101111 .
01010 Languages & Low-Level Programming

X)gfigig CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 4: Memory Management

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Loose Ends

The Week 3 Lab: Context Switching

kernel user user2

0 IMB 2MB 3MB 4MB 5MB 6MB 7™MB 8MB

QEMU

userl code is at 0x411098 in userl code

user2 code is at Ox421098 userl console ()utputfronn

user data segment is Ox3b userl console ' .

user code segment is 0x33 userl console first user tlmer
user data segment is Ox3b userl console process .

user code segment is 0x33 |r]'ter‘|"up't
hello, from userl

1 called yield Userl code does not return

hello, from user2

O called yield

hello, from userl ()utputfrorn

1 called yield K I
hello, from user2 erne in userZ code

O called yield userZ console
hello, from useril userZ console
1 called yield userZ console
hello, from user2 userZ console

0 called yield Output from

hello, from userl
1 called yield second user

hello, from user2 process
O called yield

Port |/O

Memory mapped I/O

address

CPU v w

ROM RAM

IO

data l ‘ N

Memory address space |[RAM| /O

ROM

0 8KB 16KB 24KB 32KB 40KB 48KB

56KB

64KB

Memory mapped I/O

address
Y ¢
ROM RAM
data I] 1
1 1
Memory address space |RAM ROM
0 8KB 16KB 24KB 32KB 40KB 56KB 64KB
Port I/O
port
address address
J ¢
I/O
ROM RAM
1 data
4 data I i
$ 1
Memory address space |RAM ROM
0 8KB 16KB 24KB 32KB 40KB 56KB 64KB

I/O port address space

/O

Port I/O in the 1A32 instruction set
* The IA32 has a 16 bit I/O Port address space

* The hardware can use the same address bus and data bus
with a signal to distinguish between memory and port access

* You can write a byte/short/word to an I/O port using:
out[b|w|1l] [%al,%ax,%eax], [imm8|%dx]
(use imm8 for 8 bit port numbers, otherwise use $dx)

* You can read a byte/short/word from an I/O port using:

in[b|w|l] [imm8|%dx], [%al,%ax,%eax]

Port I/O using gcc inline assembly

static inline void outb(short port, byte b) {
asm volatile("outb %1, %0\n" : : "dN"(port), "a"(b));

}

static inline byte inb(short port) {
unsigned char b;
asm volatile("inb %1, %0\n" : "=a"(b) : "dN"(port));
return b;

}

* Arcane syntax, general form:

asm (template : output operands : input operands : clobbered registers);

* Operand constraints include:
*“d” (use $edx),“a” (use %eax), N” (imm8 constant),
“=* (write only),“r” (register), ...

€¢ 9

The role of inline assembly

* We can already call assembly code from C and vice versa by
following calling conventions like the SystemV ABI

* Inline assembly allows for even tighter integration between C
and assembly code: code can be inlined, can have an impact
on register allocation, etc...

* But there is essentially no checking of the arguments: it’s up
to the programmer to specify the correct list of clobbered
registers to ensure correct semantics

* Programmers might want to check the generated code ...

* How can a general language provide access to essential
machine specific instructions and registers!?

Standard port numbers on the PC platform

Port Range |Device
0x00-0x1f |First DMA controller (8237)
0x20-0x3f |Programmable Interrupt Controller (PICI) (8259A)

0x40-0x5f |Programmable Interval Timer (PIT) (8253/8254)
0x60-0x6f |Keyboard (8042)

0x70-0x7f |Real Time Clock (RTC)

0x80-0x9f |DMA ports, Refresh

0xa0-0xbf |Programmable Interrupt Controller (PIC2) (8259A)
0xc0-Oxdf |Second DMA controller (8237)

0x3f0-0x3f7 |Primary floppy disk drive controller
0x3f8-0Ox3ff |Serial Port |

Serial port output in assembly

.set

serial putc:

pushl
pushl

movw
inb
andb
jz
movw
movb
outb

cmpb
jnz

movw
inb
andb
jz
movw
movb
outb

popl
popl
ret

PORTCOM1, 0x3f8

PC platform]

%eax
gedx
$ (PORTCOM1+45), %dx
%dx, %al

Wait for port to be ready

$0x60,

e B why Ox607 |

$PORTCOM1, %dx
12(%esp), %al
%al, %dx

$0xa, %al

2f

$ (PORTCOM1+5), %dx

gdx, %al
$0x60, %al

1b

$SPORTCOM1, %dx
$0xd, %al

%al, %dx

gedx

%eax

Output the character

Was it a newline?

Send a carriage return

Wait again for port to be ready

To the datasheet!

Gerl
This.
a micf

the ful
8-bit

The

charal
and

ceiveq
statu
tion.

dition
UART]
ing, o
The

that i
by di

driving
cluded
UART]
proce
to th
quire
The A
sion

Rece
ing Ni
cess.
The

origin
excep
GMO!

Corl

Not

5.0 Block Diagram

o oana
oo Wi

mrcanas
B

Aiestn

conThas
ARESTEh

owison
e

neceven
et
AilisTen

v

eontaoL

owison
ey

GeneRmion

p—
e

= | ——

srcn
e

Note: Applict

LINE
STATUS
REGISTER

6.0 Pin
The follo
of these d

In the folk
nominal) &
A0, A1, A
connected
GPU to re:
ter Addre:
the regist
Latch Acg
the Line

UART reg
software
ADS: Add
Address

(A0, AT, A

REGISTER

TRANSMITTER
HOLDING

TRANSMITTER
TIMING
&
CONTROL

!

TRANSMITTER (11}
SHIFT - SQUT
REGISTER

—

Note: An active ADS input is requived when the Register Select (A0, A1, A2)
signals are not stable for the duration of & read or write operation. It
ot required, tie the ADS input permanently low.

BAUDOUT: Baud Out Pin 15: This is the 16 x clock signal

from the transmitter section of the UART. The clock rate is

equal to the main reference oscillator frequency divided by

the specified divisor in the Baud Generator Divisor Latches.

TeSTSTE AT TyeT
Divisor Latch
(most significant byte)

To the datasheet!

A €5 G 1 8.0 Registers
4. The system programmer may access any of the UART reg- Bits 0 and 1: These two bits specify the number of bits in
isters summarized in Table Il via the CPU. These ragisters each transmitted or received serial character. The encoding
50 control UART operations incl
tion of data. Each register . .
1.4 reset state shown. R e | S-t e r 5 — |_| n e er Length
"y 8.1 LINE CONTROL REGIS’ Bits
PC pled The system programmer sp) g:z
o chronous data communicati . Bits
Un Ter sor Latch Access bit via tatus Register
Sto The programmer can also)
Gell Control Register. The read j!op_ bits transmitted
gramming and eliminates the NG6A TOT SEpaFate SIOFAgE I o f bit 2 is a logic 0,
This g system memory of the line characteristics. Table Il shows on P bit is generated or checked in the transmitted
a mic 2. the contents of the LCR. Details on each bit follow: data.) it 2is a logic 1 when a 5-bit word length is selected
the ful - via bits, | and 1, one and a half Stop bits are generated. If
8-bit Ta TABLE II. Summary of Regid ers
I;':m sym Register Address
and -o] 2 3 4 5 6 7 [obLaB-1]1DLAB-1
=4 Ox
statug - bpt | Ident. | Line |MODEM| Line | MODEM |Scratch| Divisor | Divisor
tion. Vit le |Register| Control | Control| Status | Status | Reg- | Latch Latch
dition Vi J\ J\ er | (Read | Register [Register| Rogister | Register | ister | (LS) (MS)
UART — Only)
ing, o ViH IR LCR MCR LSR MSR SCR DLL DLM
The Vo ed | 0" if Word Data Data Delta | Bit0 BitO Bit8
thatig - Vo O I | 0 O O 0 O interrupt | Length |Terminal| Ready Clear
:y di ol ble |Pending | Select | Ready | (DR) | toSend
riving Bito | (OTR) (OCTS)
clude] 7 6 5 4 3 2 | 0 (WLS0)
UART afsmitter| Interrupt | Word | Request| Overrun | Delta | Bit1 Bit1 Bit9
proce| Holding 10 Length | to Send Error Data
to the Register | Bit(0) | Select | (RTS) (OE) Set
quire ; Empty Bit 1 Ready
The : (WLS1) (DDSR)
sion I | 2] Data DataBit2 | Receiver | Interrupt [Number of| Out 1 Parity Trailing | Bit2 Bit2 Bit 10
Recel - | Lina Stat n tean Bit Error |Edge Ring
ing N: oL - (PE) | Indicator
cess. (TER))
The loz 6 . . Put2 | Framing | Delta | Bit3 Bit3 8it11
origin . B _t 5 _t _t_t Error Data
oxcer ™ I set =— Iransmitter 76 | Carer
of Detect
— Int (DDCD)
n
Loop | Break | Clear | Bit4 Bit4 Bit12
Cor Vv nomi Interrupt o
Vit a0l ®)) Send
comn (EPS) (CTS)
ca or A 5 | DataBit5 | DataBit5 o [Stick 0 |Transmitter| Data | Bits Bits Bit13
e i Parity Holding Set
Sy bt Register | Ready
cf | e/ (THRE) | (DSR)
cl ! VA . . . Transmitier| Ring Bit6 Bit6 Bit 14
d <ol B t 6 t tt S h ﬁ Empty | Indicator
al | 20 | se fans cter | TEMD (Ri)
— ‘Ad [[Data | 8it7 Bit7 Bit15
: | (A Carrier
Detect
; Note: (©CD)
| I [[AR
BAU| Note 1: Bit O is the least significant bit. I is the first bit serially transmitied of feceived. 15
from
equal
Mo the |

Serial port output in assembly

.set PORTCOM1, 0x3f8
serial putc:
pushl %eax

pushl gedx ;Read the line status register

movw $ (PORTCOM1+5), %dx
1: inb gdx, %al # Wait for port to be ready
andb $0x60, %al . c 5
Sz b check for available transmitter register
movw $PORTCOM1, %dx # Output the character
movb 12(%esp), %al
outb %al, %dx

cmpb $0xa, %al # Was it a newline?
jnz 2f

movw $ (PORTCOM1+5), %dx
1: inb gdx, %al # Wait again for port to be ready
andb $0x60, %al
jz 1b
movw SPORTCOM1, %dx # Send a carriage return
movb $0xd, %al
outb %al, %dx

2: popl %edx
popl geax
ret 16

Reading datasheets

* Datasheets present detailed technical information in a very
terse format

* Unless you are already familiar with the details, and just
looking for a reference, it can be hard to find the information

you need

* But persevere, and practice; this can be a useful skill

* One thing you'’ll often see is that computer systems typically
only use a fraction of the available functionality(/transistors)

* Sample code, from the manufacturers, or on the web, can also
be very useful!

Interrupts

Hardware interrupts

address

CPU

interrupt ROM RAM

data l ‘ i T

* The CPU has an interrupt pin

» Connect it to a timer to generate regular timer interrupts!

How to handle multiple interrupt sources!?

timer
keyboard
misc

serial port 2
serial port |
sound card
floppy disk
| parallel port

CPU |

interrupt [« ?

data

* How do we combine multiple interrupt signals?

* How do we identify and prioritize interrupt sources?

How to handle multiple interrupt sources!?

timer

keyboard

misc

serial port 2

serial port |

sound card

floppy disk
CPU | | parallel port

interrupt [«———— ?

data

* One option: use an “or” to combine the interrupt signals

* Use the CPU to “poll” to determine which interrupt fired ...

Adding an interrupt controller

timer

keyboard
misc
——— serial port 2
serial port |
sound card
floppy disk
parallel port
CPU port Programmable
0x20/02] Interrupt Controller
L b (8259A)
interrupt PIC
interrupt ack BASE = 0x20

i

data

* The PIC allows individual interrupts to be masked/unmasked

* Responds to ack with programmed BASE + IRQ (interrupt
request number) on data bus

Adding multiple interrupt controllers

timer RTC
keyboard ACPI
misc network
———— serial port 2 —————— misc
——— serial port | ————— mouse
———— sound card ——————— coprocessor
floppy disk primary ATA
C PU parallel port second ATA
port port
0x20/0x21 0xa0/0xa |
L01234567 ~—>[0 1 23 45867
interrupt PICI PIC2
interrupt ack BASE = 0x20 BASE = 0x28
11 11
1 1
data
* Two PICs ... twice as many input pins ...
timer RTC
keyboard ACPI
network
——— serial port 2 ———— misc
———— serial port | ———— mouse
———— sound card ——————— coprocessor
floppy disk primary ATA
C PU parallel port second ATA
port port
0x20/0x21 0xa0/Oxa |

interrupt
interrupt ack

B

012 3 456 7

PICI

BASE = 0x20

‘ >

il

PIC2

BASE = 0x28

il

1

1

data

* Two PICs chained together

 Any interrupt on PIC2 triggers interrupt 2 on PIC]

IDT structure

Protected mode Hardware System call
exceptions IRQs entry points

N \(___A \

0 16 32 48 128 130 255
H_J;Y_J

PICI PIC2

Initializing the PICs

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

Send ICWs (initialization control words) to initialize PIC.
.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

movb $\info, %al # ICW3: configure for two PICs
outb %al, $(\port+l)
movb $0x01, %al # ICW4: 8086 mode

outb %al, $(\port+l)

movb $\init, %al # OCWl: set initial mask
outb %al, $(\port+l)
.endm

initPIC:initpic PIC_1, IRQ BASE, 0x04, Oxfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, Oxff
ret

Initializing the PICs

initPIC:

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

Send ICWs (initialization control words) to initialize PIC.

.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

Interrupts on PIC| map to| |Interrupts on PIC2 map to
IDT entries Ox20-0x27 |gosl |IDT entries Ox28-0x2f

movb $\init, # OCWl: set i mask
outb gal, $(\p\ |t+1)
.endm

initpic PIC_1, IRQ BASE, 0x04/0xfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, Oxff
ret 27

Initializing the PICs

initPIC:

.equ IRQ BASE, 0x20 # lowest hw irg number
.equ PIC 1, 0x20
.equ PIC 2, 0xa0

Send ICWs (initialization control words) to initialize PIC.

.macro initpic port, base, info, init

movb $0x11, %al
outb %al, $\port # ICWl: Initialize + will be sending ICW4
movb $\base, %al # ICW2: Interrupt vector offset

outb %al, $(\port+l)

O)(f f con (h(f b

AERNRRERRNRAREEY O RN NN AR

movb $\init, %al
outb %al, $(\port+l
.endm

initpic PIC_1, IRQ BASE, Oxfb # all but IRQ2 masked out
initpic PIC 2, IRQ BASE+8, 0x02, 0xff
ret 28

Enabling and disabling individual IRQs

* Individual IRQs are enabled by clearing the mask bit in the
corresponding PIC:

static inline void enableIRQ(byte irqg) {
if (irqgs&8) {
outb(0xal, ~(1l<<(irg&7)) & inb(0xal));
} else {
outb(0x21, ~(1<<(irq&7)) & inb(0x21));
}
}

* IRQs are disabled by setting the mask bit in the
corresponding PIC:

static inline void disableIRQ(byte irqg) {
if (irqs&8) {

outb(0xal, (1l<<(irgs&7)) | inb(0xal));
} else {
outb(0x21, (1l<<(irgs&7)) | inb(0x21));

}
}

29

IRQ handling lifecycle

* Install handler for IRQ in IDT

* Use the PIC to enable that specific IRQ (the CPU will still
ignore the interrupt if the IF flag is clear)

* If the interrupt is triggered, disable the IRQ and send an EOI
(end of interrupt) to reenable the PIC for other IRQs:

static inline void maskAckIRQ(byte irq) {
if (irqg&8) {

outb(0xal, (1l<<(irg&7)) | inb(0xal));

outb(0xa0, 0x60|(irqg&7)); // EOI to PIC2

outb(0x20, 0x62); // EOI for IRQ2 on PIC1
} else {

outb(0x21, (1l<<(irg&7)) | inb(0x21));

outb(0x20, 0x60|(irg&7)); // EOI to PIC1

}
}

* When the interrupt has been handled, reenable the IRQ

30

Timers

31

The programmable interval timer (PIT)

* The IBM PC included an Intel 8253/54 programmable interval
timer (PIT) chip

* The PIT was clocked at 1,193,181.8181Hz, for compatibility
with the NTSCTYV standard

* The PIT provides three counter/timers. On the PC, these
were used to handle:
* Counter 0:Timer interrupts
* Counter |: DRAM refresh

» Counter 2: Playing tones via the PC’s speaker

32

... continued

* The PIT is programmed by sending a control word to port

0Ox43 followed by a two byte counter value (Isb first) to port
0x40.

Control Word Format
D, D¢ Dg D3 D Di Dy

e Ds
I'sct|sco|RL1]Ro|m2]mi]mo]Be]|
v J\. v J\. N J\ J

\

SC—SELECT COUNTER:

SC1 SCo BCD:
0 0 Select Counter 0 0 Binary Counter 16-Bits
0 1 Select Counter 1 1 Binary Coded Decimal (BCD) Counter
1 0 Select Counter 2 (4 Decades)
1 1 lilegal
RL—READ/LOAD: M—MODE:
RL1 RLO M2 M1 MO
0 0 | Counter Latching operation (see o 0 0 Mode 0
READ/WRITE Procedure Section). o 0 1 Mode 1
1 0 | Read/Load most significant byte only. X 1 0 Mode 2
0 1 | Read/Load least significant byte only. X 1 1 Mode 3
1 1 | Read/Load least significant byte first, 1 0 0 Mode 4
then most significant byte.
1 0 1 Mode 5

* Each timer/counter runs in one of six modes.

33

Example: Programming the PIT

To configure for timer interrupts:

#define HZ 100 // Frequency of timer interrupts
#define PIT INTERVAL ((1193182 + (HZ/2)) / HZ)
#define TIMERIRQ 0

static inline void startTimer() {
outb(0x43, 0x34); // PIT control (0x43), counter 0, 2 bytes, mode 2, binary
outb(0x40, PIT INTERVAL & 0xff); // counter 0, 1lsb
outb(0x40, (PIT INTERVAL >> 8) & Oxff); // counter 0, msb
enableIRQ(TIMERIRQ);
} Control Word Format
D Dg Ds Dg D3 D Dy Dg
[sc1 [sco| ALt [RLo [M2 M1 [mo]BeD]

SC—SELECT COUNTER:
sc1 sco :
[} [) Select Counter 0 [o [Binary Counter 16-Bits
) 1 Select Counter 1 \ 1 Binary Coded Decimal (BCD) Counter
1 [) Select Counter 2 {4 Docades)
1 1 llegal
RL—READ/LOAD: M—MODE:
RL1 RLO M2 M1 MO
0 | 0 |Counter Latching operation {see o 0 o Mode 0
READ/WRITE Procedure Section). °) 1 Mode 1
1 0 | Read/Load most significant byte only. X 1 0 Mode 2
0 1 | Read/Load least significant byte only. X 1 1 Mode 3
1 | 1 | Read/Load ieast significant byte first, 1 [[Mode 4
then most significant byte.
1 o 1 Mode 5

34

Time stamp counter

* Modern Intel CPUs include a 64 bit time stamp counter that
tracks the number of cycles since reset

* The current TSC value can be read in edx:eax using the
rdtsc instruction

* rdtsc is privileged, but the CPU can be configured to allow
access to rdtsc in user level code

» Can use differences in TSC value before and after an event to
measure elapsed time

* But beware of complications related to multiprocessor
systems; power management (e.g., variable clock speed); ...

e ... and virtualization (e.g.,, QEMU,VirtualBox, ...)

35

s aad

Thr

.
J4

D -

aisietateltletelss

. Nd] Axh9-8A9T

" http/;wwwminuszerodegrees.net/5 | 50/early/5150_earlyhtm

Volatile Memory

37

The first user program

unsigned flag = 0;

user

for (i=0; i<600; i++) {

}
printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

< o noming /| “My flag is at 0x4025b0" |
}

printf("Somebody set my flag to %d!\n", flag);

* According to the semantics of C, there is no way for the
value of the variable flag to change during the while loop ...

* ... so there is no way that the “Somebody set my flag ...”
message could appear

* ... the compiler could delete the code after the while loop ...

38

The second user program

unsigned flag = 0;
user

for (i=0; i<600; i++) {

}
printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

/% a0 noming +/ | “My flag is at 0x4025b0" |
}

printf ("Somebody set my flag to %d!\n", flag);

for (i=0; 1i<1200; i++) {

user2
}
unsigned* flagAddr = (unsigned*)0x4025b0;
printf("flagAddr = 0x%x\n", flagAddr);
*flagAddr = 1234;
printf("\n\nUser2 code does not return\n");
for (;;) { /* Don't return! */
}
39
Marking the flag as volatile
volatile unsigned flag = 0;
user

for (i=0; i<600; i++) {

}

printf("My flag is at 0x%x\n", &flag);
while (flag==0) {

/% a0 noming +/ | “My flag is at 0x4025b0” |
}

printf ("Somebody set my flag to %d!\n", flag);

[“Somebody set my flag to 1234!"]

for (i=0; i<1200; i++) { 2
user

}
unsigned* flagAddr = (unsigned*)0x4025b0;

printf("flagAddr = 0x%x\n", flagAddr);
*flagAddr = 1234;

printf("\n\nUser2 code does not return\n");
for (;;) { /* Don't return! */

}

40

The volatile modifier

* Under normal circumstances,a C compiler can treat an
expression like x+x as being equivalent to 2*x:

* There is no way for the value in x to change from one side
of the + to the other (no intervening assignments)

* The compiler can replace two attempts to read x with a
single read, without changing the behavior of the code

* Marking a variable as volatile indicates that the compiler
should allow for the possibility that the stored value might
change from one read to the next

* The volatile modifier is often necessary when working
with memory mapped I/O

41

Unresolved issues

42

Issues with the Week 3 lab example

* Although we are running in protected mode, we are using
segments that span the full address space, so there is no
true protection between the different programs

* Address space layout is ad hoc: different programs load and
run at different addresses; there is no consistency

* We had to choose different (but essentially arbitrary) start
addresses for user and user2, even when they were just two
copies of the same program

* Why should worries about low level memory layout & size
propagate in to the design of higher-level applications?

* Our user programs included duplicate code (e.g., each one
has its own implementation of printf). How can we support
sharing of common code or data between multiple programs?

43

Paging

Paging

* “All problems in computer science can be solved by another
level of indirection” (David Wheeler)

* Partition the address space in to a collection of “pages”

* Translate between addresses in some idealized “virtual
address space” and “physical addresses” to memory.

page number offset
AN

translate copy

virtual address

physical address

45

Example
* Suppose that we partition our memory into 8 pages:
Virt | Phys
0
virtual | 0 I 2 3 4 5 6 7 I | 2
| ’ 2 | 4
3
4
5
6 | 0
7 11
physical | 0 I 2 3 4 |5 6 |7
Y Virt PhYS

virtual | 0 I 2 3 | 4 5 6 7

N[Oyl AW N — O
w Oy

Practical reality

* |A32 partitions the 32-bit, 4GB address space in to 4KB pages

page number offset

20 bits |2 bits

* It also allows the address space to be viewed as 4MB “super

pages super page number offset
N

10 bits 22 bits

* We need a table with 2!0 entries to translate virtual super
page numbers in to physical page numbers

* With 4 bytes/entry, this table, called a page directory,
takes 2!2 bytes - one 4K page!

47

Paging with 4MB super pages

Linear Address
31 22 21 0

| Directory ‘ Offset |
J /22 4-MByte Page
10 _Page Directory Physical Address

PDE with PS=1 >

_ 18

32

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

* The cr3 register points to the “current” page directory

* Individual page directory entries (PDEs) specify a 10 bit
physical super page address plus some additional control bits

48

Page tables

* A table describing translations for all 4KB pages would

require 220 entries

* With four bytes per entry, a full page table would take 4MB

* Most programs are small, at least in comparison to the full

address space

— most address spaces are fairly sparse

* is there a more compact way to represent their page tables?

49

Example

* Suppose that our memory is
partitioned in to 64 pages

200 21 22

23

 But we are only use a small 2

25

26

27

number of those pages... 32

33

34

40

41

42

43

28/ 29 30

31

39

44/ 45 46

47

* ... in fact, only a small number 4

49

50

51

52| 53] 54

55

of the rows 56

57

58

59

60| 61| 62

63

* Then we can represent the full table more compactly as a

tree: 0 16 24- 40| 48] 56

N

32

33

34

39

50

Paging with 4KB pages

Linear Address

31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 10 Page Table Physical Address >

Page Directory

PTE -

PDE with PS=0

20

“y y

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

* A typical address space can now be described by a page
directory plus one or two page tables (i.e., 4-12KB)

» Can mix pages and super pages for more flexibility

CR3, PDEs, PTEs

31[30[29[28[27[26]25[24]23[22[21[20[19]18[17][16[15[14][13]12[11[10{9[8[7[6[5[4[3]2[1]0
P
Address of page directory’ Ignored [C) P-l\-"l Ignored CR3
. . P P UIR PDE:
Bits 31:22 of address Reserved Bits 39:32 of PW|
A| Ignored ([G|1|D|A|C /171 4MB
of 4MB page frame (must be 0) address D T slw page
| P lowl Y[R PDE:
Address of page table Ignored 0jg|A|C T /711 page
n D S|W table
PDE:
Ignored 0 not
present
P Plpwl U|R PTE:
Address of 4KB page frame Ignored |[G|A|D|A|C T /711 4KB
T D S|W page
PTE:
Ignored 1] not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Details

* Paging structures use physical addresses

* P(resent) bit O is used to mark valid entries (an OS can use
the remaining “ignored” fields to store extra information)

* Hardware updates D(irty) and A(ccessed) bits to track usage
* R/W bits allow regions of memory to be marked “read only”

* S/U bits allow regions of memory to be restricted to
“supervisor” access only (rather than general “user”)

* G(lobal) bit allows pages to be marked as appearing in every
address space

* PCD and PWD bits control caching behavior

53

The translation lookaside buffer (TLB)

* Recall that the 1A32 tracks current segment base and limit
values in hidden registers to allow for faster access

* A more sophisticated form of cache, called the translation
lookaside buffer (TLB), is used to keep track of active
mappings within the CPU’s memory management unit

* Programmers typically ignore the TLB:“it just works”

* But not so in programs that modify page directories and page
tables: extra steps are required to ensure that the TLB is
updated to reflect changes in the page table

* Loading a value in to CR3 will flush the TLB

*the “invlpg addr” instruction removes TLB entries for a
specific address

54

Segmentation and paging

Logical Address
(or Far Pointer)
Segment l
Selector Offset Linear Address
[| | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | iz)(ﬁlecsasl
‘ Space
Segment
Segment Page Table Page
Descriptor(—m | (| (| 0| 1| [T7777
et N N Page Directory Phy. Addr.
<|—> Lin. Addr. Entry]
> A Entry >
SegmentJ
Base Address
| Page
}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

55

Protection and address space layout

* A typical operating system adopts a virtual memory layout
something like the following for all address spaces:

kernel space

(ON

0 IGB 2GB 3GB 4GB

* The operating system is in every address space; it’s pages are
protected from user programs by limiting those parts of the
page directory to “supervisor” access

* The OS portion of the page directory can take advantage of
G(lobal) bits so that TLB entries for kernel space are retained
when we switch between address spaces

56

Protection and address space layout

* A typical operating system adopts a virtual memory layout
something like the following for all address spaces:

user space kernel space

user code & data user stack oS

0 IGB 2GB 3GB 4GB

 User code and data mappings differ from one address space
to the next

* there is no way for one user program to access memory
regions for another program ...

* ... unless the OS provides the necessary mappings

e user programs do not have a capability to access
unauthorized regions of memory

57

Control registers to enable paging

.

}/J Enables use of
31(63) 20 181716151413 121110 9 8 7 6 5 4 3 Super pages
S S|V Plp|v|P Tm
M MM D
Reserved E M clc|c|A[S|2|S|VIM| CR4
P ElE E|E|E|E D|I|E

J |— FSGSBASE LI— OSFXSR
OSXSAVE

——— PCIDE OSXMMEXCPT
31(63) 1211 54 32

CR3
(PDBR)

31(63)

31(63)

Enables
paging

Enables
protected
mode

CR1

31302928 1918 17 16 15 6543210

C|N A w N
D|W M P E

\:l Reserved ‘ Set by
Figure 2-7. Control Registers k GRUB

58

Initialization

* How do we get from physical memory, after booting:

0 I 512MB IGB

%eip

* to virtual address spaces with paging enabled?

user space kernel space

(ON

0 IGB 2GB 3GB 4GB

* Two key steps
* Create an initial page directory

* Enable the CPU paging mechanisms

59

Creating a |:]1 mapping

* While running at lower addresses, create an initial page
directory that maps the lower |GB of memory in two
different regions of the virtual address space

user space kernel space
N
(0N (ON)
0 IGB 2GB 3GB 4GB
e T i 0 5IMBIGB
urn on paging ... i

geip

* jump to an address in the upper | GB of virtual memory ...

* and then proceed without the lower mapping ...

60

Working with physical & virtual addresses

* |t is convenient to work with page directories and page tables
as regular data structures (virtual addresses):

struct Pdir { unsigned pde[1024]; };
struct Ptab { unsigned pte[1024]; };

* Return a pointer to the page table for the ith entry of the specified
* pdir, or NULL if it is not present (0xl) or is a super page (0x80).
*/
static inline struct Ptab* getPagetab(struct Pdir* pdir, unsigned i) {
return ((pdir->pde[i]&0x81)==0x1)
? fromPhys(struct Ptab*, align(pdir->pde[i], PAGESIZE)) : 0;
}

* But sometimes we have to work with physical addresses:

* Set the page directory control register to a specific value.
x/

static inline void setPdir(unsigned pdir) {
asm(" movl %0, %%cr3\n" : : "r"(pdir));

}

From physical to virtual, and back again

* Because we map the top | GB of virtual memory to the
bottom | GB of physical memory, it is easy to convert
between virtual and physical addresses:

user space kernel space
N
(ON
0 1GB 2GB 3GB 4GB
KERNEL_ SPACE = 0xc0000000 0 512M8 IGB

physical memory

#define fromPhys(t, addr) ((t)(((unsigned)addr)+KERNEL SPACE))
#define toPhys(ptr) ((unsigned) (ptr) - KERNEL_ SPACE)

* (But how can we do this in a type safe language ... ?)

Details (Part 1)

* Constants to describe the virtual address space

KERNEL_SPACE
KERNEL_LOAD

0xc0000000 # Kernel space starts at 3GB
0x00100000 # Kernel loads at 1MB

* The kernel is configured to load at a low physical address but
run at a high virtual address:

OUTPUT FORMAT (elf32-1386)
ENTRY (physentry)

SECTIONS {

physentry = entry - KERNEL_SPACE;
. = KERNEL_ LOAD + KERNEL_ SPACE;

.text ALIGN(0x1000) : AT(ADDR(.text) - KERNEL_SPACE) {

_text_start = .; *(.text) *(.handlers) _text_end = .;
(.rodata%)

*(.data)

_start bss = .; *(COMMON) *(.bss) _end bss = .;

}
}

63

Details (Part 2)

* Reserve space for an initial page directory structure:

.data
.align (1<<PAGESIZE)
initdir:.space 4096 # Initial page directory

* Zero all entries in the table:

leal (initdir-KERNEL_ SPACE), %edi
movl %edi, %esi # save in %esi
movl $1024, %ecx # Zero out complete page directory
movl $0, %eax
1: movl geax, (%edi)
addl $4, %edi
decl %ecx

jnz 1b

64

Details (Part 3)

* Install the lower and upper mappings in the initial page
directory structure:

movl
movl
movl

1: movl
movl
addl
addl
decl
jnz

gesi, %edi # Set up 1:1 and kernelspace mappings
$ (PHYSMAP>>SUPERSIZE), %ecx
$ (PERMS_KERNELSPACE), geax

%eax, (%edi)

%eax, (4*(KERNEL SPACE>>SUPERSIZE)) (%edi)

$4, %edi # move to next page dir slots

$(4<<20), %eax # entry for next superpage to be mapped
%ecx

1b

* Load the CR3 register:

movl

mov
orl
movl

%esi, %cr3 # Set page directory
%cr4, %eax # Enable super pages (CR4 bit 4)

$(1l<<4), %eax
%$eax, %crid

65

Details (Part 4)

* Turn on paging:

movl
orl
mov1l

movl

Jmp
high:

leal

%cr0, %eax # Turn on paging (1<<31)
$((1<<31)|(1<<0)), %eax # and protection (1<<0)
%eax, %cr0

$high, %eax # Make jump into kernel space
*%eax

Now running at high addresses
kernelstack, %esp # Set up initial kernel stack

* And now that’s out of the way, the kernel can get down to

work ...

66

Page faults

* If program tries to access an address that is either not
mapped, or that it is not permitted to use, then a page fault
exception (14) occurs

* The address triggering the exception is loaded in to CR2

* Details of the fault are in the error code in the context:

31 43210

HEIEEE
O|255
o

Reserved

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

usis 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.

RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

Figure 4-12. Page-Fault Error Code

Ok, kernel, over to you ...

