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Copyright Notice
• These slides are distributed under the Creative Commons 

Attribution 3.0 License 

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work 

• under the following conditions: 

• Attribution: You must attribute the work (but not in any way that 
suggests that the author endorses you or your use of the work) as 
follows:   “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode
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Introduction and Goals

 3

Origins
• For a long time, a group of us at PSU have been looking at the 

role that high-level programming languages can play in the 
construction of (very) low-level software.

• By using high-level languages, we can hope to increase 
programmer productivity, and improve software quality

• By focussing on very low-level software, we hope to 
provide strong foundations for the complete software stack
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Hardware

Microkernel

Operating System Operating System

App App App App App

House (2005)
Kernel, GUI, drivers, network stack, and apps 

Boots and runs in a 
bare metal environment 

… all written in Haskell,  
a “purely functional” 
programming language
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“The Haskell User’s Operating System Environment”

You are more secure in a house … 
 
 
 
 
 
 
 

than if you only have Windows …

Why “House”?
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Performance concerns
• By design, higher-level languages abstract away from the 

details of how the underlying machine works

• Can we obtain the levels of performance and predictability 
that are typically required/expected in the systems 
programming domain?

• Can we write good systems software in a language that 
intentionally distances users from details of memory layout, 
representation, instruction selection, alignment, caching, etc.?

• Traditional approaches to building system software resort to 
using old, low-level languages like assembly and C

• Do “modern” languages have anything to offer in this area?
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The Habit programming language
• “a dialect of Haskell that is designed to meet the needs of 

high assurance systems programming” 

• How do you design a 
programming language 
for a specific domain? 

• Experiment with existing  
languages 

• Understand the domain …
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The seL4 experience
• In 2009, a group from NICTA, UNSW, and OK Labs in 

Australia announced seL4, as “the world's first operating 
system kernel with an end-to-end proof of implementation 
correctness and security enforcement." 
 
 
 
 
 
 

• A landmark achievement for formal verification, and a strong 
foundation for building trustworthy systems
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The seL4 microkernel  
implementation 
(~8700 lines of C)

formal 
specification

proof of 
equivalence

~200K lines 
of Isabelle

seL4 and capabilities
• Even without the verification result, the design of seL4 is 

interesting in its own right:

• seL4 is a “capability enhanced” version of an earlier 
microkernel design called L4

• The “capability” abstraction in seL4 provides facilities for 
implementing “least privilege” security policies and novel 
mechanisms for controlling resource usage
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Safety properties for “free”?
• Security properties established in the seL4 verification 

include:

• Absence of buffer overflows

• Absence of null pointer dereferences

• Absence of code injection attacks

• …

• Many of these properties could be established for “free” if the 
implementation had been written in a “safer” language

• How might things be different if we built something like seL4 
in Habit?
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The CEMLaBS project
• “Using a Capability-Enhanced Microkernel as a Testbed for 

Language-Based Security”

• Started October 2014, funded by The National Science 
Foundation

• Three main questions:

• Feasibility: Is it possible to build an inherently “unsafe” 
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in 
reducing verification costs?

• Performance: Is it possible to meet reasonable 
performance goals for this kind of system?
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Course description
•An overview of conventional low-level 
programming techniques (1-5):
• Bare metal programming

• Fundamental programmable hardware components

•Case studies of practical microkernel 
implementations (6-8):
• OS abstractions (address spaces, threads, capabilities, …)

• The L4 and seL4 microkernels

•Reflections on the design of programming 
languages for this application domain (9-12):
• Assembly, C, Rust, Habit, domain specific languages, …
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Course learning objectives
Upon the successful completion of this course, students will be 
able to:

1. Write simple programs that can run in a bare-metal 
environment using low-level programming languages.

2. Discuss common challenges in low-level systems software 
development, including debugging in a bare-metal 
environment.

3. Explain how conventional operating system features 
(multiple address spaces, context switching, protection, etc.) 
motivate the desire for (and benefit from) hardware 
support.

 14

Course learning objectives, continued
4. Develop code to configure and use programmable 

hardware components such as a memory management unit 
(MMU), interrupt controller (PIC), and interval timer (PIT). 

5. Describe the key steps in a typical boot process, including 
the role of a bootloader.

6. Describe the motivation, implementation, and application of 
microkernel abstractions for managing address spaces, 
threads, and interprocess communication (IPC).

7. Explain the use and implementation of capabilities in access 
control and resource management.

8. Develop programs using a capability abstraction, like the 
one provided by the seL4 microkernel.
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Course learning objectives, continued
9. Illustrate the use of a range of domain specific languages in 

the development of systems software.

10. Use practical case studies to evaluate and compare language 
design proposals.

11. Describe features of modern, high-level programming 
languages—including abstract datatypes and higher-order 
functions—and show how they can be leveraged in the 
construction of low-level software.

12. Explain how the requirements of low-level systems 
programming motivate the desire for (and benefit from) 
language-based support.
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The “programming languages” perspective
• We will survey and evaluate a range of programming 

languages during this course:

• Low-level machine and assembly languages

• Systems programming languages (e.g., C, Rust, …)

• Object-oriented languages (e.g., the seL4 API)

• Domain specific languages

• Functional languages (e.g., Habit, Haskell, …)

• What are the driving needs of the systems domain?

• How can a programming language design best meet those 
needs?
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Context
• Basic Platform: Generic “IBM PC” compatible

• 32 bits … not 64

• IA32 … not x86_64 or ARM

• BIOS … not EFI or UEFI

• int and iret … not sysenter/sysexit

• PIC … not APIC

• No PAE, PCI, ACPI, MMX, SSE, SMM, SMP,  VTx, …

• etc., …

• Already complicated enough for our purposes!

• Well supported by current hardware, emulators, and tools

• Underlying concepts still very broadly applicable
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Development environment
• Ubuntu Linux

• Week 1: using the lab machines (others also an option)

• Weeks 2+: using a VirtualBox virtual machine, 
preconfigured with appropriate development tools (can be 
used on Linux, Mac OS,  or Windows)

• Bare metal emulation using the QEMU emulator
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Rough schedule
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Week Topic

1 Assembly language programming

2 Bare metal programming
Hard3

4
Hardware support for OS abstractions

4
5

Memory management & protection

5
Case Study: L4 use & implementation

6

7
Case Study 2: seL4 use & implementation

8

9
Language design for low-level programming

10

An introduction to 
IA32 assembly 

language programming
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What is IA32?
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• We’ll be using the IA32 (x86) architecture as our main target:

• A “32-bit” instruction set

• Broadly adopted by:

• processors from Intel, AMD, Via, ...

• laptops, desktops, servers, gaming consoles, ...

• Linux, Mac OS X, Windows, …

• Arguably, a bit dated … but still very relevant, and a good 
platform for learning and exploration

• (… and one of the architectures supported by seL4)

Other architectures:
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• Not to be confused with:

• x86-64/AMD64:  a 64 bit architecture supported (in 
addition to IA32) by more recent AMD/Intel designs

• IA64: a completely different 64-bit Intel architecture 
(Itanium)

• ARM: widely used in phones, tablets, and more

• IBM Power: used in Xbox 360, PS3, Wii, servers, and more

• SPARC: used by some of the college’s Unix servers

• Except for x86-64, you can’t run IA32 code directly on a 
machine that uses one of these alternative instruction sets!

Notes
• No prior or in-depth knowledge of IA32 programming will be 

assumed

• We will only use a small subset of the full instruction set

• If you’re looking to become an expert on IA32 programming, 
you’ll want to look for another class!

• We’ll be using the AT&T syntax for IA32 assembly language 
rather than the Intel syntax.  This is the default syntax used by 
the free GNU tools in Linux, MacOS, and DJGPP or Cygwin 
on Windows, and others
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A greatly simplified view of IA32 computing
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CPU

data / 8

Memory

address / 32

ALU

instruction pointer  

up to 4 GB 
(232 bytes)  
for stored 

programs and 
data

general purpose registers 

8 general purpose 32-bit 
registers provide fast 
temporary storage for 
integers, pointers, ...

Programming for IA32
• In concrete terms, an IA32 program is just a collection of byte 

values (machine code)

• Once it has been loaded in to memory, the processor can 
execute a program by interpreting the byte values as 
instructions for the processor to act on

• For practical purposes, we will usually write IA32 programs in 
a textual format called assembly language that is easier to read 
than raw byte values

• The program that translates assembly language programs in 
to machine code is called an assembler
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The GNU assembler, as
• Assembly code goes in files with a .s suffix

• We will typically use gcc to invoke the assembler

gcc -m32 —o output assemblyCode.s extras.c

• You can also invoke the assembler directly: detailed 
documentation is available from:  

  http://sourceware.org/binutils/docs/as/ 
For IA32 programming, look in particular at the section on 
“80386 Dependent Features”
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Assembly code

An assembly code listing
                       .globl  f
               f:
                       pushl   %ebp
                       movl    %esp,%ebp
                       pushl   %ebx
                       movl    8(%ebp), %ebx

                       movl    $0, %eax     # initialize length count in eax

                       jmp     test
               loop:   incl    %eax         # increment count
                       addl    $4, %ebx     # and move to next array element

               test:   movl    (%ebx), %ecx # load array element
                       cmpl    $0, %ecx     # test for end of array
                       jne     loop         # repeat if we're not done ...

                       popl    %ebx
                       movl    %ebp,%esp
                       popl    %ebp
                       ret
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Assembly codeMachine code

An assembly code listing
                       .globl  f
               f:
0000 55                pushl   %ebp
0001 89E5              movl    %esp,%ebp
0003 53                pushl   %ebx
0004 8B5D08            movl    8(%ebp), %ebx

0007 B8000000          movl    $0, %eax     # initialize length count in eax
     00
000c EB04              jmp     test
000e 40        loop:   incl    %eax         # increment count
000f 83C304            addl    $4, %ebx     # and move to next array element

0012 8B0B      test:   movl    (%ebx), %ecx # load array element
0014 83F900            cmpl    $0, %ecx     # test for end of array
0017 75F5              jne     loop         # repeat if we're not done ...

0019 5B                popl    %ebx
001a 89EC              movl    %ebp,%esp
001c 5D                popl    %ebp
001d C3                ret
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                       .globl  f
               f:
0000 55                pushl   %ebp
0001 89E5              movl    %esp,%ebp
0003 53                pushl   %ebx
0004 8B5D08            movl    8(%ebp), %ebx

0007 B8000000          movl    $0, %eax     # initialize length count in eax
     00
000c EB04              jmp     test
000e 40        loop:   incl    %eax         # increment count
000f 83C304            addl    $4, %ebx     # and move to next array element

0012 8B0B      test:   movl    (%ebx), %ecx # load array element
0014 83F900            cmpl    $0, %ecx     # test for end of array
0017 75F5              jne     loop         # repeat if we're not done ...

0019 5B                popl    %ebx
001a 89EC              movl    %ebp,%esp
001c 5D                popl    %ebp
001d C3                ret
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labels

machine  
code

instructions

addresses
/offsets

comments

directive



IA32 registers
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8-bit registers (holding a single byte, 0-255)
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al

bl
cl

dl

ah

bh
ch

dh

Introduced in 1978 as part 
of the 8086 architecture

accumulator
base

count
data

high

low

16-bit registers (“word”)
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al

bl
cl

dl

ah

bh
ch

dh

ax

bx
cx

dx

Introduced in 1978 as part 
of the 8086 architecture

accumulator
base

count
data

si

di
bp

sp

source index
destination index

base pointer
stack pointer

eax

ebx
ecx

edx
esi

edi
ebp

esp

32-bit registers (“double word”)
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al

bl
cl

dl

ah

bh
ch

dh

ax

bx
cx

dx

si

di
bp

sp

Introduced in 1985 as part 
of the 80386 architecture

accumulator
base

count
data

source index
destination index

base pointer
stack pointer

“e” for extended
sometimes 

referred to as 
“long word”s

Special vs. general purpose registers
• eip: the instruction pointer register

• esp: the stack pointer register

• eflags: the flags register, stores information about the 
results of the most recent arithmetic or logic instruction

• Other registers can typically be used for any purpose 
(although some instructions—division, for example—work 
only with specific registers)
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IA32 instructions

 36



Instruction format
• A typical IA32 instruction has the form:

opcode src, dst

• A suffix on the opcode indicates the size of the data that is 
being operated on:

• 32-bit values use the suffix l(ong)

• 16-bit values use the suffix w(ord)

• 8-bit values use the suffix b(yte)
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what to do input source result destination

Addressing modes
• Register access, reg:

• %eax: the value in register eax
• Can typically use any registers except eip and eflags

• Memory access, mem:

• var: the value in memory at address var

• (%eax): the value in memory at the address in eax
• 8(%eax): the value in memory at the address given by 

adding 8 to the value in eax
• Immediate, immed:

• $42: the constant value 42 (decimal; use $0x2A for hex)

• $var: the address of memory location var
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Directives for “declaring” variables
        .data          # put variables in the “data” section
                       # (code usually goes in .text)

        .align  4      # make sure address is multiple of 4
myvar:  .long   42     # Simple variable, initialized to 42

        .global days   # A globally accessible array of ints
days:   .long   31, 28, 31, 30, 30, 30
        .long   31, 31, 30, 31, 30, 31

scratch:.space  4*100  # reserve uninitialized space

medium: .long   123    # a 32-bit integer (takes 4 bytes)
regular:.short  123    # a 16-bit integer (takes 2 bytes)
small:  .byte   123    # an 8-bit integer (takes 1 byte)
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1011111000011010001110010001000

How values are stored in memory
• A double word holds 32 binary digits (“bits”)

• 0xBE1A3910 can be interpreted as -1,105,577,712 (signed) or 
3,189,389,584 (unsigned)

• Stored in memory with the least significant byte at the lowest 
address (“little endian”):
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1011 1110 0001 1010 0011 1001 0001 0000
B E 1 A 3 9 1 0

most significant 
byte

least significant 
byte

sign 
bit

0x10 0x39 0x1A 0xBE
400 401 402 403address

stored byte

(i.e., 4 bytes)

IA32 instructions: 
data movement
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Move instructions
• Copy data from a source to a destination (where X is one of 

the size suffixes: b,w,l):

movX src, dst
• Any of the following combinations of arguments is allowed:

movX reg, (reg | mem)

movX mem, reg

movX immed, (reg | mem)

• Note that you can’t move mem to mem in one instruction
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Suppose that the memory (starting at address 0) contains the 
following (four byte) values:

Then
instruction contents of eax

movl $12, %eax

movl (%eax), %eax

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax 8

movl 8(%eax), %eax

instruction contents of eax

movl $12, %eax 12

movl (%eax), %eax 8

movl 8(%eax), %eax 0

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

Examples
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Zero and sign-extension
• Suppose we want to copy a value from a 16-bit register in to 

a 32-bit register

• Two common strategies:

• Zero extension: for unsigned values

• Sign extension: for signed values
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stu ....... xyz stu ....... xyz????????????????

ax eax

stu ....... xyz stu ....... xyz0000000000000000

ax eax

stu ....... xyz stu ....... xyzssssssssssssssss

ax eax

Move with sign, move with zero extension
• Copy from source to larger destination with sign extension:

movsFT src, dst
• Copy from source to larger destination with zero extension:

movzFT src, dst
• F and T are the “from” and “to” sizes (either b, w, or l)

• Valid combinations: bw, bl, or wl

• Examples:

movsbw %al, %dx    # byte to word  
movzwl %ax, %edx   # word to long
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Scaled indexed addressing

•[base]([reg1],reg2 [,index])
a memory operand whose address is the value in reg1, 
plus the specified base constant, plus the value of reg2 
times the index (which must be 1, 2, 4, or 8)

•Any of the parts in [...] can be omitted

•Examples:

(eax,ebx,4) the ebxth element in the array of 32-bit 
words starting at the address in eax

days(,ebx,4) the ebxth element in the array of 32-bit 
words starting at the address days  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Suppose that the memory (starting at address 0) contains the 
following (four byte) values:

Then

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

0 4 8 12 16 20 24 28 32 36 40 44 48
8 6 2 8 0 2 4 1 7 3 4 5 6

instruction eax ebx

movl $12, %eax

movl 8(%eax), %ebx

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx 12 2

movl 12(%eax,%ebx,4), %eax

instruction eax ebx

movl $12, %eax 12

movl 8(%eax), %ebx 12 2

movl 12(%eax,%ebx,4), %eax 7 2

More examples
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The lea (load effective address) instruction
• Load the address of the source operand (must be memory) 

to a destination (where X is one of the size suffixes: b,w,l):

leaX src, dst
• Can also be used to co-opt the addressing mode circuitry 

into performing arithmetic operations:

leal 4(%eax),%eax        # eax += 4  
leal 1(%eax,%eax,2),%eax # eax = 3*eax + 1  
leal 1(%eax,%eax), %eax  # eax = 2*eax + 1  
leal 4(,%eax,8), %eax    # eax = 8*eax + 4

• These instructions just do an address calculation and do not 
attempt to read the data at that address.
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The exchange instruction
• Exchange data between two locations

xchgX (reg | mem), reg
• Consider the following instructions in a high-level language:

int tmp = x;  
x       = y;  
y       = tmp;

• If x and y are held in registers, then a “clever enough” 
compiler can translate this code into a single xchgl 
instruction

 49

The instruction pointer, eip
• The eip register holds the address of the next instruction to 

be executed

• As the processor reads each instruction, it increments the 
value in eip by the appropriate number of bytes to point to 
the following instruction

• This mechanism allows the processor to execute a sequence 
of instructions stored in contiguous locations in memory

• What would happen if we “move” a different value in to eip?
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Jumping and labels
• We can transfer control and start executing instructions at 

address addr by using a jump instruction

jmp addr
• Labels can be attached to instructions in an assembly language 

program:        jmp b  
a:     jmp c  
b:     jmp a  
c:     ...

• Modern, pipelined machines work well with sequences of 
instructions that appear in consecutive locations.  Jumps can 
be expensive: one of the goals of an optimizing compiler is to 
avoid unnecessary jumps.
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IA32 instructions: 
arithmetic and logic operations
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Arithmetic instructions
• Combine a given src with a given dst value and leave the 

result in dst:

addX  src, dst  
subX  src, dst  
imulX src, dst  
andX  src, dst  
orX   src, dst  
xorX  src, dst

• Similar to  dst += src,  dst -= src, etc.. in C/C++
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integer arithmetic  
(signed)

bitwise arithmetic

• To compute x2 + y2 and store the result in z:

movl x, %eax  
imull %eax, %eax  
movl y, %ebx  
imull %ebx, %ebx  
addl %ebx, %eax  
movl %eax, z

    .data
x:  .long  4
y:  .long  3  
z:  .long  0

register contents

eax -

ebx -

register contents

eax x
ebx -

register contents

eax x2

ebx -

register contents

eax x2

ebx y

register contents

eax x2

ebx y2

register contents

eax x2+y2

ebx y2

Examples

 54



IA32 instructions: 
conditional execution
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Flags
• In addition to performing the required operation, arithmetic 

instructions also change bits in the eflags register

• The flags record details about the last operation, such as:

• Was the result zero?

• Was the result positive?

• Did a carry occur?

• etc...
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OF DF IF SF ZF AF PF CF

Overflow
Direction

Interrupt

Sign
Zero

Adjust
Parity

Carry

(Not to scale.  Shaded 
areas indicate reserved 

or system fields.)

Conditional jumps, jCC
We can test these flags in conditional jump instructions

jz addr (jump to addr if the zero flag is set)
jnz addr (jump to addr if the zero flag is not set)
je addr (jump to addr if equal; same as jz)
jne addr (jump to addr if not equal; same as jnz)
jl addr (jump to addr if less than)
jnl addr (jump to addr if not less than)
jg addr (jump to addr if greater than)
jng addr (jump to addr if not greater than)
...
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(signed)

Examples

subl  %eax,%ebx  
jz  addr

subl  %eax,%ebx  
jnz  addr

subl  %eax,%ebx  
jl  addr

subl  %eax,%ebx  
jnl  addr
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jump to addr  
if ebx = eax

jump to addr  
if ebx ≠ eax

jump to addr  
if ebx < eax

jump to addr  
if ebx >= eax

If the specified condition does not apply, then execution just 
continues with the next instruction ...

The compare instruction
• The cmpX instruction behaves like subX except that the 

result is not saved; only the flags are changed

• For example: cmpl %eax,%ebx  
jl  addr  

 
will jump to addr if the value in ebx is less than the value in 
eax, but it will not change the values in either register 
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Other conditional instructions
• There are some other instructions that perform an action 

based on the conditional flags without the cost of a jump

• setCC reg8 sets the value in a specified 8-bit register to 0 
or 1, based on the condition specified by CC:

cmpl   %ecx,%ebx   # set eax to 1 if  
setl  %al         # ebx < ecx, or  
movzbl  %al,%eax    # else to 0

• cmovCC src, dst  copies data from the specified src to dst, 
but only if the condition specified by CC holds:

cmpl   %ebx,%eax   # set eax to the max of  
cmovl  %ebx,%eax   # eax and ebx  

 60

condition code; no size suffix here!



IA32 instructions: 
more arithmetic
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Unary operations
• The following arithmetic operations have only one argument 

(which serves as both source and destination)

negX (reg | mem)  
notX (reg | mem)  
incX (reg | mem)  
decX (reg | mem)

• Like the binary operators, these instructions also set the flags 
for subsequent testing
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negate

complement

increment

decrement

Bitwise shift operations
• Shift operations are handled using instructions of the form:

op count,(reg | mem)  
 
 
 
 
 
 
 

• count is either a constant or else the %cl register

• In all cases, the count value will be masked to 5 bits (0-31)
 63

shl/salcf 0 shift (logical/arithmetic) left

shr0 cf shift logical right

sar cf shift arithmetic right

• Given two 32 bit input values:

• base:

• limit:

• Calculate a 64 bit descriptor:

• (Needed for the calculation of “GDT entries”)

Example
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0 0 0

lowhigh

5 3 2

Each box is one nibble (4 bits), 
least significant bits on the right

low
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movl    base, %eax 
movl    limit, %ebx 

mov     %eax, %edx 
shl     $16, %eax 
mov     %bx, %ax 
movl    %eax, low 

shr     $16, %edx 
mov     %edx, %ecx 
andl    $0xff, %ecx 
xorl    %ecx, %edx 
shl     $16,%edx 
orl     %ecx, %edx 
andl    $0xf0000, %ebx 
orl     %ebx, %edx 
orl     $0x503200, %edx 
movl    %edx, high

%edx

mov 0 0 0 0

shl 16  
%eax

movw%eax

0 0 0 0 0 0 0

and 0xf0000

%ebx

0 0 0 0

shr 16  %edx %ecx

0 0 0 0
mov

0 0 0 0 0 0

and 0xff%ecx

0 0 0 0 0 0

shl 16 %edx

0 0 0 0

or%edx

%eax mov

0 0 0

%ebx mov

high

base limit

0 0 0

0 0 0 0 0 0

xor%edx

low

high 5 3 2

Example

0 0 0

or%edx

5 3 2

or 0x503200%edx

• Rotate operations use the same instruction format:  
 
 
 
 
 
 
 
 
 

• [Aside: Curiously,  “higher level” languages often include shift 
operators, but not rotates, even though the latter have more 
interesting/uniform behavior …]

Bitwise rotate operations
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ror cf rotate right

rcr cf rotate right with carry

rol cf rotate left

rcl cf rotate left with carry



Division
• Divide implicit destination (edx:eax) (a 64-bit quantity) by a 

specified argument with result in eax and remainder in edx

idivl (reg | mem)
• Often used in conjunction with the cltd instruction 

(“convert long to double”, a.k.a. cdq), which converts a 
signed 32-bit value in eax into the corresponding signed 64-
bit value in edx:eax.
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0x???????? 0xBE1A3910
edx eax

0xFFFFFFFF 0xBE1A3910

cltd

0x???????? 0x00001234
edx eax

0x00000000 0x00001234

cltd

Example 1
Divide 4,660 (i.e., 0x1234) by 25:  
  

movl $0x1234, %eax  
cltd  
movl $25, %ecx  
idivl %ecx 

 
Results: eax = 0xBA (186)  

edx = 0xA (10)

Sure enough:  186*25 + 10 = 4,660
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Example 2
Divide -1,105,577,712 (i.e., 0xBE1A3910) by 256  
 

movl $0xBE1A3910, %eax  
cltd  
movl $256, %ecx  
idivl %ecx  

Results: eax = 0xFFBE1A3A (-4,318,662)  
edx = 0xffffff10 (-240)

Sure enough:  -4,318,662 * 256 - 240  =  -1,105,577,712
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Complications of division
• Division produces multiple results: a quotient and a remainder

• Division uses special registers: we’d better not store any 
other values in eax or edx if there’s a chance that a division 
instruction might be executed

• Doesn’t set flags: requires separate tests, for example, to 
determine whether quotient or remainder was zero

• Division can raise an exception if the src is zero (or -1)
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IA32 instructions: 
using the stack
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Stack
• The IA32 includes features that allow the programmer to use 

a region of memory as a simple stack:

• the esp (stack pointer) register

• special instructions like push, pop, call, ret, ... 

• There is no obligation for the programmer to use these 
features, but it is often convenient to do so:

• for temporary/scratch storage when a calculation needs 
more storage than the CPU registers can provide

• to support calling and returning from functions
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• A typical operating system reserves an area of scratch 
memory for each program, and sets the esp register to point 
to the end of this region when the program begins

• The stack pointer moves

• down (decreases) as values are pushed on to the stack

• up (increases) as values are popped off of the stack

• So long as they never overlap, the data and stack areas can 
grow or shrink as necessary as the program runs

program data free
esp

program data free stack
esp

program data stack
esp

program data stack
esp

A typical memory layout
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Stack operations
• Push a value onto the stack

pushl (reg | mem | immed)

• Pop a value of the stack

popl (reg | mem)
• Roughly speaking:

pushl src  = subl $4, %esp;   movl src, (%esp)

popl dst     = movl (%esp), dst;   addl $4, %esp
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Spilling temporaries on the stack
• The stack is often used for saving the contents of a register 

on the stack (“spilling”) so that the register can be used, 
temporarily, for some other reason

• For example: pushl %eax  
pushl %edx  
... code that changes eax and/or edx ...  
popl %edx  
popl %eax

• Note that values on the stack can still be accessed, from 
memory, using (%esp), 4(%esp), 8(%esp), 12(%esp), ...
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pop values in reverse order 
that was used to push them!

Call and return
• There is a special instruction for calling a function

call addr ≃ pushl $lab  
jmp addr  

lab:...

• And a special instruction for returning from a function

ret ≃ popl  %eax  
jmp   *%eax

• In practice, additional instructions are often needed to deal 
with parameter passing, etc. ...

 76

special syntax: jump 
to the address given 
by the contents of 

eax

assuming 
eax isn’t being 

used for 
something else 

...

Functions 
and the System V ABI
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Implementing functions
• How do we pass arguments to a function?

• How does a function return a result?

• How do we handle local variables?

• In principle, especially in a bare metal setting, we can 
implement these features any way we like, using the basic 
tools that the IA32 instruction set provides

• But there are some existing standards we can follow, notably 
the “System V IA32  Application Binary Interface (ABI)”:

http://www.sco.com/developers/devspecs/abi386-4.pdf 
particularly Section 3-9
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Stack frames
The code for any given function/procedure call runs in the 
context of a stack frame of the form:

• Frame (base) pointer: ebp points to the stack frame; the 
caller’s frame pointer is stored in old (i.e., (%ebp))

• Return address: retn is the return address

• Actual parameters:  a1, ... ,an are the function’s arguments.  
We can access a1 as 8(%ebp), etc...

• Local variables: l1, ... ,lm are the function’s local variables.  
We can access l1 as -4(%ebp), etc...

lm ... l1 old retn a1 ... an ...
esp ... -4 ebp 4 8 12 ...
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Building the stack frame … in the caller
•  

• The caller starts by pushing the arguments:

• Then it executes a call instruction, which pushes the return 
address:  
 
 

• … and jumps to the code for the callee …

retn a1 ... an ...
esp ebp

a1 ... an ...
esp ebp

...
esp ebp
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Building the stack frame … in the callee
•  

• The callee saves the old frame pointer, and sets a new value:

• Then it decrements the stack pointer to reserve space for 
any local variables:  
 
 

• … and now the callee can start work …

lm ... l1 old retn a1 ... an ...
esp ... -4 ebp 4 8 12 ...

ebp=esp
old retn a1 ... an ...

4 8 12 ...

retn a1 ... an ...
esp ebp
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Function prologue
• The code that builds the stack frame at the start of a function 

body is called the prologue:

• At the beginning of a function body, the parameters and 
return address have already been pushed on to the stack.  
We need to:  
pushl %ebp  # save old frame pointer  
movl  %esp, %ebp # and set new value

• If local variables taking M bytes of storage are required, then 
we need to reserve space for them:  
subl $M, %esp  # allocate space for  

 # locals (skip if M=0)
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Function epilogue
• When a function completes, we must dismantle the stack 

frame and return the machine to the state it was in before 
the call.  The code to do this is called the epilogue:

• Running the previous process in reverse:  
movl %ebp, %esp # discard locals/temps  
popl %ebp # restore frame pointer  
ret # return to caller

• The first two instructions here can be replaced with the 
more efficient, but otherwise equivalent leave instruction
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Removing the parameters
• Once we return to the caller, the result of the function is in 
eax, but the parameters are still on the stack:

• We restore the stack pointer to its original value by adding 
on the number of bytes that are used by the parameters:

addl $N, %esp

• If no parameters were passed, then this step can be omitted

a1 ... an ...
esp ebp
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Example: a leaf function
int g(int u) {             g: pushl %ebp  
  return u*u;                 movl  %esp, %ebp  
}                             movl  8(%ebp), %eax  
                              imull %eax, %eax  
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

... old retn u ...
ebp+4 ebp+8esp=ebp
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Example: multiple parameters + call
int f(int x,               f: pushl %ebp  
      int y,                  movl  %esp, %ebp  
      int z) {                movl  8(%ebp), %eax  
  return g(x+y);              addl  12(%ebp), %eax  
}                             pushl %eax  
                              call  g  
                              addl  $4, %esp  
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

 

... old retn x y z ...
ebp+4 ebp+8 ebp+12 ebp+16esp=ebp

 86

Example: spilling 
int h(int x,               h: pushl %ebp  
      int y,                  movl  %esp, %ebp  
      int z) {                pushl 8(%ebp)  
    return g(x)+g(y);         call  g  
}                             addl  $4,%esp  
                              pushl %eax -- spill  
                              pushl 12(%ebp)  
                              call  g  
                              addl  $4, %esp  
                              popl  %ecx -- unspill  
                              addl  %ecx, %eax  
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

spill old retn x y z
esp ebp ebp+4 ebp+8 ebp+12 ebp+16
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Observations
• There is a four instruction overhead for each function that 

uses the frame pointer

• Increases execution time

• Prevents use of ebp as a general purpose register

• For larger functions, the four instruction overhead is less of an 
issue

• For small functions, we would prefer to inline rather than copy

• Nevertheless, it is common to produce code that doesn’t use 
ebp as a frame pointer (e.g., -fomit-frame-pointer in gcc)
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Caller and callee saves
We (System V) can designate some registers as:

• caller saves        (eax, ecx, and edx)
• can be freely used by the callee
• the caller is responsible for saving (and later restoring) the 

value of a caller save register before a call

•callee saves (ebp, ebx, esi, and edi)
• can be freely used by the caller
• the callee is responsible for saving (and later restoring) the 

value of a callee saves register before using it to store 
temporary values
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Revisiting the previous example: h
int h(int x,               h: pushl %ebp  
      int y,                  movl  %esp, %ebp  
      int z) {  
    return g(x)+g(y);         pushl 8(%ebp)  -- x  
}                             call  g  
                              addl  $4,%esp  
                              pushl %eax -- spill  
                              pushl 12(%ebp) -- y  
                              call  g  
                              addl  $4, %esp  
                              popl  %ecx -- unspill  
                              addl  %ecx, %eax  
 
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

instead of having the 
compiler save this value 

on the stack ...
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Revisiting the previous example: h
int h(int x,               h: pushl %ebp  
      int y,                  movl  %esp, %ebp  
      int z) {  
    return g(x)+g(y);         pushl 8(%ebp)  -- x  
}                             call  g  
                              addl  $4,%esp  
                              movl  %eax, %esi  
                              pushl 12(%ebp) -- y  
                              call  g  
                              addl  $4, %esp  
                              
                              addl  %esi, %eax  
 
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

... we can move it to a 
callee saves register, esi

g will preserve the value 
in esi, if necessary

so it will still contain the 
correct value here…
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Revisiting the previous example: h
int h(int x,               h: pushl %ebp  
      int y,                  movl  %esp, %ebp  
      int z) {                pushl %esi  
    return g(x)+g(y);         pushl 8(%ebp)  -- x  
}                             call  g  
                              addl  $4,%esp  
                              movl  %eax, %esi  
                              pushl 12(%ebp) -- y  
                              call  g  
                              addl  $4, %esp  
                              
                              addl  %esi, %eax  
                              popl  %esi  
                              movl  %ebp, %esp  
                              popl  %ebp  
                              ret

... now h has to save the 
value in register, esi

one save in h is better 
than one saves in each of 

two calls to g

empirically, more than 
50% of calls are to leaf 

functions
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Closing thoughts
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Assembly “Language”?
• Highly imperative, primitive instructions, no expressions

• No high-level abstractions, but all the building blocks:

• No arrays, records, variants, objects, closures, …

• No loops, switch statements, functions, local variables, …

• Type System?

• Values classified by size (e.g., 8 vs 32 bits) and storage class 
(e.g., memory, flag, integer register, floating point register, …)

• Limited protection against common programming mistakes

• Programmer has full control over data representation
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Summary
• IA32 provides a very basic programming language:

• A fixed set of registers

• Instructions for moving and operating on data

• Instructions for testing and control transfer

• In programming language terms:

• Low-level, primitive instructions, loosely typed

• No high-level abstractions, but all the building blocks

• Very close to the metal, low-level control, “predictable” 
performance

• Let’s write some programs!
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