB 24KB 32KB 40KB 56KB 64KB

I/O port address space

/O




Port I/O in the 1A32 instruction set
* The IA32 has a 16 bit I/O Port address space

* The hardware can use the same address bus and data bus
with a signal to distinguish between memory and port access

* You can write a byte/short/word to an I/O port using:
out[b|w|1l] [%al,%ax,%eax], [imm8|%dx]
(use imm8 for 8 bit port numbers, otherwise use $dx)

* You can read a byte/short/word from an I/O port using:

in[b|w|l] [imm8|%dx], [%al,%ax,%eax]

Port I/O using gcc inline assembly

static inline void outb(short port, byte b) {
asm volatile("outb %1, %0\n" : : "dN"(port), "a"(b));

}

static inline byte inb(short port) {
unsigned char b;
asm volatile("inb %1, %0\n" : "=a"(b) : "dN"(port));
return b;

}

* Arcane syntax, general form:

asm ( template : output operands : input operands : clobbered registers );

* Operand constraints include:
*“d” (use $edx),“a” (use %eax), N” (imm8 constant),
“=* (write only),“r” (register), ...

€¢ 9




The role of inline assembly

* We can already call assembly code from C and vice versa by
following calling conventions like the SystemV ABI

* Inline assembly allows for even tighter integration between C
and assembly code: code can be inlined, can have an impact
on register allocation, etc...

* But there is essentially no checking of the arguments: it’s up
to the programmer to specify the correct list of clobbered
registers to ensure correct semantics

* Programmers might want to check the generated code ...

* How can a general language provide access to essential
machine specific instructions and registers!?

Standard port numbers on the PC platform

Port Range |Device
0x00-0x1f |First DMA controller (8237)
0x20-0x3f |Programmable Interrupt Controller (PICI) (8259A)

0x40-0x5f |Programmable Interval Timer (PIT) (8253/8254)
0x60-0x6f |Keyboard (8042)

0x70-0x7f |Real Time Clock (RTC)

0x80-0x9f |DMA ports, Refresh

0xa0-0xbf  |Programmable Interrupt Controller (PIC2) (8259A)
0xc0-Oxdf |Second DMA controller (8237)

0x3f0-0x3f7 |Primary floppy disk drive controller
0x3f8-0Ox3ff |Serial Port |




Serial port output in assembly

.set

serial putc:

pushl
pushl

movw
inb
andb
jz
movw
movb
outb

cmpb
jnz

movw
inb
andb
jz
movw
movb
outb

popl
popl
ret

PORTCOM1, 0x3f8

PC platform ]

%eax
gedx
$ (PORTCOM1+45), %dx
%dx, %al

# Wait for port to be ready

$0x60,

e B why Ox607 |

$PORTCOM1, %dx
12(%esp), %al
%al, %dx

$0xa, %al

2f

$ (PORTCOM1+5), %dx

gdx, %al
$0x60, %al

1b

$SPORTCOM1, %dx
$0xd, %al

%al, %dx

gedx

%eax

# Output the character

# Was it a newline?

# Send a carriage return

# Wait again for port to be ready

To the datasheet!
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To the datasheet!
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Serial port output in assembly

.set PORTCOM1, 0x3f8
serial putc:
pushl %eax

pushl  gedx ;Read the line status register

movw $ (PORTCOM1+5), %dx
1: inb gdx, %al # Wait for port to be ready
andb $0x60, %al . c 5
Sz b check for available transmitter register
movw $PORTCOM1, %dx # Output the character
movb 12(%esp), %al
outb %al, %dx

cmpb $0xa, %al # Was it a newline?
jnz 2f

movw $ (PORTCOM1+5), %dx
1: inb gdx, %al # Wait again for port to be ready
andb $0x60, %al
jz 1b
movw SPORTCOM1, %dx # Send a carriage return
movb $0xd, %al
outb %al, %dx

2: popl %edx
popl geax
ret 16




Reading datasheets

* Datasheets present detailed technical information in a very
terse format

* Unless you are already familiar with the details, and just
looking for a reference, it can be hard to find the information

you need

* But persevere, and practice; this can be a useful skill

* One thing you'’ll often see is that computer systems typically
only use a fraction of the available functionality(/transistors)

* Sample code, from the manufacturers, or on the web, can also
be very useful!

Interrupts




Hardware interrupts

address

CPU

interrupt ROM RAM

data l ‘ i T

* The CPU has an interrupt pin

» Connect it to a timer to generate regular timer interrupts!

How to handle multiple interrupt sources!?

timer
keyboard
misc

serial port 2
serial port |
sound card
floppy disk
| parallel port

CPU |

interrupt [« ?

data

* How do we combine multiple interrupt signals?

* How do we identify and prioritize interrupt sources?




How to handle multiple interrupt sources!?

timer

keyboard

misc

serial port 2

serial port |

sound card

floppy disk
CPU | | parallel port

interrupt [«———— ?

data

* One option: use an “or” to combine the interrupt signals

* Use the CPU to “poll” to determine which interrupt fired ...

Adding an interrupt controller

timer

keyboard
misc
——— serial port 2
serial port |
sound card
floppy disk
parallel port
CPU port Programmable
0x20/02] Interrupt Controller
L b (8259A)
interrupt PIC
interrupt ack BASE = 0x20

i

data

* The PIC allows individual interrupts to be masked/unmasked

* Responds to ack with programmed BASE + IRQ (interrupt
request number) on data bus




Adding multiple interrupt controllers

timer RTC
keyboard ACPI
misc network
———— serial port 2 —————— misc
——— serial port | ————— mouse
———— sound card ——————— coprocessor
floppy disk primary ATA
C PU parallel port second ATA
port port
0x20/0x21 0xa0/0xa |
L01234567 ~—>[0 1 23 45867
interrupt PICI PIC2
interrupt ack BASE = 0x20 BASE = 0x28
11 11
1 1
data
* Two PICs ... twice as many input pins ...
timer RTC
keyboard ACPI
network
——— serial port 2 ———— misc
———— serial port | ———— mouse
———— sound card ——————— coprocessor
floppy disk primary ATA
C PU parallel port second ATA
port port
0x20/0x21 0xa0/Oxa |

interrupt
interrupt ack

B

012 3 456 7

PICI

BASE = 0x20

‘ >

il

PIC2

BASE = 0x28

il

1

1

data

* Two PICs chained together

 Any interrupt on PIC2 triggers interrupt 2 on PIC]




IDT structure

Protected mode Hardware System call
exceptions IRQs entry points

N \(___A \

0 16 32 48 128 130 255
H_J;Y_J

PICI PIC2

Initializing the PICs

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

# Send ICWs (initialization control words) to initialize PIC.
.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

movb $\info, %al # ICW3: configure for two PICs
outb %al, $(\port+l)
movb $0x01, %al # ICW4: 8086 mode

outb %al, $(\port+l)

movb $\init, %al # OCWl: set initial mask
outb %al, $(\port+l)
.endm

initPIC:initpic PIC_1, IRQ BASE, 0x04, Oxfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, Oxff
ret




Initializing the PICs

initPIC:

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

# Send ICWs (initialization control words) to initialize PIC.

.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

Interrupts on PIC| map to|  |Interrupts on PIC2 map to
IDT entries Ox20-0x27 |gosl |IDT entries Ox28-0x2f

movb $\init, # OCWl: set i mask
outb gal, $(\p\ |t+1)
.endm

initpic PIC_1, IRQ BASE, 0x04/0xfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, Oxff
ret 27

Initializing the PICs

initPIC:

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

# Send ICWs (initialization control words) to initialize PIC.

.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

O)( f f con (h( f b

AERNRRERRNRAREEY O RN NN AR

movb $\init, %al
outb %al, $(\port+l
.endm

initpic PIC_1, IRQ BASE, Oxfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, 0xff
ret 28




Enabling and disabling individual IRQs

* Individual IRQs are enabled by clearing the mask bit in the
corresponding PIC:

static inline void enableIRQ(byte irqg) {
if (irqgs&8) {
outb(0xal, ~(1l<<(irg&7)) & inb(0xal));
} else {
outb(0x21, ~(1<<(irq&7)) & inb(0x21));
}
}

* IRQs are disabled by setting the mask bit in the
corresponding PIC:

static inline void disableIRQ(byte irqg) {
if (irqs&8) {

outb(0xal, (1l<<(irgs&7)) | inb(0xal));
} else {
outb(0x21, (1l<<(irgs&7)) | inb(0x21));

}
}

29

IRQ handling lifecycle

* Install handler for IRQ in IDT

* Use the PIC to enable that specific IRQ (the CPU will still
ignore the interrupt if the IF flag is clear)

* If the interrupt is triggered, disable the IRQ and send an EOI
(end of interrupt) to reenable the PIC for other IRQs:

static inline void maskAckIRQ(byte irq) {
if (irqg&8) {

outb(0xal, (1l<<(irg&7)) | inb(0xal));

outb(0xa0, 0x60|(irqg&7)); // EOI to PIC2

outb(0x20, 0x62); // EOI for IRQ2 on PIC1
} else {

outb(0x21, (1l<<(irg&7)) | inb(0x21));

outb(0x20, 0x60|(irg&7)); // EOI to PIC1

}
}

* When the interrupt has been handled, reenable the IRQ

30




Timers

31

The programmable interval timer (PIT)

* The IBM PC included an Intel 8253/54 programmable interval
timer (PIT) chip

* The PIT was clocked at 1,193,181.8181Hz, for compatibility
with the NTSCTYV standard

* The PIT provides three counter/timers. On the PC, these
were used to handle:
* Counter 0:Timer interrupts
* Counter |: DRAM refresh

» Counter 2: Playing tones via the PC’s speaker

32




... continued

* The PIT is programmed by sending a control word to port

0Ox43 followed by a two byte counter value (Isb first) to port
0x40.

Control Word Format
D, D¢ Dg D3 D Di Dy

e Ds
I'sct|sco|RL1]Ro|m2]mi]mo]Be]|
v J\. v J\. N J\ J

\

SC—SELECT COUNTER:

SC1 SCo BCD:
0 0 Select Counter 0 0 Binary Counter 16-Bits
0 1 Select Counter 1 1 Binary Coded Decimal (BCD) Counter
1 0 Select Counter 2 (4 Decades)
1 1 lilegal
RL—READ/LOAD: M—MODE:
RL1 RLO M2 M1 MO
0 0 | Counter Latching operation (see o 0 0 Mode 0
READ/WRITE Procedure Section). o 0 1 Mode 1
1 0 | Read/Load most significant byte only. X 1 0 Mode 2
0 1 | Read/Load least significant byte only. X 1 1 Mode 3
1 1 | Read/Load least significant byte first, 1 0 0 Mode 4
then most significant byte.
1 0 1 Mode 5

* Each timer/counter runs in one of six modes.

33

Example: Programming the PIT

To configure for timer interrupts:

#define HZ 100 // Frequency of timer interrupts
#define PIT INTERVAL ( (1193182 + (HZ/2)) / HZ)
#define TIMERIRQ 0

static inline void startTimer() {
outb(0x43, 0x34); // PIT control (0x43), counter 0, 2 bytes, mode 2, binary
outb(0x40, PIT INTERVAL & 0xff); // counter 0, 1lsb
outb(0x40, (PIT INTERVAL >> 8) & Oxff); // counter 0, msb
enableIRQ(TIMERIRQ);
} Control Word Format
D Dg Ds Dg D3 D Dy Dg
[sc1 [ sco| ALt [RLo [ M2 M1 [mo]BeD]

SC—SELECT COUNTER:
sc1 sco :
[} [) Select Counter 0 [ o [ Binary Counter 16-Bits
) 1 Select Counter 1 \ 1 Binary Coded Decimal (BCD) Counter
1 [) Select Counter 2 {4 Docades)
1 1 llegal
RL—READ/LOAD: M—MODE:
RL1 RLO M2 M1 MO
0 | 0 |Counter Latching operation {see o 0 o Mode 0
READ/WRITE Procedure Section). ° ) 1 Mode 1
1 0 | Read/Load most significant byte only. X 1 0 Mode 2
0 1 | Read/Load least significant byte only. X 1 1 Mode 3
1 | 1 | Read/Load ieast significant byte first, 1 [ [ Mode 4
then most significant byte.
1 o 1 Mode 5

34




Time stamp counter

* Modern Intel CPUs include a 64 bit time stamp counter that
tracks the number of cycles since reset

* The current TSC value can be read in edx:eax using the
rdtsc instruction

* rdtsc is privileged, but the CPU can be configured to allow
access to rdtsc in user level code

» Can use differences in TSC value before and after an event to
measure elapsed time

* But beware of complications related to multiprocessor
systems; power management (e.g., variable clock speed); ...

e ... and virtualization .... (e.g.,, QEMU,VirtualBox, ...)

35
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Volatile Memory

37

The first user program

unsigned flag = 0;

user

for (i=0; i<600; i++) {

}
printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

< o noming /| “My flag is at 0x4025b0" |
}

printf("Somebody set my flag to %d!\n", flag);

* According to the semantics of C, there is no way for the
value of the variable flag to change during the while loop ...

* ... so there is no way that the “Somebody set my flag ...”
message could appear

* ... the compiler could delete the code after the while loop ...

38




The second user program

unsigned flag = 0;
user

for (i=0; i<600; i++) {

}
printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

/% a0 noming +/ | “My flag is at 0x4025b0" |
}

printf ("Somebody set my flag to %d!\n", flag);

for (i=0; 1i<1200; i++) {

user2
}
unsigned* flagAddr = (unsigned*)0x4025b0;
printf("flagAddr = 0x%x\n", flagAddr);
*flagAddr = 1234;
printf("\n\nUser2 code does not return\n");
for (;;) { /* Don't return! */
}
39
Marking the flag as volatile
volatile unsigned flag = 0;
user

for (i=0; i<600; i++) {

}

printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

/% a0 noming +/ | “My flag is at 0x4025b0” |
}

printf ("Somebody set my flag to %d!\n", flag);

[“Somebody set my flag to 1234!"]

for (i=0; i<1200; i++) { 2
user

}
unsigned* flagAddr = (unsigned*)0x4025b0;

printf("flagAddr = 0x%x\n", flagAddr);
*flagAddr = 1234;

printf("\n\nUser2 code does not return\n");
for (;;) { /* Don't return! */

}

40




The volatile modifier

* Under normal circumstances,a C compiler can treat an
expression like x+x as being equivalent to 2*x:

* There is no way for the value in x to change from one side
of the + to the other (no intervening assignments)

* The compiler can replace two attempts to read x with a
single read, without changing the behavior of the code

* Marking a variable as volatile indicates that the compiler
should allow for the possibility that the stored value might
change from one read to the next

* The volatile modifier is often necessary when working
with memory mapped I/O

41

Unresolved issues

42




Issues with the Week 3 lab example

* Although we are running in protected mode, we are using
segments that span the full address space, so there is no
true protection between the different programs

* Address space layout is ad hoc: different programs load and
run at different addresses; there is no consistency

* We had to choose different (but essentially arbitrary) start
addresses for user and user2, even when they were just two
copies of the same program

* Why should worries about low level memory layout & size
propagate in to the design of higher-level applications?

* Our user programs included duplicate code (e.g., each one
has its own implementation of printf). How can we support
sharing of common code or data between multiple programs?

43
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Paging

* “All problems in computer science can be solved by another
level of indirection” (David Wheeler)

* Partition the address space in to a collection of “pages”

* Translate between addresses in some idealized “virtual
address space” and “physical addresses” to memory.

page number offset
AN

translate copy

virtual address

physical address

45

Example
* Suppose that we partition our memory into 8 pages:
Virt | Phys
0
virtual | 0 I 2 3 4 5 6 7 I | 2
| ’ 2 | 4
3
4
5
6 | 0
7 11
physical | 0 I 2 3 4 |5 6 |7
Y Virt PhYS

virtual | 0 I 2 3 | 4 5 6 7

N[Oyl AW N — O
w Oy




Practical reality

* |A32 partitions the 32-bit, 4GB address space in to 4KB pages

page number offset

20 bits |2 bits

* It also allows the address space to be viewed as 4MB “super

pages super page number offset
N

10 bits 22 bits

* We need a table with 2!0 entries to translate virtual super
page numbers in to physical page numbers

* With 4 bytes/entry, this table, called a page directory,
takes 2!2 bytes - one 4K page!

47

Paging with 4MB super pages

Linear Address
31 22 21 0

| Directory ‘ Offset |
J /22 4-MByte Page
10 _Page Directory Physical Address

PDE with PS=1 >

_ 18

32

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

* The cr3 register points to the “current” page directory

* Individual page directory entries (PDEs) specify a 10 bit
physical super page address plus some additional control bits

48




Page tables

* A table describing translations for all 4KB pages would

require 220 entries

* With four bytes per entry, a full page table would take 4MB

* Most programs are small, at least in comparison to the full

address space

— most address spaces are fairly sparse

* is there a more compact way to represent their page tables?

49

Example

* Suppose that our memory is
partitioned in to 64 pages

200 21 22

23

 But we are only use a small 2

25

26

27

number of those pages... 32

33

34

40

41

42

43

28/ 29 30

31

39

44/ 45 46

47

* ... in fact, only a small number 4

49

50

51

52| 53] 54

55

of the rows 56

57

58

59

60| 61| 62

63

* Then we can represent the full table more compactly as a

tree: 0 16 24- 40| 48] 56

N

32

33

34

39

50




Paging with 4KB pages

Linear Address

31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 10  Page Table Physical Address >

Page Directory

PTE -

PDE with PS=0

20

“y y

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

* A typical address space can now be described by a page
directory plus one or two page tables (i.e., 4-12KB)

» Can mix pages and super pages for more flexibility

CR3, PDEs, PTEs

31[30[29[28[27[26]25[24]23[22[21[20[19]18[17][16[15[14][13]12[11[10{9[8[7[6[5[4[3]2[1]0
P
Address of page directory’ Ignored [C) P-l\-"l Ignored CR3
. . P P UIR PDE:
Bits 31:22 of address Reserved Bits 39:32 of PW|
A| Ignored ([G|1|D|A|C /171 4MB
of 4MB page frame (must be 0) address D T slw page
| P lowl Y[R PDE:
Address of page table Ignored 0jg|A|C T /711 page
n D S|W table
PDE:
Ignored 0 not
present
P Plpwl U|R PTE:
Address of 4KB page frame Ignored |[G|A|D|A|C T /711 4KB
T D S|W page
PTE:
Ignored 1] not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging




Details

* Paging structures use physical addresses

* P(resent) bit O is used to mark valid entries (an OS can use
the remaining “ignored” fields to store extra information)

* Hardware updates D(irty) and A(ccessed) bits to track usage
* R/W bits allow regions of memory to be marked “read only”

* S/U bits allow regions of memory to be restricted to
“supervisor” access only (rather than general “user”)

* G(lobal) bit allows pages to be marked as appearing in every
address space

* PCD and PWD bits control caching behavior
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The translation lookaside buffer (TLB)

* Recall that the 1A32 tracks current segment base and limit
values in hidden registers to allow for faster access

* A more sophisticated form of cache, called the translation
lookaside buffer (TLB), is used to keep track of active
mappings within the CPU’s memory management unit

* Programmers typically ignore the TLB:“it just works”

* But not so in programs that modify page directories and page
tables: extra steps are required to ensure that the TLB is
updated to reflect changes in the page table

* Loading a value in to CR3 will flush the TLB

*the “invlpg addr” instruction removes TLB entries for a
specific address
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Segmentation and paging

Logical Address
(or Far Pointer)
Segment l
Selector Offset Linear Address
[ | | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | iz)(ﬁlecsasl
‘ Space
Segment
Segment Page Table Page
Descriptor(—m | (| (| 0| 1| [T7777
et N N Page Directory Phy. Addr.
<|—> Lin. Addr. Entry ]
> A Entry >
SegmentJ
Base Address
| Page
}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging
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Protection and address space layout

* A typical operating system adopts a virtual memory layout
something like the following for all address spaces:

kernel space

(ON

0 IGB 2GB 3GB 4GB

* The operating system is in every address space; it’s pages are
protected from user programs by limiting those parts of the
page directory to “supervisor” access

* The OS portion of the page directory can take advantage of
G(lobal) bits so that TLB entries for kernel space are retained
when we switch between address spaces
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Protection and address space layout

* A typical operating system adopts a virtual memory layout
something like the following for all address spaces:

user space kernel space

user code & data user stack oS

0 IGB 2GB 3GB 4GB

 User code and data mappings differ from one address space
to the next

* there is no way for one user program to access memory
regions for another program ...

* ... unless the OS provides the necessary mappings

e user programs do not have a capability to access
unauthorized regions of memory
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Control registers to enable paging

.

}/J Enables use of
31(63) 20 181716151413 121110 9 8 7 6 5 4 3 Super pages
S S|V Plp|v|P Tm
M MM D
Reserved E M clc|c|A[S|2|S|VIM| CR4
P ElE E|E|E|E D|I|E

J |— FSGSBASE LI— OSFXSR
OSXSAVE

——— PCIDE OSXMMEXCPT
31(63) 1211 54 32

CR3
(PDBR)

31(63)

31(63)

Enables
paging

Enables
protected
mode

CR1

31302928 1918 17 16 15 6543210

C|N A w N
D|W M P E

\:l Reserved ‘ Set by
Figure 2-7. Control Registers k GRUB
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Initialization

* How do we get from physical memory, after booting:

0 I 512MB IGB

%eip

* to virtual address spaces with paging enabled?

user space kernel space

(ON

0 IGB 2GB 3GB 4GB

* Two key steps
* Create an initial page directory

* Enable the CPU paging mechanisms
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Creating a |:]1 mapping

* While running at lower addresses, create an initial page
directory that maps the lower |GB of memory in two
different regions of the virtual address space

user space kernel space
N
(0N (ON)
0 IGB 2GB 3GB 4GB
e T i 0 5IMBIGB
urn on paging ... i

geip

* jump to an address in the upper | GB of virtual memory ...

* and then proceed without the lower mapping ...
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Working with physical & virtual addresses

* |t is convenient to work with page directories and page tables
as regular data structures (virtual addresses):

struct Pdir { unsigned pde[1024]; };
struct Ptab { unsigned pte[1024]; };

* Return a pointer to the page table for the ith entry of the specified
* pdir, or NULL if it is not present (0xl) or is a super page (0x80).
*/
static inline struct Ptab* getPagetab(struct Pdir* pdir, unsigned i) {
return ((pdir->pde[i]&0x81)==0x1)
? fromPhys(struct Ptab*, align(pdir->pde[i], PAGESIZE)) : 0;
}

* But sometimes we have to work with physical addresses:

* Set the page directory control register to a specific value.
x/

static inline void setPdir(unsigned pdir) {
asm(" movl %0, %%cr3\n" : : "r"(pdir));

}

From physical to virtual, and back again

* Because we map the top | GB of virtual memory to the
bottom | GB of physical memory, it is easy to convert
between virtual and physical addresses:

user space kernel space
N
(ON
0 1GB 2GB 3GB 4GB
KERNEL_ SPACE = 0xc0000000 0 512M8 IGB

physical memory

#define fromPhys(t, addr) ((t)(((unsigned)addr)+KERNEL SPACE))
#define toPhys(ptr) ((unsigned) (ptr) - KERNEL_ SPACE)

* (But how can we do this in a type safe language ... ?)




Details (Part 1)

* Constants to describe the virtual address space

KERNEL_SPACE
KERNEL_LOAD

0xc0000000 # Kernel space starts at 3GB
0x00100000 # Kernel loads at 1MB

* The kernel is configured to load at a low physical address but
run at a high virtual address:

OUTPUT FORMAT (elf32-1386)
ENTRY (physentry)

SECTIONS {

physentry = entry - KERNEL_SPACE;
. = KERNEL_ LOAD + KERNEL_ SPACE;

.text ALIGN(0x1000) : AT(ADDR(.text) - KERNEL_SPACE) {

_text_start = .; *(.text) *(.handlers) _text_end = .;
*(.rodata%*)

*(.data)

_start bss = .; *(COMMON) *(.bss) _end bss = .;

}
}
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Details (Part 2)

* Reserve space for an initial page directory structure:

.data
.align (1<<PAGESIZE)
initdir:.space 4096 # Initial page directory

* Zero all entries in the table:

leal (initdir-KERNEL_ SPACE), %edi
movl %edi, %esi # save in %esi
movl $1024, %ecx # Zero out complete page directory
movl $0, %eax
1: movl geax, (%edi)
addl $4, %edi
decl %ecx

jnz 1b
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Details (Part 3)

* Install the lower and upper mappings in the initial page
directory structure:

movl
movl
movl

1: movl
movl
addl
addl
decl
jnz

gesi, %edi # Set up 1:1 and kernelspace mappings
$ (PHYSMAP>>SUPERSIZE), %ecx
$ (PERMS_KERNELSPACE), geax

%eax, (%edi)

%eax, (4*(KERNEL SPACE>>SUPERSIZE)) (%edi)

$4, %edi # move to next page dir slots

$(4<<20), %eax # entry for next superpage to be mapped
%ecx

1b

* Load the CR3 register:

movl

mov
orl
movl

%esi, %cr3 # Set page directory
%cr4, %eax # Enable super pages (CR4 bit 4)

$(1l<<4), %eax
%$eax, %crid
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Details (Part 4)

* Turn on paging:

movl
orl
mov1l

movl

Jmp
high:

leal

%cr0, %eax # Turn on paging (1<<31)
$((1<<31)|(1<<0)), %eax # and protection (1<<0)
%eax, %cr0

$high, %eax # Make jump into kernel space
*%eax

# Now running at high addresses
kernelstack, %esp # Set up initial kernel stack

* And now that’s out of the way, the kernel can get down to

work ...
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Page faults

* If program tries to access an address that is either not
mapped, or that it is not permitted to use, then a page fault
exception (14) occurs

* The address triggering the exception is loaded in to CR2

* Details of the fault are in the error code in the context:

31 43210

HEIEEE
O|255
o

Reserved

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

usis 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.

RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

Figure 4-12. Page-Fault Error Code

Ok, kernel, over to you ...




