


Propositional logic v. FOPC
❧ Propositional calculus deals only with facts

● P : I-love-all-dogs
● facts are either true or they are false

❧ Predicate calculus makes a stronger commitment
to what there is (ontology)

● objects: things in the world (no truth value)
● properties & relations  of and between objects (truth

value)
❧ FOPC breaks facts down into objects & relations

● can be seen as an extension of propositional logic



Predicate calculus
❧ Terms refer to objects in the world

● John, Mary, etc.
● functions (one-to-one mapping)
● these terms do not have a truth value assigned to them

❧ Predicates [propositions with arguments]
● marriedTo(John, Mary)

❧ Quantifiers
● ∀ x[valuable(x)]
● ∃ x[valuable(x)]

❧ Equality: do two terms refer to the same object?



Terms
❧ Logical expressions that refer to objects

● Constants (by convention, capitalized)
• e.g., Sue

● Variables (by convention, lower case)
• used with quantifiers
• e.g., x

● Functions
• MotherOf(Sue)
• since functions represent objects, we can nest them

– MotherOf(MotherOf(Ann))

• don’t need explicit names
– LeftFootOf(John)



Sentences

❧ Just as in propositional logic, sentences
have a truth-value

❧ In FOPC, only relations (predicates) have
truth-values

❧ Thus, terms alone are not wffs
❧ They must be (part of) an argument to a

predicate



Making sentences

❧ Atomic sentences: a single predicate
● married(Sue, FatherOf(Ann))

❧ Complex sentences
● just as in propositional logic, we can make

more complicated sentences by combining
predicates using connectives

• or, and, implies, equivalence, not

● quantifiers
● equality



Quantifiers
❧ Allows us to express properties of

categories of objects without listing all of
the objects

❧ Universal
● ∀∀∀∀ x[P(x)] : T if P(x) is true for every object in

our interpretation
● e.g., all men are mortal

❧ Existential
● ∃∃∃∃ x[P(x)] : T if P(x) is T for some object in our

interpretation
● e.g., I love some dog



Equality

❧ An in-fix predicate
● but a predicate all the same [returns true or

false]
● e.g., FatherOf(John) = Henry

❧ termA = termB is shorthand for
equal(termA, termB)

● doesn’t have to be in-fix; convenient
❧ Will be true if termA & termB refer to the

same object



Backus-Naur form
Sentence → AtomicSentence

| Sentence Connective Sentence
| Quantifier Variable,… Sentence
| ¬  Sentence
| ( Sentence )

Atomic Sentence → Predicate (Term,…)
| Term = Term



BNF (cont.)

Term → Function ( Term,…)
| Constant
| Variable

Connective → ⇒ | ∧  | ∨  | ⇔
Quantifier → ∀  | ∃



BNF (cont.)

Constant → A | X1 | John | . . .
Variable → a | x | s | . . .
Predicate → before | hasColor | raining | . . .
Function → MotherOf | LeftLegOf | . . .



Well Formed Formulas (WFFs)?

❧ tall(john)
❧ MotherOf(john)
❧ mother(john, mary)
❧ John = brother(Bill)

● equal(john, brother(Bill))
❧ F(p(1) ^ q(2))



English → FOPC

❧ “Every rational number is a real number”
❧ ∀ x[rational(x) ⇒ real(x)]
❧ What about

● ∀ x[rational(x) ∧  real(x)]?
● ∃ x[rational(x) ∧  real(x)]?
● ∀ x[¬ real(x) ∨  rational(x)]?



More English → FOPC
❧ There is a prime number greater than 100

● ∃ x[prime(x) ∧  greaterThan(x, 100)]
● ∃ x[prime(x) ∧  x > 100]

❧ There is no largest prime
● no-largest-prime
● ∀ x[prime(x) ⇒ ∃ y[prime(y) ∧  greaterThan(y,

x)]]
❧ Every number has an additive inverse

● ∀ x[number(x) ⇒ ∃ y[ equal(Plus(x, y), 0)]



Mixing quantifiers

❧ Everyone likes a dog
● ∀ x[human(x) ⇒ ∃ y[dog(y) ^ likes(x, y)]]

❧ There’s one dog everyone likes
● ∃ y[dog(y) ^ ∀ x[human(x) ⇒ likes(x, y)]]

❧ Everyone likes a different dog
● ∀ x[human(x) ⇒ ∃ y[dog(y) ^ likes(x, y) ^

∀ z[human(z) ^ likes(z, y)] ⇒ x = z]]



Location of quantifiers

❧ Everyone likes a dog
● ∀ x[human(x) ⇒ ∃ y[dog(y) ∧  likes(x, y)]]

❧ What about
● ∀ x[∃ y[(human(x) ∧  dog(y)) ⇒ likes(x, y)]]

• human(Jim) : T; human(Spot) : F;
• dog(Jim) : F; dog(Spot) : T;
• likes(Jim,Jim) : T; likes(Jim,Spot) : F;
• likes(Spot,Jim) : F; likes(Spot,Spot) : T

❧ In general, never use ∃ x with ⇒, and don’t
use ∀ x with ∧



What is the truth-value of FOPC
wffs? FOPC interpretations

❧ The “user” must provide a finite list of
objects in the world

● “universe of discourse”
❧ For each function, a mapping from

“parameter setting” to an object in the world
● e.g., Father(John) maps to “Bill”

❧ For each predicate, a mapping from each
“parameter setting” to true or false



Determining truth-value of FOPC wff
❧ Specify an interpretation, I
❧ Obtain truth-values of

● predicates
• look up functions until only constants remain & then look

up the truth value of the predicate

● termA = termB
• look up functions until only constants remain; true if

same constant; false otherwise

● wffA connective wffB
• compute the truth-value of the wffs
• use connective’s truth table to determine the truth-value

of compound wff (same for ¬ )



Truth-value for quantifiers
❧ ∀ x wff(x)

● successively replace x by each constant in the
interpretation

● if wff(constant) is true for every case, then
∀ x(wff) is true

❧ ∃ x wff(x)
● same as above, but wff(constant) has only to be

true once
❧ assume constants list is never empty



Representing change

❧ On(BlockA, BlockB)
● this is either T or F
● there is no way to change this fact in “basic”

FOPC
❧ Solution: “time stamp” wffs

● add one more parameter to all predicates
indicating when they are true

● On(BlockA, BlockB, S0)
● On(BlockA, BlockC, S1)

• where S0 & S1 are situations or states



Changing the world

❧ Acting (operator applications) changes states
(situations) into other states

❧ We need a name for the new state
● Use functions!
● In particular, the function Result

• maps an action and a state to a new state
• Result(<action>, <state>) ⇒ <state>
• simply a fancy name for a state, just as FatherOf(---)

is a fancy name for some man



Block-world
Block A

Block B

Block C

Table T

On(A,C)

On(B,T)



Block-world example

❧ ∀ x,y,z,s[block(x) ∧  block(y) ∧  table(z) ∧  state(s)
∧  on(x, z, s) ∧  clear(x, s) ∧  clear(y, s)] ⇒
  state(Result(Stack(x, y), s)) ∧
  on(x, y, Result(Stack(x, y), s)) ∧
  clear(x, Result(Stack(x, y), s)) ∧
  ¬clear(y, Result(Stack(x, y), s)

❧ Could now almost use deductions to produce plans
(sequences of action)



What’s missing?

❧ What do we know about c in the new state?
❧ This is a case of the frame problem:

knowing what stays the same as we move
from state to state (like frames in a movie)

❧ “Blocks stay clear unless something is
placed on them during stacking”

❧ ∀ u,x,y,s[clear(u, s) ∧  ¬ (u = y) ⇒ clear(u,
Result(Stack(x, y), s))



Example

❧ Painting a house does not change who owns it
❧ ∀ s,h,p[state(s) ∧  house(h) ∧  human(p) ∧

owns(p, h, s) ⇒ owns(p, h, Result(paint(h), s))]



Alternate approach
❧ Say properties stay the same unless a

specific action performed
❧ ∀ u,x,s,a [block(u) ^ state(s) ^ action(a) ^

clear(u, s) ^ ¬ (a = Stack(x, u)) ^ ¬ (a =
CoverWithBlanket(u)) ^ ¬ (a = Smash(u))
=> clear(u, Result(a, s)]

❧ This usually leads to fewer rules, but it is
less modular

● when new actions defined, we have to double
check every such rule to see if it needs editing



Problems with formalization
❧ Qualification problem

● can we ever really write down all the
“preconditions” for a real-world action?

● E.g., starting a car
❧ Ramification problem

● need to represent implicit consequences of
actions

● moving car from A to B also moves its steering
wheel, spare tire, etc.

● can be handled but becomes tedious



Sources
❧ Computer Science Lab
❧ University of Wisconsin, Madison


