here are two quite different
“software agents” paradigms today:

* Paradigm 1: Competence
emerges from a large number of
relatively simple agents integrated
by some cleverly engineered
architecture. The choice of archi-
tecture is the make-or-break
theoretical part of this; the
detailed characteristics of the
implementation of the architec-
ture (and the algorithms that
crawl around it) are the make-or-
break pragmatic parts. The arche-
type of this paradigm is SOAR {6];
its forerunners were the early
“pure production systems.”

® Paradigm 2: Competence emerges
from the aggregate system possessing
a large amount of useful knowledge;
for most real-world tasks, this in-
cludes a dauntingly large fraction of
what might be termed “general com-
mon sense.” In this paradigm, the
architecture is relatively unimpor-
tant, and building the system as a set
of "agents” is little more than a form
of scaffolding, reducing the cognitive
load on the human builders. The ar-
chetype of this paradigm is Cyc; its
forerunners were the early expert
systems.

For 20 years, we have witnessed
tens of thousands of successes in
which knowledge-based systems and
other wuseful intelligent software
agents have been constructed and
deployed. But amidst all this suc-
cess, there is constant failure as well:
these systems cannot share their
knowledge, hence cannot pool their
expertise and cannot work together
synergistically.

What is required for agents to do
this? They need to share “enough” of
the foundational knowledge in terms
of which their specialized know-
ledge—or even more commonly the
results of applying that specialized
knowledge—can be communicated,
This is, for example, what happens
when you have to see a doctor or a
lawyer, when you deal with a taxi

COMMUNICATIONS OF THE ACM July 1994/Vol 37, No.7

Enabling Agents to W Ork Together

driver or a saiespﬂrson Or a reserva-
tions clerk. It happens constantly in
every classroom with a competent
teacher.

This notion, sharing “enough™ of
the meaning, in turn leads to three
new questions: What is this founda-
tional knowledge? How exactly do
intelligent agents share it? How much
is “enough”?

We began seriously examining
these questions—and seriously test-
ing the “second paradigm of software
agents”—a decade ago, when (in
September 1984) we began the Cyc
project. Namely, we were testing the
hypothesis that the primary impedi-
ment to achieving interesting agent
behavior was lack of knowledge. To
wit, that we wouldn't have to work
nearly so hard to come up with clever
algorithms and data structures and
architectures, if we had a large corpus
of knowledge 1o fall back on. Halfway
through the project, we wrote a Com-
munications article [5] about our prog-
ress. Today, more than four years
later, we report how things have been
progressing since then.

First, let’s see how we would cur-
rently answer the three questions
mentioned previously:

1. What is this foundational knowl-
edge? It is the knowledge that, for
example, a high school teacher as-
sumes students already have, before
they walk into class for the first time.
This includes such things as common
sense notions of time, space, causality,
and events; human capabilities, lirni-
tations, goals, decision-making strate-
gies, and emotions; enough tamiliar-
ity with art, literature, history, and
current affairs that the teacher can
freely employ common metaphors
and allusions; and so forth. Notice
that the instructor assumes that two
things are shared between student
and teacher: (1)} most of the vocabu-
lary, and (2) most of the knowledge
involving those terms. Our project—
Cyc—has been codifying just such
knowledge for almost a decade now.

127

2. How exactly do intelligent agents
share it? Essentially, this is the ques-
tion of how multiple agents can coop-
erate with one another. It is the back-
bone question of intelligent agents

(IAs), the skeletal framework on
which the entire enterprise depends,
and, as with animal backbones, the
answer for IAs comes in two forms,
exo- and endo-:

® ¢gxo-; Impose rigid standards “from
the outside.” This in effect means that
the collection of agents is really one
large engineered (albeit modular)
program. Unfortunately, dictating
standards rarely works in the real
world even across divisions of one
large company, let alone across com-
panies, across industries, across coun-
tries, and across decades of real time.
As with animals, exoskeletal *stan-
dards” are a better idea at the insect
level of size and complexity than at
the level of humans (or for that mat-
ter organizations) with backbones. If
carried to extremes, this method of
“knowledge sharing” merges with
the first IA paradigm, the one that
focuses on having a clever system ar-
chitecture.

® endo-: Inject at least partial under-
standing of the meaning of the infor-
mation which each agent is working
on, and emitting. This is what people
do, after all. It is what allows us to ac-
cept one another’s communications
despite their being terse, ambiguous,
and idiosyncratic; it bridges cultural
differences and skill differences, for
example.

The focus of this article will be on the
second sort of cooperation. We will
argue that a good maxim for an intel-
ligent agent population is: “share
most of the meaning of most of the
terms, most of the time.” This brings
up the third question:

3. How much is “enough”? Almost
certainly, this question will be an-
swered empirically, and the answer
will vary from task to task. Our re-
search so far suggests that the answer
is:

a surprisingly large fraction of “com-
mon sense” knowledge needs to be
shared, even for velatively narrow
tasks.

On the other hand, this same large
body of knowledge is almost all
that is needed for a very wide
range of tasks. So we argue that,
for TAs to cooperate by sharing
partial understanding of the infor-
mation they are processing, they
require most of the knowledge
we're accreting in Cyc’s knowl-
edge base.

To address these questions, we
must therefore at least briefly discuss
Cyc’s current state, including such
issues as: how the knowledge base is
constructed, what sort of knowledge
it does and does not contain, how we
maintain efficient inference in a sys-
tem containing millions of axioms,
and how it copes with the inevitable
inconsistencies it contains (inevitable

because of its sheer size, because of
changes in the world, and because of

cultural differences.) We will also
briefly mention some of the recent
Cyc applications work.

Anatomically, Cyc has many parts:
the Cyc knowledge base (KB), the
CycL representation language and
inference engine, the knowledge
server utility that allows multiple peo-
ple to work together simultaneously
building up the KB, the knowledge-
entering (KE) methodology and the
various user interfaces (Uls) em-
ployed during that process.

The knowledge server, KE meth-
odology, and Uls are merely tools
helping us realize the KB, which is

ultimately the valuable product of

this enterprise. For that reason, we
focus here on the KB, and to a lesser
extent on the CycL representation
language, and not at all on Cyc’s
other anatomical parts.

The State of Cyc circa 1990

CycL circa 1990

CyclL is the language in which the Cyc
KB is encoded. It includes both the
specification of the syntax and vocab-
ulary of the statements that constitute
the KB, and the programs for per-
forming inference.

Until 1987, CycL was essentially a
set of procedures for performing in-
heritance, automatic classification,
etc., that operated on a set of frame-
like data structures. Uncertainty was

'28 July 1994/Vol 37, No.7 COMMUNICATIONS OF THE ACM

expressed by associating certainty
factors (numbers between 0.000
and 1.000) with every statement in
the KB.

The frame-based representation
was awkward for expressing various
assertions we wanted to make: dis-
junctions (“apartment residents may
keep a cat or a small dog”), inequali-
ties (“retirees have more grandchil-

dren than children”), negations
(“homeless people don’t watch many
movies”), existentially quantified

statements (“‘one member of the Cab-
inet is likely to be a minority
woman’’), meta-level statements (“the
previous axiom was entered in 1988
by a cynic”) etc. We also came to real-
ize that having an implementation-
independent semantics for the KB
(which frame-based systems usually
lack) was vital so that we wouldn't
have to redo the KB every time our
implementation of one of Cyc’s infer-
ence mechanisms changed. These
factors slowly moved CycL away from
frames, and toward a predicate logic
orientation. This gave it more expres-
siveness and also provided an imple-
mentation independent semantics for
the KB.

We also did away with numeric cer-
tainty factors for each assertion. They
are downright dangerous in a huge
KB, as any two numbers can be com-
pared with each other, and the three-
digit numbers were often little more
than fabricated ways of expressing
the fact that one assertion was a bit
“more likely than” another assertion.
In their place, we allowed explicit
statements that “P is more likely than
Q,” and we developed a more princi-
pled way of handling defaults: Cyc
constructs and compares arguments
for and against each proposition,
using explicit rules to decide when an
argument is invalid or when one ar-
gument is to be preferred to another.
We will discuss this procedure—
which we called argumentation—in a
later section of this article.

“Users” of Cyc (both humans and
application programs) interact with
the system via an epistemological-level
(EL) language similar to first-order
predicate calculus (FOPC) with aug-
mentations for reification, defaults,
modals, reflection, etc. The entire

Glossary

APIL: Application Program Interface. An agreed-upon input/
output format for a particular APP (application program).
Humans, or application programs, may rely on that format and
in particular use it to “call” the APP and to interpret the out-
put returned by the APP. For example, SQL.

completeness and correctness: If a statement does indeed fol-
low from the KB—that Is, it should theoretically be inferred—
and you ask the system whether that statement is true or
false, are you sure the system will say yes, it is true? If so, the
system is said to be complete. If it will at least not say no, it's
false, then the system is said to be correct. We can and do all
live with extreme and ubiquitous incompleteness in our lives,
but incorrectness should be relatively rare.

defaults: statements which may not be absolutely true. Often
they are “usually true,” and exceptions might be known or
expected. Sometimes a default statement is just an assump-
tion, and later statements might entirely refute it.

frame: a set of attribute/value pairs, about a single concept.
For example, the USA frame might have pairs such as leader-
Type/President, yearOfFormation/1776, etc. One can think of
an s/v pair on the x frame as equivalent to stating six,v).

indexical: for purposes of this article, assume it to mean any
pronoun or other word that requires context to disambigu-
ate. For example, "'now,” "yesterday,” "here,” “we,” and so
on.

inference: deriving conclusions that follow from the Knowl-
edge Base.

inference method/procedure/scheme: a procedure used for
doing inference. Examples include logic, analogy, argumenta-

tion, and statistical pattern recognition.

ist: a very special modal predicate, which stands for 'is true
in."” (ist C P) means that proposition P Is asserted as being true
in context (microtheory) C. Notice that from (ist C P) and (im-
plies P Q), we cannot in general infer (ist C Q). If, however, we
know (ist C (implies P Q)), then indeed we can infer (ist C Q).
(More precisely, we must also know that Modus Ponens "is
true in" context C, but this is assumed by default to be the
case.)

modals: statements involving special predicates such as be-
liefs, desires, knows, expects. One cannot substitute equals for
equals inside a modal predicate. For example, Fred's age may
be 30, and Joe might believe that Fred's age Is 29, but that
certainly doesn't imply that Joe believes 30 is 29. This is also
called "referential opacity.”

predicate: a true/false-valued function. For example, one can
think of "age" as a unary function, as in age(Fred) = 30, oras a
binary predicate, as in age(Fred,30) = True. In prefix notation,
we would write this as (age Fred 30).

prefix notation: writing (F X y) instead of, for example, xFy, to
denote function/predicate F applied to arguments x and v.

reflection: the ability to control inference using statements in
the KB. For example, one reflective statement might say: “it's
better to try ‘analogy’ only after all the other inference meth-
ods have failed."”

reification: the ability to explicitly refer to a statement, or
even a bundle of statements (for example, by name, by point-
ing at them) so that one can then make metalevel statements
about those other statements.

KB is represented in this EL lan-
guage. It has a simple semantics and
is therefore easily used to communi-
cate. Internally, at an inwvisible (to the
users) heuristic level, these EL. asser-
tions are converted and handled by
special-purpose data structures and
algorithms for speedy inference.'

CycL’s default reasoning relies on
the concept of arguments. An “argu-
ment” is very much like a proof, but it
may contain sentences that have been
labeled as assumptions. Arguments
themselves may be labeled as “in-
valid™ if, for example, they rely on
assumptions that are (due to other
arguments) believed to be false. Often
Cyc will come up with numerous dis-
I_(-_l!ﬁfz_t'_]: :_-(_l:l-L:. li.‘ll[(‘:f]' dare .‘ill]Ill’lill](‘\ r(ff("l"]"(‘i(’!
o as the hewristic fevel (HL) language. but this
may be somewhat misleading as no user—
human or application program—ever writes or
reads HL expressions.

tunct arguments for both P and its
negation, . In such situations,
CycL. relies on a technique called ar-
gumentation [3] to determine whether
to believe P, 7P, or (for the time
being) neither.

The Cyc user (human or applica-
tion program) communicates with
Cyc via an Applhcation Program In-

terface (API) containing the sort of

commands one would expect: Assert,
Deny, Ask, Justify, etc. In particular,

“Ask’ is used to test the truth value of

a statement, and—if Ask 1s given an
expression containing some free vari-
ables—to find sets of variable bind-
ings which make that expression true.
An optional argument (UN-
WANTED-BINDINGS) turns Ask
into a generator; that is, each repeated

call vields one or more new sets of

bindings. Other optional arguments
to Ask can provide it with resource

bounds (time/space cutofls), heuris-
tics for ending or even guiding its
search, etc. Most of Cyc’s fast infer-
ence comes about because of the way
we implement Ask.

Most representation languages
make some trade-off between expres-
siveness (how easy 1t is to say many
different complicated things) and ef-
ficiency of inference. Higher-order
logics, and natural languages such as
English, are at one end of this trade-
off. Subsets of propositional logic,
and low-level programming lan-
guages such as C, are near the other
end. Most “expert system shells” such
as ART and KEE are somewhere in
the middle. Cycl. clearly needs to be
both expressive and efficient. In
order to get both, we made the diffi-
cult decision to sacrifice complete-
ness. As long as Cyc draws more or
less the same inferences that people

COMMUNICATIONS OF THE AcMm July 1994/ Vol 37, No.7 129

do, in various situations, we are satis-
fied with the degree of completeness
ofits logic. Furthermore, the user can
determine the “level of complete-
ness” by specifying resource bounds
(e.g., in terms of time spent, depth of
search) on their Ask’s.

CycL incorporates a host of heuris-
tics for improving etficiency of infer-
ence. Some of these eftficiency-boost-
ing heuristics are in ettect specialized
inference mechanisms, based purely
on the syntactic structure of the axi-
oms. Other heuristics exploit some
special properties of a set of domain-
specific and/or domain-
specific use of a set of general axioms,
for example, temporal reasoning. We
have found it is possible to obtain sig-
nificant improvements in problem-
solving efficiency by using an analysis

axioms,

of the structure of the axioms in the
KB. Here is a simple example: most
of the axioms that mention emotions
refer to a specific emotion !))' name,
rather than just saying “an emotion
x.” CycL uses this simple statistical

regularity to speed up inference of

new axioms pertaining to the hedonic
states of actors involved in events de-
scribed to (or inferred to occur by)
Cyc. At the heart of all these mecha-
nisms is a relatively general inference
mechanism that performs resource-
bounded iterative deepening search.

Cyc’'s KB circa 1990

The kinds of terms used in Cyc asser-
tions include, primarily, categories
(collections) and individual things in
the world. To a lesser extent, there
are terms that refer to reified asser-
tions, and to internal machine objects
such as strings, numbers, lists. Fur-
ther details on the Cyc ontology (circa
1990) can be found in [8].

Cyc’s categories are organized in a
generalization/specialization hierar-
chy (a directed graph, not a tree,
since each category may have several
direct generalizations.) The Cyc
predicate allGenls relates a category
to its supersets; for example, in pre-
fix notation, we might assert to Cyc
the following statement: (allGenls Per-
son Animal). Membership in a cate-
gory is represented by the predicate
allInstanceOf; for example, (alllnstance-
Of DouglLenat Person). Though we fre-

quently use set-theoretic notions to
talk about Cyc collections, they are
more akin to “Natural Kinds" [12].
Cyc collections are not merely mathe-
matcal sets, they are sets with in-
tensional properties, sets with useful
things to be said about them.

Predicates in Cyc are strongly
typed. The “type” of each argument
must be a single Cyc collection. These
“type” constraints are stated as asser-
tions in Cyc, which is no problem as
each predicate itself is a first-class ob-
ject in the language. For example,
(mother x y) is a Cyc expression mean-
ing that y is the mother of x; the fol-
lowing axiom says that y must be a
female animal: (argument2type mother
FemaleAnimal).

Our 1990 Communications article [5]
focused exclusively on some of the
highest-level (most general) collec-
tions—and hence distinctions—in
Cyc’s ontology; our 1990 book did
even more of that: Thing, Partal-
lyTangible individuals; Substances;
SomethingOccurring; and issues
such as time, space, causality, and be-
lief. This is somewhat misleading,
however, in that the day-to-day en-
tering and exercising of knowledge in
the KB has, for the last five years, not
focused on the organization of knowl-
edge at those ethereal heights. The
knowledge enterer has, instead, typi-
cally been working on a domain such
as “Furniture” or “Eating,” and they
need to state their new axioms using
(some new terms and) old terms like
Sitting, Sleeping, Storing, Flat, Size,
Cost, Vegetable, not vague general
terms like PartiallyTangible or Thing.

Similarly, at the time of writing of

our previous Communications article,
most of the KB was conceptually just
one enormous list of assertions that
were supposed to be self-consistent
(not counting exceptions to defaults.)
That has changed, so that now each
of the KB axioms is located in one (or
occasionally more than one) specific
“context” or “microtheory.”

Each microtheory captures one
“fairly adequate” solution to some
ontological area: either general areas
like representing and reasoning
about time, substances, agents, and
causality, or specific areas like
weather, manufacturing, and dining.

1 30 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

Some areas can have several different

microtheories, representing different
points of view, levels of granularity,
and distinctions that are and are not
made. Note that we are not claiming
to have—we are not trying to have—
a single complete theory of time, or
space, or for that matter human phys-
iology. What we do have, in each
case, is a suite of microtheories whose
union covers the most common cases.

We had predicted something like
this occurring, back in 1990: “We ex-
pect that most of the theories of topics at a

finer granule than those mentioned in this

section, that we will add to Cyc, will make
use of this notion of microtheories and that
it will figure prominently in the overall
structure and contents of the KB.”

Cyc's Evolution from

1990 to 1994

(Non-JChanges in the Overail Plan
One of the most significant items we
have to report in this article is that the
basic mission of the Cyc project—to
create a commonsense substrate for
the next generation of software—has
remained largely unchanged and on
track. We also continue to believe that
the best way of building such a sub-
strate is to start by hand-encoding, in
some form of symbolic logic, a signifi-
cant fraction of the things that most
average people know. As we proceed
with building this corpus, applica-
tions such as NLU (natural language
understanding, based on the knowl-
edge in Cyc) can be built to bootstrap
and accelerate the KB-building pro-
cess. Over the last few years, we have
made significant progress both in
building the substrate and in starting
the boot-strapping process.

One area in which our thinking
has significantly changed has to do
with the first generation of Cyc appli-
cations. In 1984, we envisioned the
primary 1996 use of Cyc as being a
substrate on which to build the next
generation of expert systems, helping
to make them less brittle. We now feel
that the first uses of Cyc will have to
do with more mainstream comput-
ing, in the area of information man-
agement.

The explosion in computer con-
nectivity over the last few years has
led to vastly greater amounts of infor-

mation being available on-line. How-
ever, most of the task of knowing
where relevant information resides,
and accessing it, has been left
users. Despite a growing number of
tools such as WAIS (Wide Area Infor-
mation System), WWW (World-Wide
Web), Gopher, this still remains a
very hard problem, and one which is
likely to become dramatically more
serious quite soon, as the National
Information Infrastructure/Highway
and global information accessibility
continues to mushroom. This is one
area in which we believe Cyc has im-
portant and economically significant
contributions to make. Later in this
article, we describe prototypes of
some Cyc-based information man-
agement applications that have been
built by us over the last few years.

Progress on the Knowledge-
Entering Front

The primary Cyc project activity over
the last few years has been improving
the Cyc knowledge base. The content
of the KB has grown significantly.
Unlike during the first half of the
project, the focus over the last few
years has not been on general issues
such as time and substances, but on
much more concrete topics such as
business processes, social events, and
tangible products.

As much as we would like to pro-
vide quantitative numbers indicating
our progress, our experience has
taught us that such numbers (e.g., the
number of constants, or the number
of axioms in the KB) are very mis-
leading. This is because there are two
different ongoing processes that af-
fect these numbers: On the one hand,

the KB is increasing in size because of

knowledge entry. On the other hand,
there is a constant effort to generalize
the statements in the KB, which often
results in a large number of axioms
being replaced by a relatively smaller
number of better axioms, without
decreasing the set of conclusions that
can be drawn.

So “improving the Cyc KB” in-

cludes of course increased content of

the KB, but no less significantly also
includes increased quality and utility
of the KB (and generally decreased
size of the KB.) While it is difficult to

quantify progress on this front, (ex-
cept through the performance of Cyc
applications), the qualitative metrics
are all positive.

The most significant qualitative cri-
terion for determining our progress
is that of “convergence.” One of the
primary assumptions behind Cyc is
that there will be convergence as the
KB building progresses. To make this
more specific, here is our list of con-
vergence-related problems that could
have caused us to stumble. We were
afraid that as new topics were tackled

a. .. .we would be forced to redo
much of our treatment of basic topics
such as tume, substances, and inten-
tions. Fortunately, this has not been
the case. We have found our treat-
ments of these topics adequate and
have been able to focus our eftorts on
the new topics themselves and have
not been distracted by having to redo
the basics.

b. ... each topic would require
(and only use) its own idiosyncratic
vocabulary and basic axioms. If this
had turned out to be the case, the KB
would be nothing more than an ag-
glomeration of many small, separable
KBs; and Cyc would degenerate to
nothing more than a large KBS-
(knowledge-based system) building
tool with a number of built-in librar-
ies. Contrary to our fears, we have
required a decreasing amount of new
predicates, functions and important
categories for each new topic we deal
with. Most of the vocabulary for
axiomatizing a new topic typically
now comes from one or more existing
related topics. This makes it relatively
easy for the new knowledge that is
being entered to be integrated with
existing knowledge, to be used pro-
ductively with it during inferencing.

c. ... it would become increas-
ingly difficult for humans to manually

incorporate each additional piece of

new knowledge into the right place in
Cyc. The difficulty in doing this has
remained approximately constant,
due to two factors offsetting each
other: On the one hand, the KB has
grown more complex and larger. On
the other hand, the topics that are
being entered are more specific and
more constrained; also, Cyc itself pro-

vides more and more help with the
assimilation. Together, these factors
seem to have cancelled each other

and the average productivity of ow
knowledge enterers has remained
about the same.

d. ... we would have to keep
adding new features to CycL to ex-
press pieces of knowledge in new top-
ics. The only significant addition to
CycL over the last four years has been
more tightly integrating and refining
the concept of “contexts.” We will
have more to say about this later in
the article.

Two New Cyc Activities

Cyc is now at a stage where it is ume
to start planning for the inclusion of
Cyc in real applications. As men-
voned earlier, we believe the first
generation of Cyc applications will
have to do with information manage-
ment. In anticipation of this, over the
last few years we have used Cyc to
power a number of small proof-
of-concept prototypes, for various
types of information management
applications.

The other major new activity has
been in the realm of Cyc-based Natu-
ral Language (CNL) processing. For
a little over a year now we have been
building CNL, and the initial results
look quite promising.

Later sections provide more details
on these two new activities.

The Cyc KB circa 1994

Figure 1 is a sort of macroview of the
current (March 1994) state of the Cyc
KB.

A microview of the KB is described
in the following paragraphs through
excerpts form one of the many theo-
ries recently entered into the KB,
namely one on physiology. Included
are examples of the vocabulary that
was introduced, plus some of the axi-
oms written (both in English and, in a
few cases, in CycL.) The goal here is
not to exhaustively list Cyc’s knowl-
edge about this topic, but to provide
the flavor of the KB’s contents.

Cyc's knowledge of physiology can
be broadly broken down into three
interrelated topics: anatomy, ail-
ments, and medical treatments.

To tell Cyc about anatomy, we de-

coMMuUNICATIONS OR THE Acm July 1994/Vol 37, No.7 13T

1. The 30k constant terms

Categories ---40%
Categories of categories - . 5%
Categories of individuals - 39.5%
Categories of Intangible objects -- 3%

C. of Information-Bearing Objects
C. of Numbers, C. of Physical attributes, etc.
Categories of Tangible objects --- 18%
C. of Living Things
C. of Artifacts
C. of Things around the house
C. of >Human-sized objects
Categories of Script types --- 15%
Actions by 1 "person"
Physiological Actions
Problem Solving/Planning
Work/Hobby/... Actions
Actions by >1 "person"
Rites of Passage
Communication
Natural Phenomena (e.g., Weather)

Predicates & Functions --- 15%
Unary: see Categories and Attributes
Binary -- 12%
Ternary -- 2%
Quaternary+ -- 1%

Attributes (a type of unary predicate) --- 10%
Lexical objects --- 15%
Words -- 14+% (and growing)
Parts of Speech, Tense, Number, Gender,... -- <l%

Proper Nouns (Specific people, places, languages, events, etc.) --- 15%
Microtheories (long-lived contexts) -- 1%

Misc. and Sundry --- 8%

2. The distributicn of formulae

Taxonomic informaticn --- 25%
{including type constraints on predicates, etc.)

Partonomic relations --- 35%
what kind of parts physical/anatomical/subEvents..
might warious types of objects have? -- 15%
what kind of actors are involved in
various script-types? ---15%

Lexical information --- 10%
Linguistic properties of different word senses -- 8%

Denotations cof word senses -- 2%

More complex information interrelating script

types, people and tangible objects --- 10%
Generic topics (time, space, intentions, etc., stuff about numbers,...) --- 10%
Information about specific people, places, etc. --- 5%
Misc. and sundry formulas --- 5%

Figure 1. Homunculus of the Cyc knowledge base circa March 1994

132 July 89430137, Nu T COMMUNICATIONS OF THE ACM

scribed to it all the “well-known” or-

gans (heart, liver, but not pituitary
gland) and external body parts (leg,
toe, but not philtrum). For each of
these, Cyc was given axioms about its
typical size range, the number pos-
sessed by each animal, how many of
these parts are critical for survival,
and so forth. Also included, of course,
was the function of each anatomical
part. However, the functional de-
scriptions included very little mecha-
nistic description, but rather con-
sisted mostly of commonsense
dependencies: heart beating is re-
quired for life; the stomach is re-
quired in digestion; the mouth is re-
quired for eating and breathing; the
stomach connects to the intestines,
and so forth.

Here is some of the vocabulary spe-
cific to Physiology, which was created
during this axiomatization activity:

¢ BodyPartOF—(Function)—takes
an Animal and a UmquePartType
(which is also limited to body parts) as
arguments and returns the specific
part described

¢ BodyPartTypeOf—(Function)—
takes an Animal and a BodyPartType
as arguments and returns the collec-
tion of that animal’s body parts of
that type

® medicallyRecommended—
(Predicate)—To describe the rela-
tionship between drugs and the ail-
ments they are designed to treat, we
use the predicate medicallyRecom-
mended. That same predicate can
also be used with nondrug treat-
ments, such as exercise or sleep. In
general it takes a PhysiologicalCondi-
tion PC, a SituationType ST, and an
ActorSlot AS as its three arguments.
Then (medically-Recommended PC
ST AS) means that if an animal has
the condition PC, it is recommended
that they play the role AS in some in-
stance of ST, in order to ameliorate
the condition.

® medicallyProscribed—
(Predicate)—analogous to medically
Recommended, but this predicate
describes actions that an animal with
a certain condition should not do
(more precisely, it describes certain
roles in events that this animal should
not play).

¢ DrugTherapy—(ScriptType)—To
talk about events when someone is
under the influence of medicine. The
duration of a DrugTherapy event is
the entire period of the drug’s effects
on the animal.

¢ DrugTherapyUseOf—(Function)
—takes the type of drug as an argu-
ment and returns a ScriptType which
is an instance of DrugTherapy and
which involves the use of that drug.
For example, an instance of (Drug-
TherapyUseOf Aspirin) immediately
follows the event in which the patient
swallowed the pill, and lasts four
hours.

* ModernWesternMedicineMt—
(MicroTheory)—This new context
was created for assertions that are
true primarily in the 1990s, in the
developed Western countries. It is
not intended to be accurate if ap-
plied. for example, to Ethiopia or
China today or Pennsylvania in 1800.
One of its main uses, ironically, has
turned out to be for assertions about
current medical costs.

In the area of common ailments
and symptoms, the KB includes the
types of anatomical parts affected, the
sensations caused (e.g., pain, nausea),
and the capabilities affected (gener-
ally impaired.) There is also informa-
tion about duration and typical
causes.

Ailments are represented as event
types. Though many physiological
states are mostly characterized by a
sensation, there are usually expecta-

tions such as duration and progres-
sion. These concepts are best repre-
sented using events. For example,
Headache is not just the state where
pain is felt in the head. Headaches
have an expected duration, an inten-
sity, and a certain “inertia” (remov-
ing the cause doesn’t instantly relieve
all the pain). The pain experienced
when hit in the head wouldn’t usually
be called “"headache,” though the
impact 1s likely to cause one.

The coverage of common drugs
includes types of products sold “over
the counter™ in grocery stores, types
of drugs commonly prescribed by
doctors for various symptoms and ail-
ments, common recreational drugs
and addictive/abused drugs, and
otherwise “well-known"” drugs. For
each of these, the KB includes the
drug's effect, typical dosage, and
common forms (e.g., ointment, pill,
liquid.)

Also entered into the KB was infor-
mation about the “schema” of stan-
dard medical documents such as
drug prescriptions, medicine labels,
patient records, test result records
and insurance claim forms.

The following are just a few sample

Figure 2. ACycL axiomthatsays
“If someone has a sore throat,
their throat hurts when they
swallow.”

Figure3. A CycL axiom that says
“If someone is asphyxiating, they
cannot breathe.”’

(LogImplication
(LogAnd
(allInstanceOf $AIL SoreThroat)
(bodilyInvolved $AIL $AGT)
(temporallySubsumes $AIL $SWA)
(allInstanceOf $SWA Swallowing)
(performedBy S$SWA $AGT))
(holdsIn $SWA

(feelsSensation (BodyPartQOf $AGT Throat) LevelOfPain Positive}))

(LogImplication
(LogAnd

(boedilyInvolved $AIL $AGT))
(holdsIn $AIL

(allInstanceOf $AIL Asphyxiation)

(LogNot (behaviorCapable $AGT Breathing bodilyInvolved))))

COMMUNICATIONS OF THE AcM [uly 1994/Vel.37, No.7 '33

axioms from this microtheory:

e [f someone has a sore throat, their
throat hurts when they swallow—see
Figure 2.

® If someone is asphyxiating, they
cannot breathe—see Figure 3.

® After major surgery, a patient will
feel pain when performing strenuous
physical activities.

® After being vaccinated for a disease,
an animal is no longer susceptible
to it.

® Bone repair is medically recom-
mended for people with broken
bones.

* An object which is sterile is not an
infectionCarrier of anything.

¢ SurgicalTools are sterile before a
surgery

e Patients are unconscious during
general anesthesia.

e Patients don’t feel sensations dur-
ing general anesthesia.

e In any surgery that involves
StitchingAWound or MakingAnInci-
sion, some anesthesia is given.

¢ A medical consultation with a doc-
tor typically costs between 20 and 200
U.S. dollars.

Table 1 presents some numbers
summarizing the new terms and new

axioms, which were added as part of

this theory.

The CycL Language circa 1994

CycL’s implementation has changed
completely since 1990. The system is
now available both in Lisp and C,
thus enabling us to run Cyc on rela-
tively inexpensive platforms such as
Macintoshes and PCs. However,
thanks to the implementation-inde-
pendent semantics of CycL, this did
not require a reworking of the entire
KB. Over the last four years, there
has been only one significant change
to CycL: the addition of contexts.

Motivation and Summary of CycL’s
Context Mechanism

Expressions (such as English utter-
ances), used for communication draw
heavily on the context in which they
occur to convey their intended mean-
ing. However, expressions used for
declarative representation in Al have
assumed that there is no such depen-
dence on context [2, 9].

A typical example of context de-
pendence is the influence of the in-
tended use of a KB on the represen-
tation [7]. Some of the aspects of
the representation that are affected
include:

® the vocabulary (i.e, the predicates,
categories, individuals) used for the
representation. For example, Mycn
and Oncocin overlap significantly in
their domains. However, unlike On-
cocin, Mycin has little concept of ex-
tended periods of tume. This is be-
cause these two programs are used
for very different tasks.

® the granularity and accuracy of the
theory.

® the assumptions. The assumptions
that the task allows often lead to a
simplification of the vocabulary to a
point where the assumptions are no
longer even statable within that the-
ory. For example, it is not possible to
state Mycin's assumptions about time
being unimportant, about the patient

being alive, about the availability of

modern medical facilities, using my-
cin’s limited vocabulary.

® Other factors that affect the repre-
sentation include the spatio-temporal
location of use (e.g., our advisor for
choosing among 1990 cars was meant
to be used then, not in 1994), the vo-
cabulary used by the designers of the
KB, for example.

The textbook these
problems is to design, in the first
place, an extremely expressive vocab-
ulary, use a very accurate theory,
make very few assumptions, to make
the representation as context-inde-
pendent as possible. This, however,
produces large complex theories that
use extremely cumbersome vocabu-
laries. These are very difficult to de-
sign, understand, and maintain [1],
and therefore are generally undesir-
able. Even after these heroic efforts,
the knowledge in the KBS will gener-
ally only be partially decontextualized,
especially if it is about people doing
things in the day-to-day common-
sense world. Attempts at producing
completely decontextualized repre-
sentations, in such domains, are des-
tined to be futile.

In sum, then, each particular the-
ory we treat will inevitably incorpo-
rate much of this sort of “context

solution to

134 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

dependence.” The problem is that as
we try to accrete ever larger sets of
theories, as we do and so forth in Cyc,
the various discrepancies in assump-
tions, vocabulary, across theories will
cause the global accreted KB to be-
come mcreasingly inconsistent.

In the past, this has served as a sort
of barrier to how large knowledge-
based systems could grow. The limit
seemed to be around 10,000 rules
(e.g., axioms, assertions). To break
this barrier, each encoded theory in
Cyc explicitly cites its assumptions.
Indeed, the boundary between theo-
ries—between contexts—is generally
due to a change in the assumptions
being made.

How is this done concretely, in
Cycr Using reification, we say that a
set of Cycl. sentences constitute a the-
ory. Assertions (axioms, statements)
in Cyc are not universally true; they
are only true in certain contexts. For
example, the sentence:

ist(NTP, ¥x Twsupportedix) D falls(x))

says that in NPT (a particularly naive
theory of physics), an object generally
falls if it is unsupported. Cyc has
more sophisticated physical theories,
but often NTP suffices for everyday
situations.

NTP is also termed a “context” or
“microtheory” (which in turn is ab-
breviated “mt,” so we might rtalk
about the NTP mt.) The term “NTP”
participates in assertions like “(ist
NTP P)’, meaning P is true in the
NTP microtheory. NTP also partici-
pates in assertions that state various
meta-level things about the theory:
e.g., its scope, when it should or
should not be used, assumptions it
makes. For example, a few of NTP’s
assumptions are that the objects in-
volved are not too many orders of
magnitude larger or smaller than a
breadbasket, are not moving too fast,
are all on or near the surface of the
Earth.

As another example, suppose P is
the statement “an apple costs about
30 cents.” Instead of adding P to the
Cyc KB, we add (ist C; P) where C; is
the context associated with the mak-
ing of this statement P. Note that we
are nof attempting to completely de-
contextualize P. Doing that would

involve making explicit the time pe-
riod over which the statement (that
apples cost 30 cents) is true, where it
is true, what exactly we mean by cost,
to whom it will cost that much and so
forth. Rather, we are simply record-
ing the fact that P has certain context
dependencies, a few of which are cur-
rently explicitly written down. This
provides us with a hook we can use
later for further (but still just partial)
decontextualization. So C; is a “rich
object” [10] in the sense that it cannot
ever be completely described.

A syntax, semantics (i.e., a model
theory) and proof theory for ist is pre-
sented in [4]. Due to space con-
straints, we will only briefly list here
some of the logical properties of con-
texts and of ist:

® Within any context, we assume we
have all of first-order predicate calcu-
lus (FOPC) available. This makes it
possible to use conventional FOPC
tools (including its proof theory) with
contexts.

® Contexts are first-class objects and
ist formulae are first-class formulae.
That 1s, (stcF), (M¢, (ste, F)),
st e F), (st C; Fy /A (ist Cy F), (ist
C, (st Cy F)) are all formulas (where
¢; 1s a variable, C, and Cs are con-
stants and F 1s any formula.)

¢ Each context has a vocabulary asso-
ciated with it.
some contexts in which P might not
be statable (in the vocabulary of that
context) and there might be yet other
contexts in which P 1s stated differ-
ently. For example, C; might state P
as (cost Apple (Cents 30)). Cy might
state P as (VX (apple xX) = (cost X
(Cents 30) USA). C3 might not have
the predicate cost at all, hence P
would not be statable in Cs.°

e A statement might be true in one
context We
would have another context C; where
P is false. For example, Cy might be
about Depression-era America, when
apples cost a lot less than 30 cents.
® The domains associated with difter-
ent contexts (and therefore the scope

So, there might be

and false in another.

If a statement « (not involving ist) involves vo-
cabulary not in the context C,, then we have
st C; @), which of course is very different
from (ist C, Ta).

of the Vand 3 symbols) could be dif-
ferent. This is a direct consequence of

different contexts making different
assumptions. If €, makes the as-
sumption that the spatio-temporal
location of things was late twentieth
century America, this implies that
objects not satisfying this constraint

will be excluded from the domain of

C,.°

¢ The same symbol might denote dif-
ferent things in different contexts.
That is, st is referentially opaque in
its second argument. For example,

means that conventional FOPC prob-
lem solvers can be used, and used ef-
ficiently.

e . as the essennal indexical, 1n
the sense used by Perry [11]. The
idea is the following. Though natural
languages support many different
indexicals (he, she, . . .), one can at-
tempt to replace these with definite
descriptions, thereby reducing the
number of indexicals we have to deal
However, Perry makes the
point that it is not possible to com-
pletely do away with indexicals. We

with.

Table 1. New terms and axioms added as part of Ailments
microtheory

Topic new terms new axioms
Anatomy 8 53
Ailment 20 77
Capability 0 20
Medical care 38 63
Medical costs 8 20
Drugs 30 88
Medical equip 27 G
Facilities 20 100
Insurance 16 42
Medical people 20 90
Reproduction 24 87
Toiletries 0 16
Total 231 726

we can have both ist(C, table (1t)) and
ist(Cs person(It)) The constant [
would obviously denote different ob-

jects in C; and Co.

At any time, Cyc is in a context. The
concept of the system being in a con-
text is defined . . .

¢ . In terms of interactions with
the system. Being “in” the context
called C; and then stating P is equiva-
lent to being in the outer context and
stating (ist C; P);

e ... in terms of problem solving.
When the system is in the context C,
the only axioms available to the prob-
lem solver are those axioms P such
that (ist C; P) is true in the outer con-
text. So, if the system 1s “in” contexi
C,, most (if not all) of the formulas
available involve st, which

do not

"The Barcan formula (ist ¢ (Vx(p x))) & (Vx (ist
¢ (p x))) does not hold; in fact, it does not hold in
either direction

COMMUNICATIONS OF THE ACM july 1994/Vol.37, No.7

need at least one and this he calls the
essential indexical.

Kinds of Contexts

Though there is a single logical ma-
chinery associated with contexts,
there are many different kinds of
contexts and, correspondingly, many
different kinds of uses of contexts. In
general, contexts pr()\'ide a means of
referring to a group of related asser-
tions (closed under entailment) about
which something can be said. Such 2
group of assertions might form one
or more of the following:

® A general theory of some topic. For
example, a theory of mechanics, a
theory of the weather in winter, a the-
ory of what to look for when buying
cars. Contexts used in this sense are
called “Microtheories.” Microtheo-
ries are usually rather large (hun-
dreds or thousands of axioms) and
are long-lived.

Different microtheories make dif-

ferent assumptions and simplifica-
tions about the world. Contexts pro-
vide a mechanism for recording and
reasoning with these assumptions.
For any given topic, such as “the
weather,” there may be different mi-
crotheories of that topic, at varying
levels of detail and generality.

Also, by keeping different theories
distinct, the problem of maintaining
consistency is transformed from thar
of maintaining global consistency to
maintaining local consistency, which
in practice is vastly simpler and faster.
This becomes especially important as
the total size of the KB increases.

* A representation (of some situa-
tion) that is tailored for the problem it
was set up to solve. For example, a
model of a Christmas tree as a perfect
cone, used for determining whether
it will fit in a given space in a store
window or car trunk; a model of
an object as a point mass for deter-
mining its trajectory. Contexts spe-
cific to a particular problem-solving
task are called Problem Solving Con-
texts (PSC). A problem-solving task
might involve answering a single
question or a number of related ques-
tions. These contexts are usually cre-
ated dynamically by the system and
are ephemeral.

® By collecting a small relevant sub-
set of the KB into a bundle, they pro-
vide a mechanism for focusing on rel-
evant information during problem
solving. Often, a PSC is created dy-
namically, has many axioms from sev-
eral Microtheories “imported” into it,
some problem solving goes on “in”
that PSC, an answer is produced and
“exported,” and the PSC is soon for-
gotten and discarded.

e A “very slightly decontextualized”
representation of the utterances
made in a discourse. For example, a
representation that retains anaphoric
and indefinite references in a conver-
sation between two people. In such a
context, a phrasc such as “the per-
son” might not be translated to rep-
resent the actual individual referred
to, but may be represented by using a
term like “(The Person).” Within any
one given context, “(The Person)”

denotes a unique individual, though
it will of course denote different indi-
viduals in different contexts. Such
contexts are called Utterance Con-
texts. As with PSCs, these are also
often short-lived and relatively small.

The microtheory mechanism has

proved extremely useful in the past
several years. It allows Cyc to have

and use theories at different levels of

granularity, fictional contexts, dis-
contexts, problem-solving
contexts for example. It also speeds
up knowledge entry into Cyc, as one
can be quite terse and seemingly
ambiguous in asserting new axioms to
Cyc about the context which it is “in”
at the moment. It also speeds up in-
ference, as much everyday problem

course

solving occurs “in” a context—and
Cyc context
99.9% of Cyc’s terms (and hence as-
sertions involving those terms) from
consideration. For example, when
trying to find your car keys, you
shouldn’t have to (even briefly) con-
sider how many legs an arachnid has.

From the point of view of a single

the typical excludes

axiom, a context is a sort of encapsu-
lation for that axiom, capturing the
assumptions, indexicality, and any-
thing else that might be implicit in
the axiom for it to carry its intended

meaning. Fortunately, large bodies of

axioms turn out to share the same
context.

Relative Decontextualization, or
“Lifting”
This is only half the story on contexts,
of course. Keeping otherwise-contra-
dictory axioms insulated from one
another 1s all well and good, but the
other half of the story is finding ways
to import or translate or “lift” axioms
from one context into another, so
they can participate in inferences to-
gether. To do this “lifting,” Cyc must
perform a “relative decontextualiza-
tion" of the imported axioms, as nec-
essary.
When lifting an axiom from one
context to another, the ontologies
(vocabulary and languages) and as-
sumptions associated with the origin
context and target context are likely
to be somewhat different. These dif-
ferences need to be factored in dur-

136 .1y 1994/V0l.37, No.7 COMMUNICATIONS OF THE ACM

ing the lifting so that the lifted axiom
means more or less the same thing
in the target context as it did in the
origin context. “Lifting” needs to
be as meaning-preserving as possible.
For a model-theoretic definition of
“meaning-preserving relative decon-
textualization,” see [4]. The following
short example illustrates this concept.

One of Cyds microtheories,
Workplace CodeOfConductMt, describes
the behavior of individuals while at
work. This microtheory assumes that
any “people” mentioned in its axioms
are sane adult human beings. One of
the axioms of the theory says “in of-
fice settings, people generally don’t
make loud noises.” Now suppose that
Cyc is told about a situation in which
a baby is brought into an office by a
parent; that is, Cyc is asked to reason
about this situation in a new problem-
solving context (PSC,.) Since the in-
fant does not satisfy the “sane adult”
assumption made by the context
WorkplaceCodeOtConductMt, Cyc
will not predict that the infant will
remain quiet. On the other hand, Cyc
will predict that the parent—who is
still assumed to be sane and adult—is
not likely to loudly scold or shush the
child, even if the child is loud.

Notice that this illustrates how the
denotation and scope of ¥and 3 in
different contexts is typically differ-
ent, and axioms containing variables
have to be appropriately modified
during lifting.

A different sort of transtormation
that Cyc must often make, as part of
“lifting,” is one of change of vocabu-
lary. For example, in one context,
“cost” might be a binary predicate,
but in another context it might be ter-
nary. One context might implicitly
temporally scope the information
contained in it (e.g., a 1990 automo-
bile selection advisor; a medical diag-
nosis program that assumed all tests
were performed at more or less the
same tme, not days apart.) A context
(especially an
might use indexical terms such as

utterance context}
“Now" and “He.”

The Default Rule
(DCR) is one of Cyc’s heuristics for
lifting. The intuition behind the DCR
can be explained by the following
analogy. Consider a physicist and a

Coreference

geologist talking to each other about
some problem. There will be differ-
ences in the way each looks at the
problem. These differences will be
reflected in the vocabulary and lan-
guage they use. When physicists say
that some process is fast, they mean
something different than when the
geologist says that a process is fast.
However, despite the differences in
their languages, there is more in
common between the two languages
than there are differences between
them. They refer to the same concept
when they say “year” or “Earth” or
“molten” or “mass.” Since they refer
to the same concepts, they share most
of the axioms associated with these
concepts.

We are saying that most people
share not just most of the terms in
their vocabulary, but also most of the

axioms assoclated with these terms. If

they shared too little, communication
would be impossible; if they shared
too much, communication would be
UNNEeCcessary.

Cyc’s situation is similar. Though
there are differences between con-
texts, those are the exceptions, not

the norm. Most of the time, most of

the meaning of most of the terms are
shared by most of the contexts.

The DCR consists of two parts. The
first part states that most terms retain
their denotation across contexts. The
second part states that, as a default,
there is a maximal overlap between
the denotations of a predicate (or

function) symbol across contexts. If

Cyc knows (P a) (where @ is a con-
stant) is true in context ¢, then as a
default (P a) is believed to be true in
every other context co.* Correspond-
ingly, if a nonatomic term (F g) has a
value h in ¢, then as a default, it has
the same value in c».”

Contexts and Interagent
Communication

The context mechanism described
forms an important part of any sub-
strate upon which interagent com-

*Assuming of course that (P a) is a legal term in
cy; in particular, both “P” and “a” must exist in
the ontology of ¢, P must still be a unary predi-
cate there, etc,

* Again assuming that the term (F g), and also &,
are syntactically legal in context cy.

munication takes place. It is inevita-
ble that any given pair of agents will
have significant differences in their
vocabulary, and—even where their
vocabularies overlap—they will asso-
ciate slightly different meanings with
each term.

It is important to be able to allow
for a partial sharing of the meanings
of most terms, that is, to not be forced
to either assume they mean exactly
the same thing or assume they are
entirely different. The context-based
approach of “sharing most of the
meaning most of the time” provides
Cyc with exactly this functionality.

Contexts and Inference

The context mechanism (most specif-
ically, the notion of Problem Solving
Contexts) also plays a very important
role in speeding up inference. The
primary observation on which this
is based is the following: the world
is almost completely hierarchically
decomposable. For solving any one
problem, most of the things (and
hence knowledge about those things)
in the world are irrelevant. The only
relevant objects are those that are
“proximate” (and typically, this
means spatio-temporally proximate)}
to the situation at hand. So, if one
were trying to determine whether to
g0 to a certain restaurant, the num-
ber of U.S. Supreme Court Justices is
completely irrelevant. In fact, the in-

ference engine would be better off

not even being aware of (having to
consider even momentarily) that fact.

There are two factors that make
inference harder as the size of the KB
increases: (1) the total number of axi-
oms and; (2) the number of possible
bindings for each of the variables in
these axioms. Though the total num-
ber of axioms relevant to the task may
be extremely large, it is unlikely that
the total number of objects that should
be considered as bindings for the
variables in these axioms is equally
large. So, what we need is some form
of focusing mechanism to encapsulate
the situation about which questions
are being answered in order to con-
sider only the objects in the situation
(or at least give them priority) as po-
tential bindings. This is exactly what
CycL’s context mechanism—more

precisely, the Problem-Solving mech-
anism—does.

Cyc-Based Natural Language
Processing

Being able to understand texts is an
important part of the Cyc long-range
plan. In the long run, the only way
that Cyc is going to be able to keep
abreast of any reasonable fraction of
the happenings in the world is by
reading texts. Even in the short run,
the ability to understand on-line texts
can be used as the basis for a tool that
will amplify human KEs (knowledge
enterers) as they continue building
and testing Cyc. For example, when a
KE is entering knowledge about
medicine, this tool should be able to
consult an on-line encyclopedia or
dictionary and make a list of medical
instruments (along with their uses)
and semiautomatically enter them
into the KB (i.e., after some inspec-
tion and perhaps disambiguation and
elaboration by the KE). Preparing
such a list could even be done with
only a very partial understanding of
the text.

We now describe the Cyc-based
natural language understanding pro-
gram that we have been building over
the last year. Our methodology has
been empirical and corpus-oriented;
we take up text corpora and system-
atically go through them, modifying
the system to handle them. As with
other parts of Cyc, we have borrowed
heavily from many different ap-
proaches—in this case, many differ-
ent linguistic theories. We should
point out that our focus is on translat-
ing utterances into CycL, not on cata-
loging or explaining linguistic phe-
nomena. It is also not our goal to
show that any one tool (including
Cyc) is adequate, or even required, to
do 100% unrestricted NLU (natural
language understanding).

Anatomy of the Natural Language
System

The Cyc-based natural language sys-
tem, CNL, consists of four major
modules, each of which we describe
in turn: lexicon, syntax, semantics,
and postsemantics.

¢ Lexicon. The lexicon not surpris-
ingly contains information about

COMMUNICATIONS OF YHE ACM July 1994/VoL37, No.7 13T

words. For each word, it contains the

different morphological variants of

the word and their lexical properties
(such as their part of speech). It also
specifies the mapping of different
word structures into Cyc expressions.
The lexicon is currently part of the

main KB; it is encoded in the form of

Cyc assertions, just like any other
assertions.
® Syntax. The syntax module cur-

rently consists of a set of rules written
in a context-sensitive grammar. Its

function is somewhat less than that of

the syntax modules in more tradi-
tional NL (natural language) systems;
its goal is not to come up with com-
plete parse trees. Rather than trying
to resolve issues like attachment
(which are better dealt with in seman-
tcs), the Syntax Module’s goal is
merely to identify parse structures
with sentence fragments and present
the results in a neutral—hence ambi-
guity-preserving—tfashion.

For example, consider the sen-
tence: “He killed the girl with a
branch.” The output of the syntax
module is the following set of “par-
selets™:

(subjectOfVerb [killed] [He])
(objectOfVerb [killed] [girl])
(article [girl] [the])

(article [branch] [a])
(withEP ref [branch])

“[branch]” is a complex structure
that records the set of word-senses of
the word “branch” that are syntacti-
cally consistent with the preceding
sentence. Similarly for the other
[...]’s.

“withEP” is a predicate that points
to the various meanings of the word
“with” in English (instrument, pos-
session,...) along with linguistic
knowledge about constraints on these
meanings.

“ref,” in the last parselet, is a dan-
gling referent. In the Semantics (and,
if necessary, Post-Semantics) stage of
processing, the Cyc KB is called on to
infer the most plausible meaning of
“with,” and thus to determine what
the dangling referent “ref” most
likely refers to.

Techniques from several different
approaches (e.g., feature-based
grammars, unification grammars,

phrase-structure grammars) have
been used in the syntax module. We
plan to soon incorporate large-
corpus-based statistical techniques to
help in guessing the parts of speech
of a word.

¢ Semantics. The goal of the seman-
tics module is to transform the output
of the syntax into a CycL. expression
that preserves most of the discourse
context dependencies of the utter-
ance. The output of syntax is con-

verted into a set of word-structures of’

word-types such as

(<Qualifier > <NP >},
(<Ditransitive-Verb > <NP >
<NP> <NP>).

For each word and word-type, the
lexicon contains Cycl. expressions
(possibly as a function of the terms
that might appear in the word-struc-
ture in which that word-type occurs).
These Cycl. expressions are com-
bined according to a set of rules (that
are reminiscent of Montague’s rules),
to provide the overall CycL transla-
tion. While doing this, the semantics
module also has to resolve the differ-
ent ambiguities that might have been
left by syntax. For doing so, semantics

might consult not just the output of

syntax but also the “raw’
ance itself.

input utter-

The output of the Semantics mod-
ule is ready for inclusion into the ut-
terance context corresponding to the
utterance. We heavily exploit the con-
text abilities of Cyc here. The transla-
tion at this point still contains indexi-
cal terms such as “He,” “It,” (The
Man).

Consider our example again: “He
killed the girl with a branch.” After
attachment guesses, this module has
produced:

(([killed])(normal-verb [He] [killed]

[girl]) (withEP [girl] [branch]))
(([killed])(normal-verb [He] [killed]

[girl]) (withEP [killed] [branch]))
Figure 4 illustrates what is handed to
the Post-Semantics module after this
stage, now in order of decreasing
preference:

Note that some parses have already
been eliminated for semantic incon-
sistency. For example, ..(ac-

'33 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

companiedBy $x (AEF Branch-

Tree)))

¢ Post-Semantics. In this phase, CNL
disambiguates the references of in-
dexicals, such as “yesterday” and
“He,” when possible, and also makes
task-dependent modifications to the
translation. Suppose the user is cap-
tioning images, and inputs A girl sit-
ting on a sofa’’; then this is the stage
at which Cyc would explicitly record
the fact that this is a description of a
photograph (i.e., that a certain photo
depicts a girl sitting on a sofa).

In the case of “He killed the girl
with a branch,” suppose that prior
utterances have set up a context in
which there are three girls walking
side by side, and one of them is hold-
ing a delicate, valuable golden
branch. Then the Post-Semantics
module would reverse the Semantics
module’s choice about “..with a
branch™ meaning instrument (of the
man), in favor of it meaning some-
thing being held (by the girl who is
holding it.)

To give a rough idea of where the
system stands as of March 1994, the
lexicon has about 12,000 root words
(where all the different variants of a
word such as “bear” would come
under one root). The Syntax module
can properly handle about 75% of the
sentences found in the news stories of
a typical issue of the newspaper USA
Today. And in cases in which Cyc
knows all the proper nouns in the
sentence, the Semantics module can
properly handle most of the sen-
tences parsable by the syntax module.
By “properly” here we mean that the
output is as good as what our knowl-
edge enterers independently come
up with, when asked to manually
translate the material into CycL.

Cyc Applications
Here we examine criteria for what
makes for good Cyc applications,
then take a brief look at several recent
such applications.

Criteria for Good (early) Cyc
Applications

Though Cyc is a very generic tool,
tasks that make for good Cyc applica-
tions (at least for the next few years)

all share the following properties:

® Low infrastructure cost. Until Cyc
has proved itself in other areas, it
would be unwise to commit to a Cye-
based application that required an
enormous capitalization or retooling.
Using Cyc in every classroom in a
school district might be great, but
would require each classroom to have
a computer running Cyc.

® Incremental use of Cyc. The appli-
cation should be a “fail-soft” one: if
Cyc can recommend something,
great. Otherwise, the program carries
on much as the existing software
would, for that task.

¢ Off-line. Choosing an application
in which rapid real-time response is
required is just creating one more
obstacle to having a Cyc-based appli-
cation succeed.

® Moderately “stylized” use. That is,
the application program’s use of Cyc
should be characterizable by some
small number of high-frequency
query types, which can be optimized,
if necessary, by adding one or more
new heuristics for rapid inference.

¢ Need for common sense. There
may be little need for Cyc, if the task
is very technical and/or very narrow
and/or very simple, and/or very
highly stylized. In such a case, it
might suffice to use an expert system,
or to write a custom non-Al applica-
tion program.

¢ Centralized running. Ideally, the
application should only have to run
on one centralized machine (e.g., one
machine running Cyc in each super-
market). If every end-user device
must run Cyc, that would eliminate a
vast fraction of the market for the
next 3 years or so (i.e., until the aver-
age low-end PC was at about the mid/
high-1994 level in speed, memory,
and disk).

Recent Prototype Applications
There are two broad tasks that we
have decided to focus on for the first
generation of Cyc applications.

® Person modeling: The basic idea

about that person such as their fam-
ily, their job, their interests. Such a
model can then be used for various
purposes such as identifying new
postings that might be of interest to
them or product offerings they might
be interested in. Here are two exam-
ples of suggestions such an applica-
tion might provide:

Let us suppose that Fred, a math
teacher, has recently had surgery and
is confined to his bed for a month.
The system comes across an adver-
tisement for a used chess computer.
Given Fred's situation, it is quite pos-
sible that he might be interested in
seeing this offering. However, the
system should know enough not to
bring advertisements for volleyball
nets, for example, to his attention,
even if he is known to be an occa-
sional volleyball player. Making (or
not making, as the case might be)
these connections does not involve
very sophisticated inference, but re-
quires knowing something about a
very significant range of topics—
something that only Cyc is good at.

After he gets out of the hospital,
Fred decides to take a vacation in
Hawaii. The system comes across an
announcement for a big conference
(on a topic that has nothing to do
with Fred) that is going to be held in
the same hotel where Fred is plan-
ning to stay, at the time Fred is going
to be there. This is now something
that Fred would be interested in (he
might consider changing hotels, for
instance). Again, this does not involve
any sophisticated inference, but

draws significantly on the breadth of

knowledge that Cyc has.

e Information Access: Information
access has traditionally been very syn-

tactic in the following sense. The user
specifies some set of words (as part of
a command) and a search of some
sort is conducted for the occurence of
these words (the actual pattern of
words searched for is a function of
the command). This approach covers
everything from simple string-search,
to Boolean combinations of key-
words, to spreading activation using
generalization/specialization
and a thesaurus, to retrieving infor-
mation using SQL from relational
databases. This approach works fine
if the user is aware of at least the con-
ceptual “schema” (if not the actual
terminology or field names) of all the
Information Bearing Objects (1BOs)
being searched. Often, the user must
in fact master the literal schema itself.
For example, if one is trying to find
out who the emergency contact of a
colleague is and that information is
stored in a database under the col-
umn title “emrg-reln” (and the user
does not know this or which database
this is in), it is very unlikely that they
will actually find the relevant infor-
mation.

This syntactic approach to infor-
mation retrieval is based on a superfi-
cial imitation of the way communica-
tion between humans works: by the
exchange of words. The difference
with humans is that these words are
“understood” in some fashion before
processing. Imitating this in our pro-
grams, except at the most superficial
level, is not as easy. In order to have
even a shallow understanding of the

rees

Figure 4. The output of stage 2 of
the Cyc-based NL system, ready
to be handed to the Post-Seman-
tics module.

(LogAnd

(LogAnd

(allInstanceOf $x KillingSomeone)
(performedBy $x He)
(cbjectActedOn $x (TheEF Girl))
(toolsUsed $x (AEF Branch-Tree)))

(allInstanceOf $x KillingSomeone)

here is to put together a model of a
person (or organization, etc.) based
on several (possibly disparate) pieces
of information the system might have

(performedBy $x He)
(objectActedOn $x (TheEF Girl))
(holds (TheEF Girl) (AEF Branch-Tree)))

COMMUNICATIONS OF THE AcM July 1994/Vol .37, No.7 ' 39

plethora of words that might be used
to access information, the system
needs to know about a lot of different
things. Going back to our previous
example, in order to understand
what “emergency relation” means,
the system has to have such concepts

as “person,” ‘relation,” ‘“emer-
gency.” If however, the system does
know all this, a very different ap-
proach can be taken to the problem
of retrieval—Semantic Information
Retrieval (SIR). The SIR-based sys-
tem keeps track of what information
is available where at a semantic level
(i.e., in terms of what the data really
means instead of just as a series of
words), interprets queries similarly,
and provides the access based on this
understanding.

In the following subsections we
describe two prototypes we have
built, in which Cyc is used to help do
Semantic Information Retrieval tasks.

Cyccess: Smart DBs and
Spreadsheets

Cyccess is a prototype application
involving the use of Cyc with struc-
tured mformation sources (SIS) such
as databases and spreadsheets.
Cyccess uses Cyc to understand the
contents of an SIS to provide services
such as:

® Consistency Checking: Data in the
SIS can be checked for consistency
with basic common sense. For exam-
ple. it is not reasonable for a person
to be employed before they were
born, or for an automobile to be in
two countries at the same time,

e Information Retrieval: This is as
described earlier.

The key to understanding how
Cyccess works is to understand how
we provide Cyc an "understanding”
of the contents of an SIS. Consider

the SIS shown in Table 2, which we’ll
refer to as PT1.

For the sake of simplicity, we will
only go through this procedure for
something akin to a relational data-
base, but this treatment can be ex-
tended for more complex structures
as well.

® Create a new context for PT1. The
implicit temporal (and possibly other)
assumptions of the database are rep-
resented as assumptions made by this
context.
¢ Communicate to Cyc that the per-
son referred to in the “"HUSB/WIFE”
column is the spouse of the person
referred to in the “name” column.
How will we do that? Let “(Cell i j)”
refer to the thing denoted by the
entry in the cell corresponding to row
i and column j of PT1. We now make
the following assertion to Cyc:
(meaningFormulaPT1 (spouse

(Cell i 1) (Cell i 4))).
That's it. Cyc now knows the meaning
of the “spouse” column. Axioms such
as these are called “articulation axi-
oms” or, as we have previously seen,
“lifting axioms.”

Once Cyc has an axiom like this for
each column in PT1, along with the
network address and format of PTI,
the entire contents of PT1 can be
thought of as “virtually” in Cyc. The
contents of the PT1 database table
may be retrieved by Cycl. queries of
the form (spouse x y). Note that writ-
ing the artculation axiom does not
cause the entire contents of the data-
base table to be immediately brought
into Cyc. Rather, during querying,
there is a sort of “database fault”
(quite analogous to a “page fault”™),
where Cyc generates an appropriate
query (in SQL. or some other relevant
format) to the SIS and retrieves the
information. Once brought in, the

Table 2. Structured information source PT1

NAMI

FredJones x3421 9/1/59 MaryJones

PHONEBIRTHHUSB WIFEEMRG-CTCT EMERG-RELN PHONE

KatyJones daughter 831-5052

140 .1, 1994Vl 37, No.7 COMMUNICATIONS OF THE acM

information is no different than any
other assertions that have been made
“by hand” to Cyc; all of Cyc’s knowl-
edge can be applied to determine
whether the information is consistent,
use the information for performing
other inferences, etc. If we later Ask
for MaryJones’ husband, Cyc will
know the answer is FredJones; if we
Ask whether MaryJones has any chil-
dren, Cyc will argue (guess) that the
answer is yes, since FredJones does; if
we Ask whether Mary is less than 22
years old, Cyc will argue that the an-
swer is no, since she (arguably) has a
child old enough to serve as an emer-
gency contact; and so on.

The traditional approach to per-
forming this kind of integration be-
tween DBs has been to write transla-
tion rules that map from one DB to
another. This is an expensive task,
however, requiring N-squared sets of
translation rules for N DBs. The
Cyccess approach is much less expen-
sive, requiring only N sets of transla-
tion rules for N SIS’s (one set of rules
that maps each SIS to Cyc).

Note that in order to retrieve in-
tormation from an SIS, one simply
poses a query to Cyc, in CycL, and
the information is retrieved quite
independent of where it is, what
schema the DB has that is storing it,
etc. We do (Ask (spouse FredJones
$x)), and we need have no idea that
Cyc might be accessing PT1, let alone
that Cyc will be issuing some SQL
query involving the field HUSB/
WIFE.

In the current Cyccess prototype,
one can, alternatively, construct cer-
tain queries just by clicking appropri-
ately on an empty cell in one SIS; this
in effect generates a CycL. query (cor-
responding to the meaning formula
of that cell), asking Cyc to try to infer
(guess) a value for that empty cell.
That inference process might involve
other cells in the same SIS, cells in
other SISs (whose existence the user
might be unaware of), and other axi-
oms anywhere in Cyc.

The Cyccess prototype can also be
asked to consistency-check the entire
SIS. To do that, the information in
the entire Structured Information
Source is then actually “lifted” into
Cyc’s KB, checked for consistency

with itself, with common sense, and
with other specific knowledge Cyc
has, and the cells containing potenti-
ally bad information are passed back
to Cyccess which then (in its current
implementation) gives them a pastel
tint to draw the human’s attention to

them.

Cyccess and Enterprise integration
Enterprise Integration—the idea
that different business processes
(both inter- and intra-business) can
be better integrated by sharing infor-
mation—has become quite popular
in recent years.

The standard approach to ena-
bling sharing of information has been
to impose standards on how this in-
formation is to be stored. There are
numerous efforts under way for stan-
dardizing such things as “patient rec-
ords” and “product descriptions.”

There are many problems with try-
ing to standardize. As we mentioned
at the very beginning of this article,
given so many different players, it is
unlikely that everyone is going to be
willing to adopt a single standard.
And even if they do, it is unlikely the
standard will be able to predict all the
information needs of the enterprises
involved and incorporate them all,
especially over periods of years and
decades.

Cyccess exemplifies a very differ-
ent approach to this problem. Rather
than standardizing the schemas
themselves, the idea is to use one very
expressive metaschema (i.e., Cyc) as
an interlingua to translate among dif-
ferent schemas.

Image Retrieval
While the word-based approach is
marginally adequate for retrieving
textual data, it completely fails for
images, videos, and sound. The
Cyccess approach however does not
depend on the IBO (information-
bearing object) being textual, and can
therefore be extended to cover such
sources of information as well.
Consider the task of finding images
relevant to some query. Current
word-oriented searching techniques,
involving Boolean combinations of
keywords, thesaurus lookup, for ex-
ample, are just barely adequate with

today’s 100,000-image libraries. They
will fall woefully short when the next
few years make libraries 10, 100, or
even 1,000 tmes that size available.

In the current Cyc prototype of
this application we have on-line a
database of digitized still images and
videos, each of which has a “caption.”
The captions are entered in English,
and then CNL (or a human knowl-
edge enterer) translates them into
CycL. axioms.

Similarly, querying is done by issu-
ing CycL queries (through a NL in-
terface) and CycL performs matching
between the captions and the images,
performing inference as necessary.
Let us consider an example of how
this works.

Consider an unage of a gl lying
on the beach, which is unsurprisingly
captioned with the English sentence
“A girl is lying on the beach.” This
sentence is converted to CycL and
stored in Cyc. Months later, someone

poses the query “show me images of

people at risk of getting cancer.” This
is then translated into Cycl. and is-
sued as a query and the system re-
sponds with the earlier captioned
image. The inference involved in de-
termining that the girl is sunbathing
and thus at risk of getting cancer is
quite simple. However, if the system
were not able to go from the fact that
she 1s lying on the beach to the likely
conclusion that she i1s sunbathing, to
skin cancer, there is no way in which
it would have been able to do the
retrieval.

Another example is when one asks
the system for images evoking cute-
ness. It first asks whether one means
cute as in attractive or cute as in
heart-warming. After the latter is cho-
sen, it finds many such images. A typ-
ical one is captioned "A dog being
carried in a backpack.” Note that no
element of the picture—dog, carry-
ing, backpack—is inherently cute,
but Cyc¢ knows that animals in un-
usual places are cute.

This semantic image retrieval pro-
totype illustrates how relatively shal-
low knowledge about a very large
spectrum of topics can change the
way information retrieval works.

Semantic File Systems

The two previous Cyc-powered pro-
totypes (Cyccess and Image Retrieval)
illustrate two pieces of what might be
called “a Semanuc File System.”

The idea here 1s that instead of
organizing all of one’s IBOs in some
kind of tree structure (as we currently
do on our hard disks, for example),
one simply captions all of one’s files
and then just drops them into a
“pile.” Having done this, retrieval is
done by asking for the 1BO “by con-
tent.” The pile could include not just
files, but such things as one’s email
messages.

In fact, consider that everyone may
very well elect to give up privacy on
10% of their personal files, in ex-
change for access to 10% of the files ot
everyone else in the world. In that sit-
uation, the current mnemonic tricks
we use for naming our own files,
searching for words or phrases we
recall putting somewhere in them
just won't work at all, and something
like the semantic file system will be-
come a necessity.

Furthermore, with a semantic file
system, retrieval could be proactive.
The system could choose to bring
some IBO (e.g., snippet of a file,
email message, cell in a spreadsheet,
captioned image, notice posted on a
bulletin board) to the user’s attention
based on its model of the user, the
current task they are working on, and
S0 on.

conclusion

After almost a decade, the Cyc project
is still on target. The CNL (Cyc-based
NL understanding and generation)
subsystem is developing synergisti-
cally with the Cyc KB, and we expect
a sort of crossover to occur in the next
two years, by which we mean that
most of the knowledge entry will take
place by semiautomated NI under-
standing, with humans able to take
the role of tutors rather than brain
surgeons.

Hardware has kept pace with our
hopes (and Moore’s Law), and Cyc is
now running in C on standard plat-
forms (e.g., Sparc-10s, Mac-11s).

The first few Cyc-based applica-
tions are emerging, at least in proto-
type form, and they are extremely

COMMUNICATIONS OF THE A€M July 1994/Vol.37, No.7 ‘ ‘1

encouraging. Their nature is a bit dif-
ferent than what we expected in
1984—namely a focus on helping
with information management rather
than helping expert systems be less
brittle—but if anything that means
their potential impact is going to be
even larger than we expected.

The prospect is there, finally, for
Cyc to be the vector of intelligent
agents in the next few years. We in-
vite collaborators who will help us
work toward that exciting goal.

Acknowledgments

We thank all the members of the Cyc
group, past and present, for their
help in building and testing the sys-
tem. We would like to specially single
out Kate Joly for her work writing
much of the CNL grammar. Dexter
Pratt and Nick Siegel played leading
roles in developing the Image Re-
trieval application. Karen Pittman
and Mark Derthick are responsible

for the current state of the Cyccess
application. Keith Goolsbey and
David Gadbois have played key roles
in making Cyc available in C. Cyc is
supported in roughly equal parts
today by seven organizations, and we
would like to take this opportunity to
acknowledge and thank them: Apple,
Bellcore, DEC, DoD, Interval,
Kodak, and Microsoft. @

References

1. Falkenhainer, B. and Forbus, K. Set-
ting up large-scale qualitative models.
In Proceedings of the Seventh National
Conference on Artificial Intelligence.
Morgan Kaufmann, Pale Alto, Calif,,
1988.

2. Feigenbaum, E.A. The art of artificial
intelligence. In Proceedings of IJCAI-
77, Morgan Kaufmann, Palo Alto,
Calif., 1977.

3. Gubha, R.V. The representation of de-
faults in Cyc. Tech. Rep. ACT-CYC-
083-90, MCC, Feb. 1990.

4. Guha, R.V. Contexts: A formalization
and applications. Tech. Rep. ACT-

CYC-423-91, MCC, Austin, Texas,
1991.

5. Guha, R.V. and Lenat, D.B. Pittmarn,
K., Prau, D., Shepherd, M. Cyc: A
midterm report. Commun. ACM 33, 8
(July 1990), 30-49.

6. Laird, J., Newell, A., and Rosen-
bloom, P. SOAR: An architecture for
general intelligence. Artif. Intelli. |. 33,
1 (Sept. 1987), 1-64.

7. Lenat, D.B. and Brown, J.S. Why AM
and eurisko appear to work. Artif. In-
telli. J. 23 (1984), 269-294.

8. Lenat, D.B. and Guha, R.V. Building
Large Knowledge Based Systems. Ad-
dison-Wesley, Reading, Mass., 1990.

9. McCarthy, |. Programs with common
sense. In H. Levesque and R. Brach-
man, Eds., Readings In Knowledge Rep-
resentation. Morgan Kaufmann, Los
Alwos, Calif., 1986.

10. McCarthy,]J. and Hayes, P.]. Some
philosophical problems from the
standpoint of Al. In M. Ginsberg, Ed.,
Readings In Nonmonotonic Reasoning.
Morgan Kaufmann, Los Altos, Calif.,
1987.

11. Perry,]J. The problem of the essential
indexical. Nous 13 (1979), 3-21.

12. Quine, W.V. Natural kinds. In Onto-
logical Relativity and Other Essays. Co-
lumbia University Press, New York,
1969,

About the Authors:

R.V. GUHA is coleader of the Cyc effort at
Microelectronics and Computer Technol-
ogy Corporation. He has authored several
important papers and technical reports,
including a book and various other publi-
cations on Cyc. email: guha@mcc.com

DOUGLAS B. LENAT is principal scien-
tist at Microelectronics and Computer
Technology Corporation. He has led the
Cyc development team since 1984. He is a
prolific author, and has been a faculty
member in the Stanford University com-
puter science department since 1978.
email: lenat@mecc.com

Authors’ Present Address: Microelec-
tronics and Computer Technology Corpo-
ration (MCC), 3500 West Balcones Center
Drive, Austin, TX 78759.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is given that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/94/0700 $3.50

