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Abstract—Evolvable Hardware (EHW) refers to HW design
and self-reconfiguration using evolutionary/genetic
mechanisms. The paper overviews some key concepts of
EHW, comments on selected applications, and presents a
perspective on the development of the field. A fine-grained
Field Programmable Transistor Array (FPTA) architecture
for reconfigurable hardware is presented as an example of
an initial effort toward evolution-oriented devices.
Evolutionary experiments  in simulations and with a FPTA
chip in-the-loop demonstrate automatic synthesis of
electronic circuits.  Unconventional circuits, for which there
are no textbook design guidelines, are particularly appealing
to evolvable hardware. To illustrate this situation, one
demonstrates here the evolution of circuits implementing
parametrical connectives for fuzzy logics. In addition to
synthesizing circuits for new functions, evolvable hardware
can be used to preserve existing functions, and achieve fault-
tolerance determining circuit configurations that circumvent
the faults. These characteristics are extremely important for
enabling spacecraft to survive harsh environments and to
have long life. Expanding reconfiguration to other types of
spacecraft hardware (i.e. optics, MEMS, etc) could lead to
evolvable space systems.

1. INTRODUCTION

The application of evolution-inspired formalisms to
hardware design and  self-configuration lead to the concept
of evolvable hardware (EHW). In the narrow sense EHW
refers to self-reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration mechanisms. In a
broader sense EHW refers to various forms of hardware,
from sensors and antennas to complete evolvable space
systems that could adapt to changing environments and,
moreover, increase their performance during their
operational lifetime.

The paper overviews some key concepts of EHW, comments
on selected applications, and presents a perspective on the
development of the field. It then describes an effort toward
building evolution-oriented devices and an evolvable system
on a chip. A Field Programmable Transistor Array
architecture is used as the experimental platform for
evolutionary experiments. The platform is quite flexible and

supports implementation of both analog and digital circuits.
While previous work [1] [2] illustrated implementation of
several conventional building blocks for electronic circuits
such as logical gates, transconductance amplifier, filters,
gaussian neuron, etc. this paper illustrates the automatic
design of the rather more unconventional circuits for
combinatorial fuzzy logics.

The paper is organized as follows: Section 2 presents the
components of an evolvable hardware system, providing a
perspective on the evolution of the field. Section 3
overviews some important evolutionary experiments and
applications of evolvable hardware. Section 4 presents an
evolution-oriented architecture based on the concept of Field
Programmable Transistor Array.  Section 5 illustrates how
the FPTA can be used to evolve reconfigurable circuits for
combinatorial fuzzy logic. Circuits implementing parametric
triangular norms are evolved in software and in hardware
directly on the chip. Section 6 presents considerations
related to the application of evolvable hardware to space
systems.

2. EVOLVABLE HARDWARE: FROM ROOTS TO BUDS

The main idea of evolutionary/genetic algorithms is inspired
from the principle of natural selection.  In nature the fittest
individuals survive and reproduce passing along their
genetic material to their offspring, who will inherit the
characteristics that made the parents successful. Similarly,
the evolution of artificial systems is based on a population of
competing designs, the best ones (i.e. the ones that come
closer in meeting the design specifications) being selected
for  being further investigated. The offspring of this elite in
which pairs of parents were randomly selected for “mating”
combine genetic material from two parents (or
inherit from one parent only), and may suffer genetic
“mutations”. The offspring are the new generation of
competing designs. This process of trial-and-error parallel
search can last many generations, and can be constructed
with many choices on how to implement reproduction,
selection, etc.

The roots of EHW can be traced to the 1960s, when
Evolutionary Strategies were invented to perform continuous
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parameter optimization problems for a variety of designs
and laboratory experiments. In about the same time
Evolutionary Programming was conceived on similar
principles to evolve finite state machines, while Genetic
Algorithms were introduced as a model of adaptation.
Moving upwards on the schematic illustration in Figure 1,
the next step toward EHW was the idea of evolving
computer programs coming from Genetic Programming. 
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Figure 1 Evolutionary path for the evolvable hardware field:
from design optimization to hardware IP cores for evolvable
systems.

The concept of evolvable hardware was born partly inspired
by the above search/optimization/adaptation mechanisms
and partly by the availability of reconfigurable devices such
as Field Programmable Gate Arrays (FPGA). Circuits can be
evolved reconfiguring programmable devices (which is
called intrinsic EHW) or evolving software models –
descriptions of the electronic HW (referred to as extrinsic
EHW).  Currently evolutionary platforms are board level,
including programmable hardware that is reconfigured under
the control of configurations bits determined by the
evolutionary algorithms running in software. It is likely that
in the next 1-3 years more platforms will integrate the
reconfigurable hardware and the reconfiguration mechanism
in an evolvable system on a chip (SOC) solution. Finally, the
path leads to the Intellectual Property (IP) level and EHW
solutions will become an integrated component in a variety
of systems that will thus have an evolvable feature.

EHW has the potential to bring an important contribution to
several domains, from more conventional ones like
communications, household appliances and Internet to more
exotic ones like micro/nano-scale systems and
biological/artificial hybrids. Adaptive/evolvable hardware
have great potential for commercial applications in

communications.   Several areas include data compression,
reconfigurable antennas, adaptive signal processing.  For
example, evolutionary techniques were shown to outperform
current best techniques in image compression [3]. The price
paid is an increase in computation since adaptive parameter
changes in the compression algorithm need to be made for
each individual image or set of images. However doing it in
hardware may provide the sufficient speed-up to make the
technique real-time and economically efficient. Evolutionary
algorithms have shown excellent potential in designing new
antenna configurations and controlling reconfigurable
antennas. In adaptive equalization for radio communication
evolvable hardware could dynamically perform adjustments
to compensate for changing transmission path
characteristics. It would thus maintain the system transfer
function characteristics within specified limits by modifying
circuit parameters such as resistance, inductance, or
capacitance.

There is a good potential for commercial applications of
Internet adaptive devices. Reconfigurable hardware is
playing an increasing role in the Internet infrastructure,
allowing the possibility of hardware adaptation. Adaptive
reconfiguration needs to be done automatically, and EHW
could help. Not only can Internet devices be involved in
local individual evolution but large populations can
interconnect through Internet. Evolution can run at Internet
scale searching for optimal configuration solutions. Once a
solution is found, it can be rapidly shared. In fact evolution
involving large numbers of computers running software
simulations has already been experimented with.

An example of a micro/nano-scale system which can be
enhanced by evolvable hardware are future miniature
complex sensing, diagnosis and monitoring system. The
future "Lab on a Chip" would perform adaptive detection of
chemical and biological materials. Example of applications
include food preservation, virus and bacteria detection, and
adaptive dosage of medicine. The design and adaptation of
biological/artificial hybrids could be influence by evolvable
hardware. This includes system configuration and adaptation
of interfaces between the biological and artificial materials,
etc.

Figure 2 illustrates the main steps of evolutionary design of
electronic circuits. Each candidate circuit design is
associated a "genetic code" or chromosome. The simplest
representation of a chromosome is a binary string, a
succession of 0s and 1s that encode a circuit. The first step
of evolutionary synthesis is to generate a random population
of chromosomes. The chromosomes are then converted into
a model that gets simulated (e.g. by a circuit simulator like
SPICE) and produces responses that are compared against
specifications.
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Figure 2 Evolutionary synthesis of electronic circuits

A solution determined by extrinsic evolution may eventually
be downloaded or become blueprint for hardware. In
intrinsic evolution the chromosomes are converted into
control bitstrings, which are downloaded to program the
reconfigurable device  (e.g. a Field Programmable Gate
Array). The configuration bitstring determines the
functionality of the cells of the programmable device and the
interconnection pattern between cells. Circuit responses are
compared against specifications of a target response and
individuals are ranked based on how close they come to
satisfying it. Preparation for a new iteration loop involves
generation of a new population of individuals from the pool
of the best individuals in the previous generation. Here,
some individuals are taken as they were and some are
modified by genetic operators, such as crossover and
mutation. The process is repeated for a number of
generations, resulting in increasingly better individuals. The
process is usually ended after a given number of
generations, or when the closeness to the target response has
been reached.  In practice, one or several solutions may be
found among the individuals of the last generation.

3. EVOLUTIONARY EXPERIMENTS

A variety of circuits have been synthesized through
evolution. For example, Koza used Genetic Programming
(GP) to grow an “embryonic” circuit to one that satisfies
desired requirements [4]. On-chip evolution was
demonstrated by Thompson [5] using an FPGA as the
programmable device, and a Genetic Algorithm (GA) as the
evolutionary mechanism. More details on current work in
evolvable hardware can be found in [6] and [7]. Evolutions
of analog circuits reported in [4] were performed in
simulations, without concern for a physical implementation,
but rather as a proof-of-concept to show that evolution can
lead to designs that compete, or even exceed in performance
those of humans. Current programmable analog devices are
very limited in capabilities and do not support the
implementation of the resulted design (but, in principle, one
can test their validity in circuits built from discrete

components, or in an ASIC). More recently, evolutionary
experiments were performed on COTS Field Programmable
Analog Arrays [18] and custom-designed ASIC [11]. Figure
3 illustrates a plethora of devices platforms that were used
for EHW experiments. The hardware devices include
FPGAs, FPAA, Analog ASICs, etc.
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Figure 3 Multitude of platforms for EHW experiments

4. BUILDING AN EVOLVABLE SYSTEM-ON-A-CHIP

Current efforts toward hardware evolution have been limited
to simple circuits. In particular for analog circuits, this
limitation comes from a lack of appropriate reconfigurable
analog devices to support the search. This precludes
searches directly in hardware and requires evolving on
hardware models. Such models require evaluation with
circuit simulators such as SPICE; the simulators need to
solve differential equations and, for anything beyond simple
circuits, they require too much time for practical searches of
millions of circuit solutions. A hardware implementation
offers a big advantage in evaluation time for a circuit; the
time for evaluation is determined by the goal function. For
example, considering an A/D converter operating at a 100
kHz sampling rate, its electronic response is available within
10 microseconds, compared to (an over-optimistic) 1 second
on a fast computer running Spice; this advantage increases
with the complexity of the circuits. In this case the 105

speedup would allow evaluations of populations of millions
of individuals in seconds instead of days.

Increasingly more complex Field Programmable Devices
(FPGA, FPAA, etc) offer powerful solutions to applications
in digital signal processing, programmable interfaces,
filtering, etc. However, for efficiency in EHW applications,
future devices would benefit from implementing evolution-
oriented reconfigurable architectures (EORA).  One of the
most important features for EORA relates to the granularity
of the programmable chip. FPAA offer only coarse
granularity which is a clear limitation; FPGAs are offered
both in versions with coarse grained and fine grained
architectures (going to gate level as the lowest level of
granularity). From the EHW perspective, it is interesting to
have programmable granularity, allowing the sampling of
novel architectures together with the possibility of
implementing standard ones. The optimal choice of
elementary block type and granularity is task dependent. At
least for experimental work in EHW, it appears a good
choice to build reconfigurable hardware based on elements
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of the lowest level of granularity. Virtual higher-level
building blocks can be considered by imposing
programming constraints. Ideally, the “virtual blocks” for
evolution should be automatically defined/clustered during
evolution. EORA should be transparent architectures,
allowing the analysis and simulation of the evolved circuits.
They should also be robust enough not to be damaged by
any configuration existent in the search space, potentially
sampled by evolution. Finally EORA should allow evolution
of both analog and digital functions.

An evolvable system-on-a-chip architecture is presented in
Figure 4. It includes a Field Programmable Transistor Array
and a Genetic Processor. The idea of a field programmable
transistor array was introduced in [8] as a first step toward
EORA. The FPTA is a concept design for hardware
reconfigurable at transistor level. As both analog and digital
CMOS circuits ultimately rely on functions implemented
with transistors, the FPTA appears as a versatile platform for
the synthesis of both analog and digital (and mixed-signal)
circuits. The architecture is cellular, and has similarities with
other cellular architectures as encountered in FPGAs (e.g.
Xilinx X6200 family) or cellular neural networks. One key
distinguishing characteristic relates to the definition of the
elementary cell. The architecture is largely a “sea of
transistors” interconnected by other transistors that act as
signal passing devices (gray-level switches), with islands of
RC resources in between.
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Figure 4 An evolvable SOC
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Figure 5. Module of the Programmable Transistor Array

The status of the switches (ON or OFF) determines a
circuit topology and consequently a specific response. Thus,
the topology can be considered as a function of switch
states, and can be represented by a binary sequence, such as
“1011…”, where by convention one can assign 1 to a switch
turned ON and 0 to a switch turned OFF. Figure 5 illustrates
a FPTA cell consisting of 8 transistors and 24 programmable
switches. Programming the switches ON and OFF defines a
circuit for which the effects of non-zero, finite impedance of
the switches can be neglected in the first approximation.

5. EVOLVING RECONFIGURABLE CIRCUITS FOR FUZZY LOGICS

This section illustrates the evolutionary design of circuits for
multi-valued logics. The objective is to determine circuit
implementations for conjunctions and disjunctions for fuzzy
logics. In such logics, conjunction and disjunction are
usually interpreted by a T-norm and by its dual T-conorm (s-
norm) respectively. Frank’s parametric T-norms and T-
conorms (also refered to as fundamental T-norms/conorms
in [9]) were the selected choice for modeling the logical
connectives. The family of Frank T-norms is given by
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Electronic circuits can be used in implementations of multi-
valued logic computations or in implementing fuzzy S-T
neurons. One interesting application made possible by this
implementation is to select the most appropriate s-parameter
for the application at hand. Examples of the influence of
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various t-noms and s-norms in control applications can be
found in [10] [11] and for learning in fuzzy neurons in [12].

 The following preliminary results illustrate the possibility of
evolving circuits that implement T and S for various values
of the parameter s. The circuits are powered at 5V and the
signal excursion is chosen between 1V (for logical level “0”)
and 4V (for logical level “1”). Intermediary values are in
linear correspondence i.e. 2.5V corresponds to logic level
0.5.  etc. The experiments were performed both in software
(Spice simulations) and in hardware using 2 FPTA cells.
The experiments used a population size of 128 individuals,
were performed for 400 generations (with uniform
crossover, 70% crossover rate, 4% mutation rate,
tournament selection) and took around 15 minutes using 16
processors when evolving in simulations.

Figures 6,7,8 show the response of circuits targeting the 
implementation of fundamental T-norms for s=0, s=1, and
s=100 respectively. The circuit for T-norm with s=100 is
shown mapped on 2 FPTA cells in Figure 9. Figure 10
shows the response of the circuit implementing the
fundamental s-norm for s=100. Figure 11 shows the
diagonal cut for the same S-norm. All these responses were
for circuits evolved in software; for comparison the response
of a circuit evolved in hardware (for s=100) is shown in
Figure 12.

Figure 6 Response of  a circuit implementing the
fundamental T-norm for s=0 (o). Target characteristic shown
with (+).

Figure 7 Response of a circuit implementing the
fundamental T-norm for s=1 (o). Target characteristic shown
with (+).

The results presented here are a first attempt at evolving
these type of circuits. Their purpose is to illustrate what you
can obtain in a rapid evolution, with no prior knowledge on
the circuit solution, with no optimization in terms of Width
and Length (W,L) of transistor channels, with limited
resources (only those found in 2 FPTA cells).  One
limitation is the approximation error, ranging from 3.6% to a
maximum of 9% MAPE (Mean Absolute Percent Error) in
software and to a peak of 11.6% in hardware. Several
factors can contribute to reducing the approximation error.
One of them is to allow more flexibility in the selection of
the points where the inputs are applied, and where the output
is collected. In this experiment these were considered
predetermined, however it is possible to let evolution decide
where to interface the circuit with the input/output.
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Figure 8 Response of a circuit implementing the
fundamental T-norm for s=100 (o). Target characteristic
shown with (+).
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Figure 9 Evolved circuit implementing the fundamental T-
norm for s=100 (with the response in Figure c).

Figure 10 Response of a circuit implementing the
fundamental S-norm for s=100 (o). Target characteristic
shown with (+).
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Figure 11 Diagonal cut for the response in Figure e. Circuit
implementing the fundamental s-norm for s=100. Target
characteristic shown with full line.

Figure 12 Response of a hardware-evolved circuit
implementing the fundamental T-norm for s=100 (o). Target
characteristic shown with (+).

Another way to increase the approximation power is to
allow more resources, e.g. allow resources from more than 2
cells. This is similar to increasing the approximation power
of neural networks when extra neurons are added. The
described experiments do not have any parametric
adjustment. The width and length of the transistor channel
were considered fixed. However previous results indicate
that parametric optimization can produce good adjustments
after the topology has been determined [13].  This will also
be possible in hardware since the new version of the chip
will allow switch-selectable transistors with different W/L in
the same cell.
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5. TOWARD EVOLVABLE SPACE SYSTEMS

EHW can to bring two key benefits to spacecraft
survivability. Firstly, EHW can help preserving existing
functions, in conditions where hardware is subject to faults,
aging, temperature drifts and radiation, etc. The
environmental conditions, in particular the extreme
temperatures and radiation effects can have catastrophic
impacts on the spacecraft. Interstellar missions or extended
missions to other planets in our solar system, with lifetimes
in excess of 100 years, put great challenges on the on-board
electronics. Secondly, new functions can be generated 
(more precisely new hardware configurations can be
synthesized to provide required functionality) when needed.

EHW

Up-link new functions for re-planned mission

New functions required for
new mission phase or
opportunity

-Radiation impacts
-Temperature variations
-Aging
-Malfunctions, etc.

Versatility: Create new
functionality required by changes
in requirements or environment

Survivability:
Maintain functionality
coping with changes in
HW characteristics

Accurate model of hardware is not
available after launch

Figure 13 EHW can contribute to increase spacecraft
survivability and flexibility

Previous sections of this paper illustrated how EHW can be
used to automatically synthesize circuits implementing new
functions. In the remainder of this section a fault-tolerance
experiment presented in detail in [ ] is summarized. The
experiment shows how EHW can recover functionality after
being lost due to faults, by finding new circuit
configurations that circumvent the faults. In the experiment,
which targeted a circuit implementing a gaussian input-
output DC response, the performance of the chip continued
to be monitored using the fitness function even after a
solution was determined.

When the performance decreased below a certain threshold
(e.g. when a fault was injected), the evolution process
restarted the search for a new circuit configuration, taking
into account the previous circuit configurations in the
population. Faults were injecting by disconnecting external
wires between FPTAs. At that time a lowering of
performance but not a complete failure was observed. The
reason for the graceful degradation is that the population of
circuits obtained by the evolution process contains mutants

insensitive to faults having the same phenotypic effect as a
genetic mutation. When the fault was injected the GA
restarted with the population of its last run, which included
the currently affected by fault and some of its mutants. The
faulty part became just another component to be used: the
evolutionary algorithm did not "know" that the part was
supposed to do something else. While starting with a
random population took about the same time as finding a
solution in the first place (not shown), starting with the last
available population led to recovery in about 1/3 of the time
while the circuit performance recovered to 90%.

6. CONCLUSION

This paper presented some highlights in the history of the
field of evolvable hardware and presents a possible path for
its evolution in the future. It presented an effort of building
evolution-oriented devices and demonstrates how electronic
circuits can be automatically be synthesized, on-the-chip, to
produce a desired functionality. It illustrates the simplicity
with which evolvable hardware can be used to design
unconventional circuits such as combinatorial circuits for
fuzzy logics. It addresses the benefits evolvable hardware
may bring in flexibility and survivability of future space
hardware.
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