
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 1: Introduction, Assembly Language

�1

Fall 2018

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Introduction and Goals

 3

Origins
• For a long time, a group of us at PSU have been looking at the

role that high-level programming languages can play in the
construction of (very) low-level software.

• By using high-level languages, we can hope to increase
programmer productivity, and improve software quality

• By focussing on very low-level software, we hope to
provide strong foundations for the complete software stack

 4

Hardware

Microkernel

Operating System Operating System

App App App App App

House (2005)
Kernel, GUI, drivers, network stack, and apps 

Boots and runs in a 
bare metal environment 

… all written in Haskell,  
a “purely functional” 
programming language

 5

“The Haskell User’s Operating System Environment”

You are more secure in a house … 
 
 
 
 
 
 
 

than if you only have Windows …

Why “House”?

 6

Performance concerns
• By design, higher-level languages abstract away from the

details of how the underlying machine works

• Can we obtain the levels of performance and predictability
that are typically required/expected in the systems
programming domain?

• Can we write good systems software in a language that
intentionally distances users from details of memory layout,
representation, instruction selection, alignment, caching, etc.?

• Traditional approaches to building system software resort to
using old, low-level languages like assembly and C

• Do “modern” languages have anything to offer in this area?

 7

The Habit programming language
• “a dialect of Haskell that is designed to meet the needs of

high assurance systems programming” 

• How do you design a 
programming language 
for a specific domain? 

• Experiment with existing  
languages 

• Understand the domain …

 8

The seL4 experience
• In 2009, a group from NICTA, UNSW, and OK Labs in

Australia announced seL4, as “the world's first operating
system kernel with an end-to-end proof of implementation
correctness and security enforcement." 
 
 
 
 
 
 

• A landmark achievement for formal verification, and a strong
foundation for building trustworthy systems

 9

The seL4 microkernel  
implementation
(~8700 lines of C)

formal 
specification

proof of
equivalence

~200K lines 
of Isabelle

seL4 and capabilities
• Even without the verification result, the design of seL4 is

interesting in its own right:

• seL4 is a “capability enhanced” version of an earlier
microkernel design called L4

• The “capability” abstraction in seL4 provides facilities for
implementing “least privilege” security policies and novel
mechanisms for controlling resource usage

 10

Safety properties for “free”?
• Security properties established in the seL4 verification

include:

• Absence of buffer overflows

• Absence of null pointer dereferences

• Absence of code injection attacks

• …

• Many of these properties could be established for “free” if the
implementation had been written in a “safer” language

• How might things be different if we built something like seL4
in Habit?

 11

The CEMLaBS project
• “Using a Capability-Enhanced Microkernel as a Testbed for

Language-Based Security”

• Started October 2014, funded by The National Science
Foundation

• Three main questions:

• Feasibility: Is it possible to build an inherently “unsafe”
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in
reducing verification costs?

• Performance: Is it possible to meet reasonable
performance goals for this kind of system?

 12

Course description
•An overview of conventional low-level
programming techniques (1-5):
• Bare metal programming

• Fundamental programmable hardware components

•Case studies of practical microkernel
implementations (6-8):
• OS abstractions (address spaces, threads, capabilities, …)

• The L4 and seL4 microkernels

•Reflections on the design of programming
languages for this application domain (9-12):
• Assembly, C, Rust, Habit, domain specific languages, …

 13

Course learning objectives
Upon the successful completion of this course, students will be
able to:

1. Write simple programs that can run in a bare-metal
environment using low-level programming languages.

2. Discuss common challenges in low-level systems software
development, including debugging in a bare-metal
environment.

3. Explain how conventional operating system features
(multiple address spaces, context switching, protection, etc.)
motivate the desire for (and benefit from) hardware
support.

 14

Course learning objectives, continued
4. Develop code to configure and use programmable

hardware components such as a memory management unit
(MMU), interrupt controller (PIC), and interval timer (PIT).

5. Describe the key steps in a typical boot process, including
the role of a bootloader.

6. Describe the motivation, implementation, and application of
microkernel abstractions for managing address spaces,
threads, and interprocess communication (IPC).

7. Explain the use and implementation of capabilities in access
control and resource management.

8. Develop programs using a capability abstraction, like the
one provided by the seL4 microkernel.

 15

Course learning objectives, continued
9. Illustrate the use of a range of domain specific languages in

the development of systems software.

10. Use practical case studies to evaluate and compare language
design proposals.

11. Describe features of modern, high-level programming
languages—including abstract datatypes and higher-order
functions—and show how they can be leveraged in the
construction of low-level software.

12. Explain how the requirements of low-level systems
programming motivate the desire for (and benefit from)
language-based support.

 16

The “programming languages” perspective
• We will survey and evaluate a range of programming

languages during this course:

• Low-level machine and assembly languages

• Systems programming languages (e.g., C, Rust, …)

• Object-oriented languages (e.g., the seL4 API)

• Domain specific languages

• Functional languages (e.g., Habit, Haskell, …)

• What are the driving needs of the systems domain?

• How can a programming language design best meet those
needs?

 17

Context
• Basic Platform: Generic “IBM PC” compatible

• 32 bits … not 64

• IA32 … not x86_64 or ARM

• BIOS … not EFI or UEFI

• int and iret … not sysenter/sysexit

• PIC … not APIC

• No PAE, PCI, ACPI, MMX, SSE, SMM, SMP, VTx, …

• etc., …

• Already complicated enough for our purposes!

• Well supported by current hardware, emulators, and tools

• Underlying concepts still very broadly applicable

 18

Development environment
• Ubuntu Linux

• Week 1: using the lab machines (others also an option)

• Weeks 2+: using a VirtualBox virtual machine,
preconfigured with appropriate development tools (can be
used on Linux, Mac OS, or Windows)

• Bare metal emulation using the QEMU emulator

 19

Rough schedule

 20

Week Topic

1 Assembly language programming

2 Bare metal programming
Hard3

4
Hardware support for OS abstractions

4
5

Memory management & protection

5
Case Study: L4 use & implementation

6

7
Case Study 2: seL4 use & implementation

8

9
Language design for low-level programming

10

An introduction to
IA32 assembly

language programming

 21

What is IA32?

 22

• We’ll be using the IA32 (x86) architecture as our main target:

• A “32-bit” instruction set

• Broadly adopted by:

• processors from Intel, AMD, Via, ...

• laptops, desktops, servers, gaming consoles, ...

• Linux, Mac OS X, Windows, …

• Arguably, a bit dated … but still very relevant, and a good
platform for learning and exploration

• (… and one of the architectures supported by seL4)

Other architectures:

 23

• Not to be confused with:

• x86-64/AMD64: a 64 bit architecture supported (in
addition to IA32) by more recent AMD/Intel designs

• IA64: a completely different 64-bit Intel architecture
(Itanium)

• ARM: widely used in phones, tablets, and more

• IBM Power: used in Xbox 360, PS3, Wii, servers, and more

• SPARC: used by some of the college’s Unix servers

• Except for x86-64, you can’t run IA32 code directly on a
machine that uses one of these alternative instruction sets!

Notes
• No prior or in-depth knowledge of IA32 programming will be

assumed

• We will only use a small subset of the full instruction set

• If you’re looking to become an expert on IA32 programming,
you’ll want to look for another class!

• We’ll be using the AT&T syntax for IA32 assembly language
rather than the Intel syntax. This is the default syntax used by
the free GNU tools in Linux, MacOS, and DJGPP or Cygwin
on Windows, and others

 24

A greatly simplified view of IA32 computing

 25

CPU

data / 8

Memory

address / 32

ALU

instruction pointer  

up to 4 GB 
(232 bytes)  
for stored

programs and
data

general purpose registers 

8 general purpose 32-bit
registers provide fast
temporary storage for
integers, pointers, ...

Programming for IA32
• In concrete terms, an IA32 program is just a collection of byte

values (machine code)

• Once it has been loaded in to memory, the processor can
execute a program by interpreting the byte values as
instructions for the processor to act on

• For practical purposes, we will usually write IA32 programs in
a textual format called assembly language that is easier to read
than raw byte values

• The program that translates assembly language programs in
to machine code is called an assembler

 26

The GNU assembler, as
• Assembly code goes in files with a .s suffix

• We will typically use gcc to invoke the assembler

gcc -m32 —o output assemblyCode.s extras.c

• You can also invoke the assembler directly: detailed
documentation is available from:  

 http://sourceware.org/binutils/docs/as/ 
For IA32 programming, look in particular at the section on
“80386 Dependent Features”

 27

Assembly code

An assembly code listing
 .globl f
 f:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp), %ebx

 movl $0, %eax # initialize length count in eax

 jmp test
 loop: incl %eax # increment count
 addl $4, %ebx # and move to next array element

 test: movl (%ebx), %ecx # load array element
 cmpl $0, %ecx # test for end of array
 jne loop # repeat if we're not done ...

 popl %ebx
 movl %ebp,%esp
 popl %ebp
 ret

 28

Assembly codeMachine code

An assembly code listing
 .globl f
 f:
0000 55 pushl %ebp
0001 89E5 movl %esp,%ebp
0003 53 pushl %ebx
0004 8B5D08 movl 8(%ebp), %ebx

0007 B8000000 movl $0, %eax # initialize length count in eax
 00
000c EB04 jmp test
000e 40 loop: incl %eax # increment count
000f 83C304 addl $4, %ebx # and move to next array element

0012 8B0B test: movl (%ebx), %ecx # load array element
0014 83F900 cmpl $0, %ecx # test for end of array
0017 75F5 jne loop # repeat if we're not done ...

0019 5B popl %ebx
001a 89EC movl %ebp,%esp
001c 5D popl %ebp
001d C3 ret

 29

 .globl f
 f:
0000 55 pushl %ebp
0001 89E5 movl %esp,%ebp
0003 53 pushl %ebx
0004 8B5D08 movl 8(%ebp), %ebx

0007 B8000000 movl $0, %eax # initialize length count in eax
 00
000c EB04 jmp test
000e 40 loop: incl %eax # increment count
000f 83C304 addl $4, %ebx # and move to next array element

0012 8B0B test: movl (%ebx), %ecx # load array element
0014 83F900 cmpl $0, %ecx # test for end of array
0017 75F5 jne loop # repeat if we're not done ...

0019 5B popl %ebx
001a 89EC movl %ebp,%esp
001c 5D popl %ebp
001d C3 ret

 30

labels

machine  
code

instructions

addresses
/offsets

comments

directive

IA32 registers

 31

8-bit registers (holding a single byte, 0-255)

 32

al

bl
cl

dl

ah

bh
ch

dh

Introduced in 1978 as part
of the 8086 architecture

accumulator
base

count
data

high

low

16-bit registers (“word”)

 33

al

bl
cl

dl

ah

bh
ch

dh

ax

bx
cx

dx

Introduced in 1978 as part
of the 8086 architecture

accumulator
base

count
data

si

di
bp

sp

source index
destination index

base pointer
stack pointer

eax

ebx
ecx

edx
esi

edi
ebp

esp

32-bit registers (“double word”)

 34

al

bl
cl

dl

ah

bh
ch

dh

ax

bx
cx

dx

si

di
bp

sp

Introduced in 1985 as part
of the 80386 architecture

accumulator
base

count
data

source index
destination index

base pointer
stack pointer

“e” for extended
sometimes

referred to as
“long word”s

Special vs. general purpose registers
• eip: the instruction pointer register

• esp: the stack pointer register

• eflags: the flags register, stores information about the
results of the most recent arithmetic or logic instruction

• Other registers can typically be used for any purpose
(although some instructions—division, for example—work
only with specific registers)

 35

IA32 instructions

 36

Instruction format
• A typical IA32 instruction has the form:

opcode src, dst

• A suffix on the opcode indicates the size of the data that is
being operated on:

• 32-bit values use the suffix l(ong)

• 16-bit values use the suffix w(ord)

• 8-bit values use the suffix b(yte)

 37

what to do input source result destination

Addressing modes
• Register access, reg:

• %eax: the value in register eax
• Can typically use any registers except eip and eflags

• Memory access, mem:

• var: the value in memory at address var

• (%eax): the value in memory at the address in eax
• 8(%eax): the value in memory at the address given by

adding 8 to the value in eax
• Immediate, immed:

• $42: the constant value 42 (decimal; use $0x2A for hex)

• $var: the address of memory location var

 38

Directives for “declaring” variables
 .data # put variables in the “data” section
 # (code usually goes in .text)

 .align 4 # make sure address is multiple of 4
myvar: .long 42 # Simple variable, initialized to 42

 .global days # A globally accessible array of ints
days: .long 31, 28, 31, 30, 30, 30
 .long 31, 31, 30, 31, 30, 31

scratch:.space 4*100 # reserve uninitialized space

medium: .long 123 # a 32-bit integer (takes 4 bytes)
regular:.short 123 # a 16-bit integer (takes 2 bytes)
small: .byte 123 # an 8-bit integer (takes 1 byte)

 39

1011111000011010001110010001000

How values are stored in memory
• A double word holds 32 binary digits (“bits”)

• 0xBE1A3910 can be interpreted as -1,105,577,712 (signed) or
3,189,389,584 (unsigned)

• Stored in memory with the least significant byte at the lowest
address (“little endian”):

 40

1011 1110 0001 1010 0011 1001 0001 0000
B E 1 A 3 9 1 0

most significant
byte

least significant
byte

sign
bit

0x10 0x39 0x1A 0xBE
400 401 402 403address

stored byte

(i.e., 4 bytes)

IA32 instructions:
data movement

 41

Move instructions
• Copy data from a source to a destination (where X is one of

the size suffixes: b,w,l):

movX src, dst
• Any of the following combinations of arguments is allowed:

movX reg, (reg | mem)

movX mem, reg

movX immed, (reg | mem)

• Note that you can’t move mem to mem in one instruction

 42

Suppose that the memory (starting at address 0) contains the
following (four byte) values:

Then
instruction contents of eax

movl $12, %eax

movl (%eax), %eax

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax 8

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax 8

movl 8(%eax), %eax 0

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

Examples

 43

Zero and sign-extension
• Suppose we want to copy a value from a 16-bit register in to

a 32-bit register

• Two common strategies:

• Zero extension: for unsigned values

• Sign extension: for signed values

 44

stu xyz stu xyz????????????????

ax eax

stu xyz stu xyz0000000000000000

ax eax

stu xyz stu xyzssssssssssssssss

ax eax

Move with sign, move with zero extension
• Copy from source to larger destination with sign extension:

movsFT src, dst
• Copy from source to larger destination with zero extension:

movzFT src, dst
• F and T are the “from” and “to” sizes (either b, w, or l)

• Valid combinations: bw, bl, or wl

• Examples:

movsbw %al, %dx # byte to word  
movzwl %ax, %edx # word to long

 45

Scaled indexed addressing

•[base]([reg1],reg2 [,index])
a memory operand whose address is the value in reg1,
plus the specified base constant, plus the value of reg2
times the index (which must be 1, 2, 4, or 8)

•Any of the parts in [...] can be omitted

•Examples:

(eax,ebx,4) the ebxth element in the array of 32-bit 
words starting at the address in eax

days(,ebx,4) the ebxth element in the array of 32-bit 
words starting at the address days  

 46

Suppose that the memory (starting at address 0) contains the
following (four byte) values:

Then

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

instruction eax ebx

movl $12, %eax

movl 8(%eax), %ebx

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx 12 2

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx 12 2

movl 12(%eax,%ebx,4), %eax 7 2

More examples

 47

The lea (load effective address) instruction
• Load the address of the source operand (must be memory)

to a destination (where X is one of the size suffixes: b,w,l):

leaX src, dst
• Can also be used to co-opt the addressing mode circuitry

into performing arithmetic operations:

leal 4(%eax),%eax # eax += 4  
leal 1(%eax,%eax,2),%eax # eax = 3*eax + 1  
leal 1(%eax,%eax), %eax # eax = 2*eax + 1  
leal 4(,%eax,8), %eax # eax = 8*eax + 4

• These instructions just do an address calculation and do not
attempt to read the data at that address.

 48

The exchange instruction
• Exchange data between two locations

xchgX (reg | mem), reg
• Consider the following instructions in a high-level language:

int tmp = x;  
x = y;  
y = tmp;

• If x and y are held in registers, then a “clever enough”
compiler can translate this code into a single xchgl
instruction

 49

The instruction pointer, eip
• The eip register holds the address of the next instruction to

be executed

• As the processor reads each instruction, it increments the
value in eip by the appropriate number of bytes to point to
the following instruction

• This mechanism allows the processor to execute a sequence
of instructions stored in contiguous locations in memory

• What would happen if we “move” a different value in to eip?

 50

Jumping and labels
• We can transfer control and start executing instructions at

address addr by using a jump instruction

jmp addr
• Labels can be attached to instructions in an assembly language

program: jmp b  
a: jmp c  
b: jmp a  
c: ...

• Modern, pipelined machines work well with sequences of
instructions that appear in consecutive locations. Jumps can
be expensive: one of the goals of an optimizing compiler is to
avoid unnecessary jumps.

 51

IA32 instructions:
arithmetic and logic operations

 52

Arithmetic instructions
• Combine a given src with a given dst value and leave the

result in dst:

addX src, dst  
subX src, dst  
imulX src, dst  
andX src, dst  
orX src, dst  
xorX src, dst

• Similar to dst += src, dst -= src, etc.. in C/C++

 53

integer arithmetic  
(signed)

bitwise arithmetic

• To compute x2 + y2 and store the result in z:

movl x, %eax  
imull %eax, %eax  
movl y, %ebx  
imull %ebx, %ebx  
addl %ebx, %eax  
movl %eax, z

 .data
x: .long 4
y: .long 3  
z: .long 0

register contents

eax -

ebx -

register contents

eax x
ebx -

register contents

eax x2

ebx -

register contents

eax x2

ebx y

register contents

eax x2

ebx y2

register contents

eax x2+y2

ebx y2

Examples

 54

IA32 instructions:
conditional execution

 55

Flags
• In addition to performing the required operation, arithmetic

instructions also change bits in the eflags register

• The flags record details about the last operation, such as:

• Was the result zero?

• Was the result positive?

• Did a carry occur?

• etc...

 56

OF DF IF SF ZF AF PF CF

Overflow
Direction

Interrupt

Sign
Zero

Adjust
Parity

Carry

(Not to scale. Shaded
areas indicate reserved

or system fields.)

Conditional jumps, jCC
We can test these flags in conditional jump instructions

jz addr (jump to addr if the zero flag is set)
jnz addr (jump to addr if the zero flag is not set)
je addr (jump to addr if equal; same as jz)
jne addr (jump to addr if not equal; same as jnz)
jl addr (jump to addr if less than)
jnl addr (jump to addr if not less than)
jg addr (jump to addr if greater than)
jng addr (jump to addr if not greater than)
...

 57

(signed)

Examples

subl %eax,%ebx  
jz addr

subl %eax,%ebx  
jnz addr

subl %eax,%ebx  
jl addr

subl %eax,%ebx  
jnl addr

 58

jump to addr  
if ebx = eax

jump to addr  
if ebx ≠ eax

jump to addr  
if ebx < eax

jump to addr  
if ebx >= eax

If the specified condition does not apply, then execution just
continues with the next instruction ...

The compare instruction
• The cmpX instruction behaves like subX except that the

result is not saved; only the flags are changed

• For example: cmpl %eax,%ebx  
jl addr  

 
will jump to addr if the value in ebx is less than the value in
eax, but it will not change the values in either register

 59

Other conditional instructions
• There are some other instructions that perform an action

based on the conditional flags without the cost of a jump

• setCC reg8 sets the value in a specified 8-bit register to 0
or 1, based on the condition specified by CC:

cmpl %ecx,%ebx # set eax to 1 if  
setl %al # ebx < ecx, or  
movzbl %al,%eax # else to 0

• cmovCC src, dst copies data from the specified src to dst,
but only if the condition specified by CC holds:

cmpl %ebx,%eax # set eax to the max of  
cmovl %ebx,%eax # eax and ebx  

 60

condition code; no size suffix here!

IA32 instructions:
more arithmetic

 61

Unary operations
• The following arithmetic operations have only one argument

(which serves as both source and destination)

negX (reg | mem)  
notX (reg | mem)  
incX (reg | mem)  
decX (reg | mem)

• Like the binary operators, these instructions also set the flags
for subsequent testing

 62

negate

complement

increment

decrement

Bitwise shift operations
• Shift operations are handled using instructions of the form:

op count,(reg | mem)  
 
 
 
 
 
 
 

• count is either a constant or else the %cl register

• In all cases, the count value will be masked to 5 bits (0-31)
 63

shl/salcf 0 shift (logical/arithmetic) left

shr0 cf shift logical right

sar cf shift arithmetic right

• Given two 32 bit input values:

• base:

• limit:

• Calculate a 64 bit descriptor:

• (Needed for the calculation of “GDT entries”)

Example

 64

0 0 0

lowhigh

5 3 2

Each box is one nibble (4 bits),
least significant bits on the right

low

 65

movl base, %eax
movl limit, %ebx

mov %eax, %edx
shl $16, %eax
mov %bx, %ax
movl %eax, low

shr $16, %edx
mov %edx, %ecx
andl $0xff, %ecx
xorl %ecx, %edx
shl $16,%edx
orl %ecx, %edx
andl $0xf0000, %ebx
orl %ebx, %edx
orl $0x503200, %edx
movl %edx, high

%edx

mov 0 0 0 0

shl 16
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16 %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16 %edx

0 0 0 0

or%edx

%eax mov

0 0 0

%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor%edx

low

high 5 3 2

Example

0 0 0

or%edx

5 3 2

or 0x503200%edx

• Rotate operations use the same instruction format:  
 
 
 
 
 
 
 
 
 

• [Aside: Curiously, “higher level” languages often include shift
operators, but not rotates, even though the latter have more
interesting/uniform behavior …]

Bitwise rotate operations

 66

ror cf rotate right

rcr cf rotate right with carry

rol cf rotate left

rcl cf rotate left with carry

Division
• Divide implicit destination (edx:eax) (a 64-bit quantity) by a

specified argument with result in eax and remainder in edx

idivl (reg | mem)
• Often used in conjunction with the cltd instruction

(“convert long to double”, a.k.a. cdq), which converts a
signed 32-bit value in eax into the corresponding signed 64-
bit value in edx:eax.

 67

0x???????? 0xBE1A3910
edx eax

0xFFFFFFFF 0xBE1A3910

cltd

0x???????? 0x00001234
edx eax

0x00000000 0x00001234

cltd

Example 1
Divide 4,660 (i.e., 0x1234) by 25:  
  

movl $0x1234, %eax  
cltd  
movl $25, %ecx  
idivl %ecx

 
Results: eax = 0xBA (186)  

edx = 0xA (10)

Sure enough: 186*25 + 10 = 4,660

 68

Example 2
Divide -1,105,577,712 (i.e., 0xBE1A3910) by 256  
 

movl $0xBE1A3910, %eax  
cltd  
movl $256, %ecx  
idivl %ecx  

Results: eax = 0xFFBE1A3A (-4,318,662)  
edx = 0xffffff10 (-240)

Sure enough: -4,318,662 * 256 - 240 = -1,105,577,712

 69

Complications of division
• Division produces multiple results: a quotient and a remainder

• Division uses special registers: we’d better not store any
other values in eax or edx if there’s a chance that a division
instruction might be executed

• Doesn’t set flags: requires separate tests, for example, to
determine whether quotient or remainder was zero

• Division can raise an exception if the src is zero (or -1)

 70

IA32 instructions:
using the stack

 71

Stack
• The IA32 includes features that allow the programmer to use

a region of memory as a simple stack:

• the esp (stack pointer) register

• special instructions like push, pop, call, ret, ...

• There is no obligation for the programmer to use these
features, but it is often convenient to do so:

• for temporary/scratch storage when a calculation needs
more storage than the CPU registers can provide

• to support calling and returning from functions

 72

• A typical operating system reserves an area of scratch
memory for each program, and sets the esp register to point
to the end of this region when the program begins

• The stack pointer moves

• down (decreases) as values are pushed on to the stack

• up (increases) as values are popped off of the stack

• So long as they never overlap, the data and stack areas can
grow or shrink as necessary as the program runs

program data free
esp

program data free stack
esp

program data stack
esp

program data stack
esp

A typical memory layout

 73

Stack operations
• Push a value onto the stack

pushl (reg | mem | immed)

• Pop a value of the stack

popl (reg | mem)
• Roughly speaking:

pushl src = subl $4, %esp; movl src, (%esp)

popl dst = movl (%esp), dst; addl $4, %esp

 74

Spilling temporaries on the stack
• The stack is often used for saving the contents of a register

on the stack (“spilling”) so that the register can be used,
temporarily, for some other reason

• For example: pushl %eax  
pushl %edx  
... code that changes eax and/or edx ...  
popl %edx  
popl %eax

• Note that values on the stack can still be accessed, from
memory, using (%esp), 4(%esp), 8(%esp), 12(%esp), ...

 75

pop values in reverse order
that was used to push them!

Call and return
• There is a special instruction for calling a function

call addr ≃ pushl $lab  
jmp addr  

lab:...

• And a special instruction for returning from a function

ret ≃ popl %eax  
jmp *%eax

• In practice, additional instructions are often needed to deal
with parameter passing, etc. ...

 76

special syntax: jump
to the address given
by the contents of

eax

assuming
eax isn’t being

used for
something else

...

Functions 
and the System V ABI

 77

Implementing functions
• How do we pass arguments to a function?

• How does a function return a result?

• How do we handle local variables?

• In principle, especially in a bare metal setting, we can
implement these features any way we like, using the basic
tools that the IA32 instruction set provides

• But there are some existing standards we can follow, notably
the “System V IA32 Application Binary Interface (ABI)”:

http://www.sco.com/developers/devspecs/abi386-4.pdf 
particularly Section 3-9

 78

Stack frames
The code for any given function/procedure call runs in the
context of a stack frame of the form:

• Frame (base) pointer: ebp points to the stack frame; the
caller’s frame pointer is stored in old (i.e., (%ebp))

• Return address: retn is the return address

• Actual parameters: a1, ... ,an are the function’s arguments.
We can access a1 as 8(%ebp), etc...

• Local variables: l1, ... ,lm are the function’s local variables.
We can access l1 as -4(%ebp), etc...

lm ... l1 old retn a1 ... an ...
esp ... -4 ebp 4 8 12 ...

 79

Building the stack frame … in the caller
•

• The caller starts by pushing the arguments:

• Then it executes a call instruction, which pushes the return
address:  
 
 

• … and jumps to the code for the callee …

retn a1 ... an ...
esp ebp

a1 ... an ...
esp ebp

...
esp ebp

 80

Building the stack frame … in the callee
•

• The callee saves the old frame pointer, and sets a new value:

• Then it decrements the stack pointer to reserve space for
any local variables:  
 
 

• … and now the callee can start work …

lm ... l1 old retn a1 ... an ...
esp ... -4 ebp 4 8 12 ...

ebp=esp
old retn a1 ... an ...

4 8 12 ...

retn a1 ... an ...
esp ebp

 81

Function prologue
• The code that builds the stack frame at the start of a function

body is called the prologue:

• At the beginning of a function body, the parameters and
return address have already been pushed on to the stack.
We need to:  
pushl %ebp # save old frame pointer  
movl %esp, %ebp # and set new value

• If local variables taking M bytes of storage are required, then
we need to reserve space for them:  
subl $M, %esp # allocate space for  

 # locals (skip if M=0)

 82

Function epilogue
• When a function completes, we must dismantle the stack

frame and return the machine to the state it was in before
the call. The code to do this is called the epilogue:

• Running the previous process in reverse:  
movl %ebp, %esp # discard locals/temps  
popl %ebp # restore frame pointer  
ret # return to caller

• The first two instructions here can be replaced with the
more efficient, but otherwise equivalent leave instruction

 83

Removing the parameters
• Once we return to the caller, the result of the function is in
eax, but the parameters are still on the stack:

• We restore the stack pointer to its original value by adding
on the number of bytes that are used by the parameters:

addl $N, %esp

• If no parameters were passed, then this step can be omitted

a1 ... an ...
esp ebp

 84

Example: a leaf function
int g(int u) { g: pushl %ebp  
 return u*u; movl %esp, %ebp  
} movl 8(%ebp), %eax  
 imull %eax, %eax  
 movl %ebp, %esp  
 popl %ebp  
 ret

... old retn u ...
ebp+4 ebp+8esp=ebp

 85

Example: multiple parameters + call
int f(int x, f: pushl %ebp  
 int y, movl %esp, %ebp  
 int z) { movl 8(%ebp), %eax  
 return g(x+y); addl 12(%ebp), %eax  
} pushl %eax  
 call g  
 addl $4, %esp  
 movl %ebp, %esp  
 popl %ebp  
 ret

 

... old retn x y z ...
ebp+4 ebp+8 ebp+12 ebp+16esp=ebp

 86

Example: spilling
int h(int x, h: pushl %ebp  
 int y, movl %esp, %ebp  
 int z) { pushl 8(%ebp)  
 return g(x)+g(y); call g  
} addl $4,%esp  
 pushl %eax -- spill  
 pushl 12(%ebp)  
 call g  
 addl $4, %esp  
 popl %ecx -- unspill  
 addl %ecx, %eax  
 movl %ebp, %esp  
 popl %ebp  
 ret

spill old retn x y z
esp ebp ebp+4 ebp+8 ebp+12 ebp+16

 87

Observations
• There is a four instruction overhead for each function that

uses the frame pointer

• Increases execution time

• Prevents use of ebp as a general purpose register

• For larger functions, the four instruction overhead is less of an
issue

• For small functions, we would prefer to inline rather than copy

• Nevertheless, it is common to produce code that doesn’t use
ebp as a frame pointer (e.g., -fomit-frame-pointer in gcc)

 88

Caller and callee saves
We (System V) can designate some registers as:

• caller saves (eax, ecx, and edx)
• can be freely used by the callee
• the caller is responsible for saving (and later restoring) the

value of a caller save register before a call

•callee saves (ebp, ebx, esi, and edi)
• can be freely used by the caller
• the callee is responsible for saving (and later restoring) the

value of a callee saves register before using it to store
temporary values

 89

Revisiting the previous example: h
int h(int x, h: pushl %ebp  
 int y, movl %esp, %ebp  
 int z) {  
 return g(x)+g(y); pushl 8(%ebp) -- x  
} call g  
 addl $4,%esp  
 pushl %eax -- spill  
 pushl 12(%ebp) -- y  
 call g  
 addl $4, %esp  
 popl %ecx -- unspill  
 addl %ecx, %eax  
 
 movl %ebp, %esp  
 popl %ebp  
 ret

instead of having the
compiler save this value

on the stack ...

 90

Revisiting the previous example: h
int h(int x, h: pushl %ebp  
 int y, movl %esp, %ebp  
 int z) {  
 return g(x)+g(y); pushl 8(%ebp) -- x  
} call g  
 addl $4,%esp  
 movl %eax, %esi  
 pushl 12(%ebp) -- y  
 call g  
 addl $4, %esp  
  
 addl %esi, %eax  
 
 movl %ebp, %esp  
 popl %ebp  
 ret

... we can move it to a
callee saves register, esi

g will preserve the value
in esi, if necessary

so it will still contain the
correct value here…

 91

Revisiting the previous example: h
int h(int x, h: pushl %ebp  
 int y, movl %esp, %ebp  
 int z) { pushl %esi  
 return g(x)+g(y); pushl 8(%ebp) -- x  
} call g  
 addl $4,%esp  
 movl %eax, %esi  
 pushl 12(%ebp) -- y  
 call g  
 addl $4, %esp  
  
 addl %esi, %eax  
 popl %esi  
 movl %ebp, %esp  
 popl %ebp  
 ret

... now h has to save the
value in register, esi

one save in h is better
than one saves in each of

two calls to g

empirically, more than
50% of calls are to leaf

functions
 92

Closing thoughts

 93

Assembly “Language”?
• Highly imperative, primitive instructions, no expressions

• No high-level abstractions, but all the building blocks:

• No arrays, records, variants, objects, closures, …

• No loops, switch statements, functions, local variables, …

• Type System?

• Values classified by size (e.g., 8 vs 32 bits) and storage class
(e.g., memory, flag, integer register, floating point register, …)

• Limited protection against common programming mistakes

• Programmer has full control over data representation

 94

Summary
• IA32 provides a very basic programming language:

• A fixed set of registers

• Instructions for moving and operating on data

• Instructions for testing and control transfer

• In programming language terms:

• Low-level, primitive instructions, loosely typed

• No high-level abstractions, but all the building blocks

• Very close to the metal, low-level control, “predictable”
performance

• Let’s write some programs!

 95

