
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 3: Segmentation, Protected Mode,  
Interrupts, and Exceptions

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

General theme for the next two weeks
• In a complex system …

• Question: how can we protect individual programs from
interference with themselves, or with one another, either
directly or by subverting lower layers?

• General approach: leverage programmable hardware features!

 3

Hardware

Microkernel

Operating System Operating System

App App App App App

Diagrams and Code
• There are a lot of diagrams on these slides

• Many of these are taken directly from the “Intel® 64 and
IA-32 Architectures Software Developer’s Manual”,
particularly Volume 3

• There is a link to the full pdf file in the Reference section

• There is also a lot of code on these slides

• Remember that you can study these more carefully later if
you need to!

 4

Taking stock: Code samples ... so far

 5

vram video RAM simulation

hello boot and say hello on bare metal, via
GRUB

simpleio a simple library for video RAM I/O

bootinfo display basic boot information from
GRUB

mimg memory image bootloader & make tool

example-mimg display basic boot information from
mimgload

example-gdt basic demo using protected mode
segments (via a Global Descriptor Table)

example-idt context switching to user mode (via an
Interrupt Descriptor Table)

vram.tar.gz

hello.tar.gz

baremetal.tar.gz

prot.tar.gz

Segmentation
(or: where do “seg faults” come from?)

 6

Breaking the 64KB barrier …
• The 8086 and 8088 CPUs in the original IBM PCs were 16 bit

processors: in principle, they could only address 64KB

• Intel used segmentation to increase the amount of
addressable memory from 64KB to 1MB:

 7

0

16 bit address16 bit segment

+
= 20 bit address

Not an Intel diagram!

 8
3-10 Vol. 1

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.

• Segment registers. These registers hold up to six segment selectors.

• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program
being executed and allows limited (application-program level) control of the processor.

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be
executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

An Intel diagram!

Code: CS

Data: DS

Stack: SS

Extra: ES, FS, GS

How are segments chosen
• The default choice of segment register is determined by the

specific kind of address that is being used:

• If a different segment register is required, a single byte
“segment prefix” can be attached to the start of the
instruction

 9

Vol. 1 3-21

BASIC EXECUTION ENVIRONMENT

When storing data in memory or loading data from memory, the DS segment default can be overridden to allow
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon “:”
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to
by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the
beginning of an instruction. The following default segment selections cannot be overridden:

• Instruction fetches must be made from the code segment.

• Destination strings in string instructions must be stored in the data segment pointed to by the ES register.

• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1 Segmentation in 64-Bit Mode

In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called a displacement) or through
an address computation made up of one or more of the following components:

• Displacement — An 8-, 16-, or 32-bit value.

• Base — The value in a general-purpose register.

• Index — The value in a general-purpose register.

• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

Table 3-5. Default Segment Selection Rules

Reference Type Register Used Segment Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base
register.

Local Data DS Data Segment All data references, except when relative to stack or string destination.

Destination Strings ES Data Segment
pointed to with the
ES register

Destination of string instructions.

Back to breaking the 64KB barrier …

 10

BIOS, Video RAM, etc..640KB User Memory

• Programs can be organized to use multiple segments:

• For example:

• One segment for the stack

• One segment for code

• One segment for data

• We can relocate these segments to different physical
addresses, just by adjusting the segment registers

SSCSDS

Back to breaking the 64KB barrier …

 11

BIOS, Video RAM, etc..640KB User Memory

• Programs can be organized to use multiple segments:

• For example:

• One segment for the stack

• One segment for code

• One segment for data

• We can relocate these segments to different physical
addresses, just by adjusting the segment registers

SSCS DS

Variations on the theme
• Programs can have multiple code and data segments

• Programmers could use a standard “memory model”
• Or use custom approaches to suit a specific application

• The machine provides special “far call” and “far jump”
instructions that change CS and EIP simultaneously, allowing
control transfers between distinct code segments

• There are six segment registers, so programs can have up to
6 active segments at a time (and more by loading new values
in to the segment registers)

• Segments do not have to be exactly 64KB

• If segments do not overlap, then a stack overflow will not
corrupt the contents of other segments - protection!

 12

Accommodating multiple programs

 13

BIOS, Video RAM, etc..640KB User Memory

• Now we can have multiple programs in memory at the same
time, each with distinct code, data, and stack segments

• But what is to stop the code for one program from accessing
and/or changing the data for another?

• Nothing!

• We would like to “protect” programs for interfering with one
another, either by accident or design …

A
SS

A
CS

A
DS

B
SS

B
CS

B
DS

C
CS

C
SS

C
DS

 14

Vol. 3A 5-7

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:

• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It
is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications

• Ring 0 is sometimes called “supervisor” or “kernel mode”

• Ring 3 is often called “user mode”

Protection!

 15

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

Control registers

Enables
protected

mode

Set by
GRUB

The current mode
• The current mode is saved in the two least significant bits of

the CS register

• The value in CS can only be changed by a limited set of
instructions (e.g., it cannot be the target of a movw), each of
which performs a privilege check, if necessary, triggering a
CPU exception if a violation occurs

• End result: user mode code cannot change its own privilege
level to move out of Ring 3!

 16

Segments in protected mode

 17

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segment other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

 18

Vol. 3A 5-3

PROTECTION

Many different styles of protection schemes can be implemented with these fields and flags. When the operating
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style
chosen for an operating system or executive. Application program do not generally access or modify these fields
and flags.

The following sections describe how the processor uses these fields and flags to perform the various categories of
checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining
fields function normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the processor’s operating mode
and execution privilege-level. The usage is as follows:

Figure 5-1. Descriptor Fields Used for Protection

Base 23:16

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16B

AWE0

Data-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16D

ARC1

Code-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-Segment Descriptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0

AVL Available to Sys. Programmer’s

 19

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

Segment registers hold segment selectors

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

 20

The descriptor cache

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

Figure 3-7. Segment Registers

CS
SS

DS
ES

FS
GS

Segment Selector Base Address, Limit, Access Information

Visible Part Hidden Part

 21

Vol. 3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The
base addresses of the GDT should be aligned on an eight-byte boundary to yield the best processor performance.
The limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to
get the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descrip-
tors are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N
– 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-

Figure 3-10. Global and Local Descriptor Tables

Segment

Selector

Global

Descriptor

T

First Descriptor in

GDT is Not Used

TI = 0I

56

40

48

32

24

16

8

0

TI = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local

Descriptor

Table (LDT)

Base Address

Limit

GDTR Register LDTR Register

Base Address

Seg. Sel.

Limit

Global and local descriptor tables

Achieving protection
• The global and local descriptor tables are created by the

kernel and cannot be changed by user mode programs

• The CPU raises an exception if a user mode program
attempts to access:

• a segment index outside the bounds of the GDT or LDT

• a segment that is not marked for user mode access

• an address beyond the limit of the associated segment

• The kernel can associate a different LDT with each process,
providing each process with a distinct set of segments

 22

Segments and capabilities
• The GDT and LDT for a given user mode program determine

precisely which regions of memory that program can access

• As such, these entries are an example of a capability
mechanism

• The user mode program refers to segments by their index in
one of these tables, but it has no access to the table itself:

• It cannot, in general, determine which regions of physical
memory they are accessing

• It cannot “fake” access to other regions of memory

• The principle of least privilege: limit access to the
minimal set of resources that are required to perform a task

 23

What if we don’t want to use segments?
• Segmentation cannot be disabled in protected mode

• But we can come pretty close by using segments with:

• base address 0

• length = 4GB

• A common GDT structure:  
(e.g., in Linux, etc., with no  
LDT)

 24

NULL

reserved

reserved

TSS segment

0

8

16

24

KERNEL_CS

KERNEL_DS

USER_CS

USER_DS

32

40

48

56

all span the
4GB address

space

DPL = 0

DPL = 3

Intel Reqd

Storage for the GDT
 .set GDT_ENTRIES, 8
 .set GDT_SIZE, 8*GDT_ENTRIES # 8 bytes for each descriptor

 .data
 .align 128
gdt: .space GDT_SIZE, 0

 .align 8
gdtptr: .short GDT_SIZE-1
 .long gdt

 25

0

8

16

24

32

40

48

56

gdt

63

$gdt

0

2

gdtptr

lgdt gdtptr

ready to begin?

Calculating GDT descriptors
 .macro gdtset name, slot, base, limit, gran, dpl, type

 .set \name, (\slot<<3)|\dpl
 .globl \name
 movl $\base, %eax # eax = bhi # bmd # blo
 movl $\limit, %ebx # ebx = ~ # lhi # llo

 mov %eax, %edx # edx = base
 shl $16, %eax # eax = blo # 0
 mov %bx, %ax # eax = blo # llo
 movl %eax, gdt+(8*\slot)

 shr $16, %edx # edx = 0 # bhi # bmd
 mov %edx, %ecx # ecx = 0 # bhi # bmd
 andl $0xff, %ecx # ecx = 0 # 0 # bmd
 xorl %ecx, %edx # edx = 0 # bhi # bmd
 shl $16,%edx # edx = bhi # 0
 orl %ecx, %edx # edx = bhi # 0 # bmd
 andl $0xf0000, %ebx # ebx = 0 # lhi # 0
 orl %ebx, %edx # edx = bhi # 0 # lhi # 0 # bmd
 #
 # The constant 0x4080 used below is a combination of:
 # 0x4000 sets the D/B bit to indicate a 32-bit segment
 # 0x0080 sets the P bit to indicate that descriptor is present
 # (\gran<<15) puts the granularity bit into place
 # (\dpl<<5) puts the protection level into place
 # \type is the 5 bit type, including the S bit as its MSB
 #
 orl $(((\gran<<15) | 0x4080 | (\dpl<<5) | \type)<<8), %edx
 movl %edx, gdt + (4 + 8*\slot)
 .endm

 26

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segment other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

macro assembler

low

 27

movl base, %eax
movl limit, %ebx

mov %eax, %edx
shl $16, %eax
mov %bx, %ax
movl %eax, low

shr $16, %edx
mov %edx, %ecx
andl $0xff, %ecx
xorl %ecx, %edx
shl $16,%edx
orl %ecx, %edx
andl $0xf0000, %ebx
orl %ebx, %edx
orl $0x503200, %edx
movl %edx, high

%edx

mov 0 0 0 0

shl 16
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16 %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16 %edx

0 0 0 0

or%edx

%eax mov

0 0 0

%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor%edx

low

high 5 3 2

Deja vu?

0 0 0

or%edx

5 3 2

or 0x503200%edx

Initializing the GDT entries
initGDT:# Kernel code segment:
 gdtset name=KERN_CS, slot=4, dpl=0, type=GDT_CODE, \  
 base=0, limit=0xffffff, gran=1

 # Kernel data segment:
 gdtset name=KERN_DS, slot=5, dpl=0, type=GDT_DATA, \  
 base=0, limit=0xffffff, gran=1

 # User code segment
 gdtset name=USER_CS, slot=6, dpl=3, type=GDT_CODE, \  
 base=0, limit=0xffffff, gran=1

 # User data segment
 gdtset name=USER_DS, slot=7, dpl=3, type=GDT_DATA, \  
 base=0, limit=0xffffff, gran=1

 # TSS
 gdtset name=TSS, slot=3, dpl=0, type=GDT_TSS32, \  
 base=tss, limit=tss_len-1, gran=0

 28

Activating the GDT
 lgdt gdtptr
 ljmp $KERN_CS, $1f # load code segment
1:
 mov $KERN_DS, %ax # load data segments
 mov %ax, %ds
 mov %ax, %es
 mov %ax, %ss
 mov %ax, %gs
 mov %ax, %fs  

 mov $TSS, %ax # load task register
 ltr %ax  

 ret

 29

The Task State Segment

 30

7-2 Vol. 3A

TASK MANAGEMENT

7.1.2 Task State
The following items define the state of the currently executing task:

• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES,
FS, and GS).

• The state of the general-purpose registers.

• The state of the EFLAGS register.

• The state of the EIP register.

• The state of control register CR3.

• The state of the task register.

• The state of the LDTR register.

• The I/O map base address and I/O map (contained in the TSS).

• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register.
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the
LDT.

7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:

• A explicit call to a task with the CALL instruction.

• A explicit jump to a task with the JMP instruction.

• An implicit call (by the processor) to an interrupt-handler task.

• An implicit call to an exception-handler task.

• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task

Figure 7-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)

The Task State Segment

 31

7-4 Vol. 3A

TASK MANAGEMENT

The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic
fields:

• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior
to the task switch.

• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the
task switch.

• EFLAGS register field — State of the EFAGS register prior to the task switch.

• EIP (instruction pointer) field — State of the EIP register prior to the task switch.

• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task
switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is
created. The following are static fields:

• LDT segment selector field — Contains the segment selector for the task's LDT.

Figure 7-2. 32-Bit Task-State Segment (TSS)

031

100

96

92

88

84

80

76

I/O Map Base Address

15

LDT Segment Selector

GS

FS

DS

SS

CS

72

68

64

60

56

52

48

44

40

36

32

28

24

20

SS2

16

12

8

4

0

SS1

SS0

ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

Reserved bits. Set to 0.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Implementing the TSS
 .data
tss: .short 0, RESERVED # previous task link
esp0: .long 0 # esp0
 .short KERN_DS, RESERVED # ss0
 .long 0 # esp1
 .short 0, RESERVED # ss1
 .long 0 # esp2
 .short 0, RESERVED # ss2
 .long 0, 0, 0 # cr3 (pdbr), eip, eflags
 .long 0, 0, 0, 0, 0 # eax, ecx, edx, ebx, esp
 .long 0, 0, 0 # ebp, esi, edi
 .short 0, RESERVED # es
 .short 0, RESERVED # cs
 .short 0, RESERVED # ss
 .short 0, RESERVED # ds
 .short 0, RESERVED # fs
 .short 0, RESERVED # gs
 .short 0, RESERVED # ldt segment selector
 .short 0 # T bit
 .short 1000 # I/O bit map base address
 .set tss_len, .-tss

 32

Interrupts and exceptions

 33

Exceptions
• What happens if the program you run on a conventional

desktop computer attempts:

• division by zero?

• to use an invalid segment selector?

• to reference memory beyond the limits of a segment?

• etc…

• What happens when there is no operating system to catch
you?

 34

 35

6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:

• External (hardware generated) interrupts.

• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ Trap No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family
and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

16 #MF x87 FPU Floating-Point Error (Math
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved)
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.
6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

• Faults can generally be
corrected, restarting the
program at the faulting
instruction

• Traps allow execution to be
restarted after the trapping
instruction

• Aborts do not allow a restart

Hardware and software interrupts
• Hardware: devices often generate interrupt signals to

inform the kernel that a certain event has occurred:
• a timer has fired
• a key has been pressed
• a buffer of data has been transferred
• …

• Software: User programs often request services from an
underlying operating system:
• read data from a file
• terminate this program
• send a message
• …

• These can all be handled in the same way …
 36

 37

6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.

When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see
Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset

The interrupt vector

 38

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

Storage for the IDT
 .set IDT_ENTRIES, 256 # Allow for all poss. interrupts
 .set IDT_SIZE, 8*IDT_ENTRIES # Eight bytes for each idt desc.
 .set IDT_INTR, 0x000 # Type for interrupt gate
 .set IDT_TRAP, 0x100 # Type for trap gate

 .data
 .align 8
idt: .space IDT_SIZE, 0

idtptr: .short IDT_SIZE-1
 .long idt

 39

0

8

16

2040

2044

… … …

0

0

0

0

0

idt

2047

$idt

0

2

idtptr

lidt idtptr

ready to begin?

Calculating IDT descriptors
 .macro idtcalc handler, slot, dpl=0, type=IDT_INTR, seg=KERN_CS
 # type = 0x000 (IDT_INTR) => interrupt gate
 # type = 0x100 (IDT_TRAP) => trap gate
 #
 # The following comments use # for concatenation of bitdata
 #
 mov $\seg, %ax # eax = ? # seg
 shl $16, %eax # eax = seg # 0
 movl $\handler, %edx # edx = hhi # hlo
 mov %dx, %ax # eax = seg # hlo
 mov $(0x8e00 | (\dpl<<13) | \type), %dx
 movl %eax, idt + (8*\slot)
 movl %edx, idt + (4 + 8*\slot)
 .endm

 40

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

Initializing and activating the IDT
initIDT:# Fill in IDT entries

 # Add descriptors for protected mode exceptions:
 .irp num, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19
 idtcalc exc\num, slot=\num
 .endr

 # Add descriptors for hardware irqs:
 # ... except there aren’t any here (yet)

 # Add descriptors for system calls:
 # These are the only idt entries that we will allow to be
 # called from user mode without generating a general
 # protection fault, so they are tagged with dpl=3.
 idtcalc handler=kputc, slot=0x80, dpl=3

 # Install the new IDT:
 lidt idtptr
 ret

 41

macro loop

 42

Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:

• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and
interrupt handlers.

• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an
INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

Transferring control to a handler

 43

Contexts esp0from TSS

 44

err eip cs efl esp ss

struct Iret {
 unsigned error;
 unsigned eip;
 unsigned cs;
 unsigned eflags;
 unsigned esp;
 unsigned ss;
};

Contexts esp0

Automatic (CPU)

esp

 45

ds es fs gs

struct Segments {
 unsigned ds;
 unsigned es;
 unsigned fs;
 unsigned gs;
};

err eip cs efl esp ss

struct Iret {
 unsigned error;
 unsigned eip;
 unsigned cs;
 unsigned eflags;
 unsigned esp;
 unsigned ss;
};

Contexts esp0

 push %gs
 push %fs
 push %es
 push %ds

Automatic (CPU)

esp

 46

edi esi ebp esp ebx ecx edx eax

struct Registers {
 unsigned edi;
 unsigned esi;
 unsigned ebp;
 unsigned esp;
 unsigned ebx;
 unsigned edx;
 unsigned ecx;
 unsigned eax;
};

ds es fs gs

struct Segments {
 unsigned ds;
 unsigned es;
 unsigned fs;
 unsigned gs;
};

err eip cs efl esp ss

struct Iret {
 unsigned error;
 unsigned eip;
 unsigned cs;
 unsigned eflags;
 unsigned esp;
 unsigned ss;
};

Contexts esp0

 push %gs
 push %fs
 push %es
 push %ds

 pusha Automatic (CPU)

esp

 47

edi esi ebp esp ebx ecx edx eax

struct Registers {
 unsigned edi;
 unsigned esi;
 unsigned ebp;
 unsigned esp;
 unsigned ebx;
 unsigned edx;
 unsigned ecx;
 unsigned eax;
};

ds es fs gs

struct Segments {
 unsigned ds;
 unsigned es;
 unsigned fs;
 unsigned gs;
};

err eip cs efl esp ss

struct Iret {
 unsigned error;
 unsigned eip;
 unsigned cs;
 unsigned eflags;
 unsigned esp;
 unsigned ss;
};

struct Context {
 struct Registers regs;
 struct Segments segs;
 struct Iret iret;
};

Contexts esp0

Captures the
“context” of the

interrupted program

esp

 48

6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:

• External (hardware generated) interrupts.

• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ Trap No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family
and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

16 #MF x87 FPU Floating-Point Error (Math
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved)
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.
6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

• Faults can generally be
corrected, restarting the
program at the faulting
instruction

• Traps allow execution to be
restarted after the trapping
instruction

• Aborts do not allow a restart

Exception handler
 .macro handler num, func, errorcode=0
exc\num:.if \errorcode==0
 subl $4, %esp # Fake an error code if necessary
 .endif
 push %gs # Save segments
 push %fs
 push %es
 push %ds
 pusha # Save registers

 push %esp # Push pointer to frame for handler
 movl $\num, %eax
 call \func
 addl $4, %esp

 popa # Restore registers
 popl %ds # Restore segments
 popl %es
 popl %fs
 popl %gs
 addl $4, %esp # remove error code
 iret
 .endm

 49

Some exceptions
do not generate an

error code …

call func(struct Context *esp)
with num in eax

“return from interrupt”

Defining a family of (non) handlers
Protected-mode exceptions and interrupts:
#
handler num=0, func=nohandler # divide error
handler num=1, func=nohandler # debug
handler num=2, func=nohandler # NMI
handler num=3, func=nohandler # breakpoint
handler num=4, func=nohandler # overflow
handler num=5, func=nohandler # bound
handler num=6, func=nohandler # undefined opcode
handler num=7, func=nohandler # nomath
handler num=8, func=nohandler, errorcode=1 # doublefault
handler num=9, func=nohandler # coproc seg overrun
handler num=10, func=nohandler, errorcode=1 # invalid tss
handler num=11, func=nohandler, errorcode=1 # segment not present
handler num=12, func=nohandler, errorcode=1 # stack-segment fault
handler num=13, func=nohandler, errorcode=1 # general protection
handler num=14, func=nohandler, errorcode=1 # page fault
handler num=16, func=nohandler # math fault
handler num=17, func=nohandler, errorcode=1 # alignment check
handler num=18, func=nohandler # machine check
handler num=19, func=nohandler # SIMD fp exception

 50

Defining a family of (non) handlers
nohandler: # dummy interrupt handler
 movl 4(%esp), %ebx # get frame pointer
 pushl %ebx
 pushl %eax
 pushl $excepted
 call printf
 addl $12, %esp

1: hlt
 jmp 1b

 ret
excepted:
 .asciz "Exception 0x%x, frame=0x%x\n"

 51

call printf(excepted, num, ctxt)

Initializing a context
struct Context user;

…

 initContext(&user, userEntry, 0);

…

void initContext(struct Context* ctxt, unsigned eip, unsigned esp) {
 extern char USER_DS[];
 extern char USER_CS[];
 printf("user data segment is 0x%x\n", (unsigned)USER_DS);
 printf("user code segment is 0x%x\n", (unsigned)USER_CS);
 ctxt->segs.ds = (unsigned)USER_DS;
 ctxt->segs.es = (unsigned)USER_DS;
 ctxt->segs.fs = (unsigned)USER_DS;
 ctxt->segs.gs = (unsigned)USER_DS;
 ctxt->iret.ss = (unsigned)USER_DS;
 ctxt->iret.esp = esp;
 ctxt->iret.cs = (unsigned)USER_CS;
 ctxt->iret.eip = eip;
 ctxt->iret.eflags = INIT_USER_FLAGS;
}

 52

Initializing the flags
#define INIT_USER_FLAGS (3<<12 | 1<<9 | 1<<1)

 53

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

a POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

Figure 2-5. System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)
I 

O  
P 
L

1
I 
F

Switching to a user program
From C:
 extern int switchToUser(struct Context* ctxt);

To Assembly:
 .set CONTEXT_SIZE, 72
 .globl switchToUser
switchToUser:
 movl 4(%esp), %eax # Load address of the user context
 movl %eax, %esp # Reset stack to base of user context
 addl $CONTEXT_SIZE, %eax
 movl %eax, esp0 # Set stack address for kernel reentry
 popa # Restore registers
 pop %ds # Restore segments
 pop %es
 pop %fs
 pop %gs
 addl $4, %esp # Skip error code
 iret # Return from interrupt

 54

Entering a system call (kernel view)

 55

Why is this line so important?

Initialize IDT entry:
 idtcalc handler=kputc, slot=0x80, dpl=3

Define a stub to handle the interrupt:
 .text
kputc: subl $4, %esp # Fake an error code
 push %gs # Save segments
 push %fs
 push %es
 push %ds
 pusha # Save registers
 leal stack, %esp # Switch to kernel stack
 jmp kputc_imp

Provide a handler implementation:
 void kputc_imp() { /* A trivial system call */
 putchar(user.regs.eax);
 switchToUser(&user);
 }

Entering a system call (user view)
From C:
 extern void kputc(unsigned);

To Assembly:
 .globl kputc
 kputc: pushl %eax
 mov 8(%esp), %eax
 int $128
 popl %eax
 ret

 56

A recipe for adding a new system call
• Pick an unused interrupt number.

• Add code to initialize the corresponding IDT entry.

• Write and assembly code stub that saves the user program
context and jumps to the handler code.

• Write the implementation of the handler. Be sure to use
switchToUser (or equivalent) when the handler is done.

• Add user-level code to access the new system call. This often
requires an assembly code fragment using the int
instruction, and a declaration/prototype in the C code

• Color key for example-idt:  
 kernel/init.s kernel/kernel.c user/userlib.s user/user.c

 57

Reflections
• Bare Metal

• Segmentation, protection, exceptions and interrupts

• Programming/Languages
• Representation transparency, facilitates interlanguage

interoperability
• Memory areas

• Vendor-defined layout: GDT, GDTTR, TSS, IDT, IDTR,
IRet, Registers, …

• Self-defined: Context, …
• “Bitdata”

• Segment and interrupt descriptors, eflags, cr0, …
• Does the need for a “recipe” suggest a language weakness?

 58

Let’s see how all the pieces fit
together …

 59

