
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 4: Memory Management

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Loose Ends

 3

The Week 3 Lab: Context Switching

 4

0 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB

kernel user user2

timer
interrupt

Port I/O

 5

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

Memory address space

CPU

address

data

RAM ROMI/O

ROM RAM I/O

Memory mapped I/O

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

CPU

address

data

RAM ROM

ROM RAM

Memory mapped I/O

Memory address space

 I/O

Port I/O

CPU

address

data

ROM RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

RAM ROM

port 
address

data

Memory address space

I/O

0 4KB

I/O port address space

Port I/O in the IA32 instruction set
• The IA32 has a 16 bit I/O Port address space

• The hardware can use the same address bus and data bus
with a signal to distinguish between memory and port access

• You can write a byte/short/word to an I/O port using:

out[b|w|l] [%al,%ax,%eax], [imm8|%dx]

(use imm8 for 8 bit port numbers, otherwise use %dx)

• You can read a byte/short/word from an I/O port using:

in[b|w|l] [imm8|%dx], [%al,%ax,%eax]

 9

Port I/O using gcc inline assembly
static inline void outb(short port, byte b) {
 asm volatile("outb %1, %0\n" : : "dN"(port), "a"(b));
}

static inline byte inb(short port) {
 unsigned char b;
 asm volatile("inb %1, %0\n" : "=a"(b) : "dN"(port));
 return b;
}

 10

• Arcane syntax, general form:
asm (template : output operands : input operands : clobbered registers);

• Operand constraints include:
• “d” (use %edx), “a” (use %eax), “N” (imm8 constant),

“=“ (write only), “r” (register), …

The role of inline assembly
• We can already call assembly code from C and vice versa by

following calling conventions like the System V ABI

• Inline assembly allows for even tighter integration between C
and assembly code: code can be inlined, can have an impact
on register allocation, etc…

• But there is essentially no checking of the arguments: it’s up
to the programmer to specify the correct list of clobbered
registers to ensure correct semantics

• Programmers might want to check the generated code …

• How can a general language provide access to essential
machine specific instructions and registers?

 11

Standard port numbers on the PC platform

 12

Port Range Device

0x00-0x1f First DMA controller (8237)

0x20-0x3f Programmable Interrupt Controller (PIC1) (8259A)

0x40-0x5f Programmable Interval Timer (PIT) (8253/8254)

0x60-0x6f Keyboard (8042)

0x70-0x7f Real Time Clock (RTC)

0x80-0x9f DMA ports, Refresh

0xa0-0xbf Programmable Interrupt Controller (PIC2) (8259A)

0xc0-0xdf Second DMA controller (8237)

… …

0x3f0-0x3f7 Primary floppy disk drive controller

0x3f8-0x3ff Serial Port 1

… …

Serial port output in assembly
 .set PORTCOM1, 0x3f8
serial_putc:
 pushl %eax
 pushl %edx

 movw $(PORTCOM1+5), %dx
1: inb %dx, %al # Wait for port to be ready
 andb $0x60, %al
 jz 1b
 movw $PORTCOM1, %dx # Output the character
 movb 12(%esp), %al
 outb %al, %dx

 cmpb $0xa, %al # Was it a newline?
 jnz 2f

 movw $(PORTCOM1+5), %dx
1: inb %dx, %al # Wait again for port to be ready
 andb $0x60, %al
 jz 1b
 movw $PORTCOM1, %dx # Send a carriage return
 movb $0xd, %al
 outb %al, %dx

2: popl %edx
 popl %eax
 ret 13

PC platform

why +5?

why 0x60?

 This Material Copyrighted By Its Respective Manufacturer

To the datasheet!

 This Material Copyrighted By Its Respective Manufacturer

 14

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

To the datasheet!

 15

 This Material Copyrighted By Its Respective Manufacturer

 This Material Copyrighted By Its Respective Manufacturer

Bit 5 set ⟹ Transmitter

Register 5 = Line
Status Register

Bit 6 set ⟹ Transmitter Shift

0 1 1 0 0 0 0 0
7 6 5 4 3 2 1 0

6 00x

Serial port output in assembly
 .set PORTCOM1, 0x3f8
serial_putc:
 pushl %eax
 pushl %edx

 movw $(PORTCOM1+5), %dx
1: inb %dx, %al # Wait for port to be ready
 andb $0x60, %al
 jz 1b
 movw $PORTCOM1, %dx # Output the character
 movb 12(%esp), %al
 outb %al, %dx

 cmpb $0xa, %al # Was it a newline?
 jnz 2f

 movw $(PORTCOM1+5), %dx
1: inb %dx, %al # Wait again for port to be ready
 andb $0x60, %al
 jz 1b
 movw $PORTCOM1, %dx # Send a carriage return
 movb $0xd, %al
 outb %al, %dx

2: popl %edx
 popl %eax
 ret 16

Read the line status register

check for available transmitter register

Reading datasheets
• Datasheets present detailed technical information in a very

terse format

• Unless you are already familiar with the details, and just
looking for a reference, it can be hard to find the information
you need

• But persevere, and practice; this can be a useful skill

• One thing you’ll often see is that computer systems typically
only use a fraction of the available functionality(/transistors)

• Sample code, from the manufacturers, or on the web, can also
be very useful!

 17

Interrupts

 18

CPU

data

Hardware interrupts

interrupt

address

ROM RAM
timer

• The CPU has an interrupt pin

• Connect it to a timer to generate regular timer interrupts!

CPU

data

How to handle multiple interrupt sources?

interrupt

timer
keyboard
misc
serial port 2
serial port 1
sound card
floppy disk
parallel port

?

• How do we combine multiple interrupt signals?

• How do we identify and prioritize interrupt sources?

CPU

data

How to handle multiple interrupt sources?

interrupt

timer
keyboard
misc
serial port 2
serial port 1
sound card
floppy disk
parallel port

?

• One option: use an “or” to combine the interrupt signals

• Use the CPU to “poll” to determine which interrupt fired …

PIC 

0 1 2 3 4 5 6 7

CPU

data

Adding an interrupt controller

interrupt
interrupt ack

• The PIC allows individual interrupts to be masked/unmasked

• Responds to ack with programmed BASE + IRQ (interrupt
request number) on data bus

Programmable
Interrupt Controller

(8259A)
PIC 

BASE = 0x20

0 1 2 3 4 5 6 7

timer
keyboard

serial port 2
serial port 1
sound card
floppy disk
parallel port

port 
0x20/0x21

misc

CPU

data

Adding multiple interrupt controllers

interrupt
interrupt ack

• Two PICs ... twice as many input pins ...

PIC1 
BASE = 0x20

0 1 2 3 4 5 6 7

timer
keyboard

serial port 2
serial port 1
sound card
floppy disk
parallel port

port 
0x20/0x21

PIC2
BASE = 0x28

0 1 2 3 4 5 6 7

RTC
ACPI
network
misc
mouse
coprocessor
primary ATA
second ATA

port 
0xa0/0xa1

misc

CPU

data

Adding multiple interrupt controllers

interrupt
interrupt ack

• Two PICs chained together

• Any interrupt on PIC2 triggers interrupt 2 on PIC1

PIC1
BASE = 0x20

0 1 2 3 4 5 6 7

timer
keyboard

serial port 2
serial port 1
sound card
floppy disk
parallel port

port 
0x20/0x21

PIC2
BASE = 0x28

0 1 2 3 4 5 6 7

RTC
ACPI
network
misc
mouse
coprocessor
primary ATA
second ATA

port 
0xa0/0xa1

IDT structure

0 16 32 48 … 128 130 … 255

Protected mode
exceptions

Hardware 
IRQs

PIC1 PIC2

… …

System call  
entry points

Initializing the PICs
 .equ IRQ_BASE, 0x20 # lowest hw irq number

 .equ PIC_1, 0x20
 .equ PIC_2, 0xa0

 # Send ICWs (initialization control words) to initialize PIC.
 .macro initpic port, base, info, init
 movb $0x11, %al
 outb %al, $\port # ICW1: Initialize + will be sending ICW4

 movb $\base, %al # ICW2: Interrupt vector offset
 outb %al, $(\port+1)

 movb $\info, %al # ICW3: configure for two PICs
 outb %al, $(\port+1)

 movb $0x01, %al # ICW4: 8086 mode
 outb %al, $(\port+1)

 movb $\init, %al # OCW1: set initial mask
 outb %al, $(\port+1)
 .endm

initPIC:initpic PIC_1, IRQ_BASE, 0x04, 0xfb # all but IRQ2 masked out
 initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
 ret 26

 .equ IRQ_BASE, 0x20 # lowest hw irq number

 .equ PIC_1, 0x20
 .equ PIC_2, 0xa0

 # Send ICWs (initialization control words) to initialize PIC.
 .macro initpic port, base, info, init
 movb $0x11, %al
 outb %al, $\port # ICW1: Initialize + will be sending ICW4

 movb $\base, %al # ICW2: Interrupt vector offset
 outb %al, $(\port+1)

 movb $\info, %al # ICW3: configure for two PICs
 outb %al, $(\port+1)

 movb $0x01, %al # ICW4: 8086 mode
 outb %al, $(\port+1)

 movb $\init, %al # OCW1: set initial mask
 outb %al, $(\port+1)
 .endm

initPIC:initpic PIC_1, IRQ_BASE, 0x04, 0xfb # all but IRQ2 masked out
 initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
 ret

Initializing the PICs

 27

Interrupts on PIC2 map to
IDT entries 0x28-0x2f

Interrupts on PIC1 map to
IDT entries 0x20-0x27

 .equ IRQ_BASE, 0x20 # lowest hw irq number

 .equ PIC_1, 0x20
 .equ PIC_2, 0xa0

 # Send ICWs (initialization control words) to initialize PIC.
 .macro initpic port, base, info, init
 movb $0x11, %al
 outb %al, $\port # ICW1: Initialize + will be sending ICW4

 movb $\base, %al # ICW2: Interrupt vector offset
 outb %al, $(\port+1)

 movb $\info, %al # ICW3: configure for two PICs
 outb %al, $(\port+1)

 movb $0x01, %al # ICW4: 8086 mode
 outb %al, $(\port+1)

 movb $\init, %al # OCW1: set initial mask
 outb %al, $(\port+1)
 .endm

initPIC:initpic PIC_1, IRQ_BASE, 0x04, 0xfb # all but IRQ2 masked out
 initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
 ret

Initializing the PICs

 28

1 1 1 1 1 0 1 1
7 6 5 4 3 2 1 0

f b0x

1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0

f f0x

Enabling and disabling individual IRQs

 29

• Individual IRQs are enabled by clearing the mask bit in the
corresponding PIC:

static inline void enableIRQ(byte irq) {
 if (irq&8) {
 outb(0xa1, ~(1<<(irq&7)) & inb(0xa1));
 } else {
 outb(0x21, ~(1<<(irq&7)) & inb(0x21));
 }
}

• IRQs are disabled by setting the mask bit in the
corresponding PIC:

static inline void disableIRQ(byte irq) {
 if (irq&8) {
 outb(0xa1, (1<<(irq&7)) | inb(0xa1));
 } else {
 outb(0x21, (1<<(irq&7)) | inb(0x21));
 }
}

IRQ handling lifecycle

 30

• Install handler for IRQ in IDT

• Use the PIC to enable that specific IRQ (the CPU will still
ignore the interrupt if the IF flag is clear)

• If the interrupt is triggered, disable the IRQ and send an EOI
(end of interrupt) to reenable the PIC for other IRQs:
static inline void maskAckIRQ(byte irq) {
 if (irq&8) {
 outb(0xa1, (1<<(irq&7)) | inb(0xa1));
 outb(0xa0, 0x60|(irq&7)); // EOI to PIC2
 outb(0x20, 0x62); // EOI for IRQ2 on PIC1
 } else {
 outb(0x21, (1<<(irq&7)) | inb(0x21));
 outb(0x20, 0x60|(irq&7)); // EOI to PIC1
 }
}

• When the interrupt has been handled, reenable the IRQ

Timers

 31

The programmable interval timer (PIT)

 32

• The IBM PC included an Intel 8253/54 programmable interval
timer (PIT) chip

• The PIT was clocked at 1,193,181.8181Hz, for compatibility
with the NTSC TV standard

• The PIT provides three counter/timers. On the PC, these
were used to handle:

• Counter 0: Timer interrupts

• Counter 1: DRAM refresh

• Counter 2: Playing tones via the PC’s speaker

… continued

 33

• The PIT is programmed by sending a control word to port
0x43 followed by a two byte counter value (lsb first) to port
0x40.

• Each timer/counter runs in one of six modes.

Example: Programming the PIT

 34

To configure for timer interrupts:
#define HZ 100 // Frequency of timer interrupts
#define PIT_INTERVAL ((1193182 + (HZ/2)) / HZ)
#define TIMERIRQ 0

static inline void startTimer() {
 outb(0x43, 0x34); // PIT control (0x43), counter 0, 2 bytes, mode 2, binary
 outb(0x40, PIT_INTERVAL & 0xff); // counter 0, lsb
 outb(0x40, (PIT_INTERVAL >> 8) & 0xff); // counter 0, msb
 enableIRQ(TIMERIRQ);
}

Time stamp counter

 35

• Modern Intel CPUs include a 64 bit time stamp counter that
tracks the number of cycles since reset

• The current TSC value can be read in edx:eax using the
rdtsc instruction

• rdtsc is privileged, but the CPU can be configured to allow
access to rdtsc in user level code

• Can use differences in TSC value before and after an event to
measure elapsed time

• But beware of complications related to multiprocessor
systems; power management (e.g., variable clock speed); …

• … and virtualization …. (e.g., QEMU, VirtualBox, …)

 36http://www.minuszerodegrees.net/5150/early/5150_early.htm

8088
8087

8259
16

K
 R

A
M

16
K

 R
A

M

16
K

 R
A

M

16
K

 R
A

M

BIOS

R
O

M

B
A

SI
C

8253

8237
8255

Expansion

Decoding &
Wait State 

Logic

Bus 
Logic  

 
 
 
 

Volatile Memory

 37

The first user program

 38

 unsigned flag = 0;

 for (i=0; i<600; i++) {
 ...
 }
 printf("My flag is at 0x%x\n", &flag);
 while (flag==0) {
 /* do nothing */
 }
 printf("Somebody set my flag to %d!\n", flag);
 ...

user

“My flag is at 0x4025b0”

• According to the semantics of C, there is no way for the
value of the variable flag to change during the while loop …

• … so there is no way that the “Somebody set my flag …”
message could appear

• … the compiler could delete the code after the while loop …

The second user program

 39

 unsigned flag = 0;

 for (i=0; i<600; i++) {
 ...
 }
 printf("My flag is at 0x%x\n", &flag);
 while (flag==0) {
 /* do nothing */
 }
 printf("Somebody set my flag to %d!\n", flag);
 ...

user

 for (i=0; i<1200; i++) {
 ...
 }
 unsigned* flagAddr = (unsigned*)0x4025b0;
 printf("flagAddr = 0x%x\n", flagAddr);
 *flagAddr = 1234;
 printf("\n\nUser2 code does not return\n");
 for (;;) { /* Don't return! */
 }

user2

“My flag is at 0x4025b0”

Marking the flag as volatile

 40

 volatile unsigned flag = 0;

 for (i=0; i<600; i++) {
 ...
 }
 printf("My flag is at 0x%x\n", &flag);
 while (flag==0) {
 /* do nothing */
 }
 printf("Somebody set my flag to %d!\n", flag);
 ...

user

 for (i=0; i<1200; i++) {
 ...
 }
 unsigned* flagAddr = (unsigned*)0x4025b0;
 printf("flagAddr = 0x%x\n", flagAddr);
 *flagAddr = 1234;
 printf("\n\nUser2 code does not return\n");
 for (;;) { /* Don't return! */
 }

user2

“My flag is at 0x4025b0”

“Somebody set my flag to 1234!”

The volatile modifier

 41

• Under normal circumstances, a C compiler can treat an
expression like x+x as being equivalent to 2*x:

• There is no way for the value in x to change from one side
of the + to the other (no intervening assignments)

• The compiler can replace two attempts to read x with a
single read, without changing the behavior of the code

• Marking a variable as volatile indicates that the compiler
should allow for the possibility that the stored value might
change from one read to the next

• The volatile modifier is often necessary when working
with memory mapped I/O

Unresolved issues

 42

Issues with the Week 3 lab example
• Although we are running in protected mode, we are using

segments that span the full address space, so there is no
true protection between the different programs

• Address space layout is ad hoc: different programs load and
run at different addresses; there is no consistency

• We had to choose different (but essentially arbitrary) start
addresses for user and user2, even when they were just two
copies of the same program

• Why should worries about low level memory layout & size
propagate in to the design of higher-level applications?

• Our user programs included duplicate code (e.g., each one
has its own implementation of printf). How can we support
sharing of common code or data between multiple programs?

 43

Paging

 44

virtual address

Paging
• “All problems in computer science can be solved by another

level of indirection” (David Wheeler)

• Partition the address space in to a collection of “pages”

• Translate between addresses in some idealized “virtual
address space” and “physical addresses” to memory.

 45

offsetpage number

physical address

translate copy

Example
• Suppose that we partition our memory into 8 pages:

 46

Virt Phys
0
1 2
2 4
3
4
5
6 0
7 1

Virt Phys
0
1 2
2 6
3 3
4
5
6 0
7 1

0 1 2 3 4 5 6 7virtual

0 1 2 3 4 5 6 7physical

0 1 2 3 4 5 6 7virtual

3 6

Practical reality
• IA32 partitions the 32-bit, 4GB address space in to 4KB pages

• It also allows the address space to be viewed as 4MB “super
pages”

• We need a table with 210 entries to translate virtual super
page numbers in to physical page numbers

• With 4 bytes/entry, this table, called a page directory,
takes 212 bytes - one 4K page!

 47

12 bits

offset

20 bits

page number

22 bits

offset

10 bits

super page number

Paging with 4MB super pages

 48

Vol. 3A 4-9

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

Ignored
P
C
D

PW
T Ignored CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be 0)

Bits 39:32 of
address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

PW
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

• The cr3 register points to the “current” page directory

• Individual page directory entries (PDEs) specify a 10 bit
physical super page address plus some additional control bits

Page tables
• A table describing translations for all 4KB pages would

require 220 entries

• With four bytes per entry, a full page table would take 4MB

• Most programs are small, at least in comparison to the full
address space

⟹ most address spaces are fairly sparse

• is there a more compact way to represent their page tables?

 49

Example
• Suppose that our memory is 

partitioned in to 64 pages

• But we are only use a small  
number of those pages…

• … in fact, only a small number  
of the rows

• Then we can represent the full table more compactly as a
tree:

 50

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 8 16 24 32 40 48 56

8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39

Paging with 4KB pages

 51

4-8 Vol. 3A

PAGING

— Bits 1:0 are 0.

• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR whether the
PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and
MAXPHYADDR.

• If the PAT is not supported:2

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

2. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

• A typical address space can now be described by a page
directory plus one or two page tables (i.e., 4-12KB)

• Can mix pages and super pages for more flexibility

CR3, PDEs, PTEs

 52

Vol. 3A 4-9

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

Ignored
P
C
D

PW
T Ignored CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be 0)

Bits 39:32 of
address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

PW
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Details
• Paging structures use physical addresses

• P(resent) bit 0 is used to mark valid entries (an OS can use
the remaining “ignored” fields to store extra information)

• Hardware updates D(irty) and A(ccessed) bits to track usage

• R/W bits allow regions of memory to be marked “read only”

• S/U bits allow regions of memory to be restricted to
“supervisor” access only (rather than general “user”)

• G(lobal) bit allows pages to be marked as appearing in every
address space

• PCD and PWD bits control caching behavior

 53

The translation lookaside buffer (TLB)
• Recall that the IA32 tracks current segment base and limit

values in hidden registers to allow for faster access

• A more sophisticated form of cache, called the translation
lookaside buffer (TLB), is used to keep track of active
mappings within the CPU’s memory management unit

• Programmers typically ignore the TLB: “it just works”

• But not so in programs that modify page directories and page
tables: extra steps are required to ensure that the TLB is
updated to reflect changes in the page table

• Loading a value in to CR3 will flush the TLB

• the “invlpg addr” instruction removes TLB entries for a
specific address

 54

Segmentation and paging

 55

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

Protection and address space layout
• A typical operating system adopts a virtual memory layout

something like the following for all address spaces:

• The operating system is in every address space; it’s pages are
protected from user programs by limiting those parts of the
page directory to “supervisor” access

• The OS portion of the page directory can take advantage of
G(lobal) bits so that TLB entries for kernel space are retained
when we switch between address spaces

 56

0 1GB 2GB 3GB 4GB

OS

kernel space

Protection and address space layout
• A typical operating system adopts a virtual memory layout

something like the following for all address spaces:

• User code and data mappings differ from one address space
to the next

• there is no way for one user program to access memory
regions for another program …

• … unless the OS provides the necessary mappings

• user programs do not have a capability to access
unauthorized regions of memory

 57

0 1GB 2GB 3GB 4GB

OSuser code & data user stack

kernel spaceuser space

 58

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

Control registers to enable paging

Enables
protected

mode

Set by
GRUB

Enables
paging

Enables use of
super pages

Initialization
• How do we get from physical memory, after booting:

• to virtual address spaces with paging enabled?

• Two key steps

• Create an initial page directory

• Enable the CPU paging mechanisms

 59

0 1GB 2GB 3GB 4GB

OS

kernel spaceuser space

0 512MB 1GB

%eip

Creating a 1:1 mapping

 60

• While running at lower addresses, create an initial page
directory that maps the lower 1GB of memory in two
different regions of the virtual address space

• Turn on paging …

• jump to an address in the upper 1GB of virtual memory …

• and then proceed without the lower mapping …

0 1GB 2GB 3GB 4GB

kernel spaceuser space

0 512MB 1GB

%eip

OS OS

Working with physical & virtual addresses
• It is convenient to work with page directories and page tables

as regular data structures (virtual addresses):
struct Pdir { unsigned pde[1024]; };
struct Ptab { unsigned pte[1024]; };

/*---
 * Return a pointer to the page table for the ith entry of the specified
 * pdir, or NULL if it is not present (0x1) or is a super page (0x80).
 */
static inline struct Ptab* getPagetab(struct Pdir* pdir, unsigned i) {
 return ((pdir->pde[i]&0x81)==0x1)
 ? fromPhys(struct Ptab*, align(pdir->pde[i], PAGESIZE)) : 0;
}

• But sometimes we have to work with physical addresses:
/*---
 * Set the page directory control register to a specific value.
 */
static inline void setPdir(unsigned pdir) {
 asm(" movl %0, %%cr3\n" : : "r"(pdir));
}

 61

From physical to virtual, and back again
• Because we map the top 1GB of virtual memory to the

bottom 1GB of physical memory, it is easy to convert
between virtual and physical addresses:  
 
 

 
KERNEL_SPACE = 0xc0000000  
 

#define fromPhys(t, addr) ((t)(((unsigned)addr)+KERNEL_SPACE))
#define toPhys(ptr) ((unsigned)(ptr) - KERNEL_SPACE)

• (But how can we do this in a type safe language … ?)

 62

0 1GB 2GB 3GB 4GB

OS

kernel spaceuser space

0 512MB 1GB

physical memory

Details (Part 1)
• Constants to describe the virtual address space

KERNEL_SPACE = 0xc0000000 # Kernel space starts at 3GB
KERNEL_LOAD = 0x00100000 # Kernel loads at 1MB

• The kernel is configured to load at a low physical address but
run at a high virtual address:

OUTPUT_FORMAT(elf32-i386)
ENTRY(physentry)

SECTIONS {

 physentry = entry - KERNEL_SPACE;
 . = KERNEL_LOAD + KERNEL_SPACE;

 .text ALIGN(0x1000) : AT(ADDR(.text) - KERNEL_SPACE) {
 _text_start = .; *(.text) *(.handlers) _text_end = .;
 (.rodata)
 *(.data)
 _start_bss = .; *(COMMON) *(.bss) _end_bss = .;
 }
}

 63

Details (Part 2)
• Reserve space for an initial page directory structure:

 .data
 .align (1<<PAGESIZE)
initdir:.space 4096 # Initial page directory

• Zero all entries in the table:
 leal (initdir-KERNEL_SPACE), %edi
 movl %edi, %esi # save in %esi

 movl $1024, %ecx # Zero out complete page directory
 movl $0, %eax
1: movl %eax, (%edi)
 addl $4, %edi
 decl %ecx
 jnz 1b

 64

Details (Part 3)
• Install the lower and upper mappings in the initial page

directory structure:
 movl %esi, %edi # Set up 1:1 and kernelspace mappings
 movl $(PHYSMAP>>SUPERSIZE), %ecx
 movl $(PERMS_KERNELSPACE), %eax

1: movl %eax, (%edi)
 movl %eax, (4*(KERNEL_SPACE>>SUPERSIZE))(%edi)
 addl $4, %edi # move to next page dir slots
 addl $(4<<20), %eax # entry for next superpage to be mapped
 decl %ecx
 jnz 1b

• Load the CR3 register:
 movl %esi, %cr3 # Set page directory

 mov %cr4, %eax # Enable super pages (CR4 bit 4)
 orl $(1<<4), %eax
 movl %eax, %cr4

 65

Details (Part 4)
• Turn on paging:

 movl %cr0, %eax # Turn on paging (1<<31)
 orl $((1<<31)|(1<<0)), %eax # and protection (1<<0)
 movl %eax, %cr0

 movl $high, %eax # Make jump into kernel space
 jmp *%eax
high: # Now running at high addresses
 leal kernelstack, %esp # Set up initial kernel stack

• And now that’s out of the way, the kernel can get down to
work …

 66

Page faults
• If program tries to access an address that is either not

mapped, or that it is not permitted to use, then a page fault
exception (14) occurs

• The address triggering the exception is loaded in to CR2

• Details of the fault are in the error code in the context:

 67

4-30 Vol. 3A

PAGING

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear address;
or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so.
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

Figure 4-12. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

Ok, kernel, over to you …

 68

