


Logic - recap

● So far, we have seen that:
● Logic is a “language” which can be used

to describe:
●  Statements about the real world
● The simplest pieces of data in an automatic

processing system such as a computer



Logic - recap

● The key characteristic of a statement, or
a piece of data, in logic is its truth value.
There are two possible truth values:
●  True
●  False



Logic - recap

● Simple statements, or simple pieces of
data, can be joined together to give
more complicated structures using
logical connectives.

● The most important of these are “and”,
“or”, “implies”, “equivalent to” and “not”,
for which we use the symbols ∧,  ∨,  ⇒,
⇔, and ¬ respectively.



Logic - recap

● Each of these logical connectives is
defined by a truth table.

●  It is often possible to convert an English
sentence into a logical formula – there
are simple techniques for doing this.



Logic - recap
● Questions:

● “when is this formula true?”
●  “are these two formulae essentially the same?”

● One useful technique for answering
questions about logical formula (such as
above) is to draw up a large truth table
describing the formula/formulae in question.



What is low-level logic used
for?

●  To specify the way in which
individual bits of information are
processed in order to perform the
arithmetic, and all the other forms of
symbolic processing, that goes on
in the circuits of a computer.



What is high-level logic used
for?

●  Used as an unambiguous
language,

●  i.e. as a medium for knowledge
representation.



What is high-level logic used
for?

● Used as a rigorous form of reasoning.
● Deductions which follow the rules of logic

are guaranteed to be correct.
●  This is not necessarily true of other

representation schemes.
● So logic can act as a "gold standard""gold standard"

against which other forms or
representation and reasoning can be
assessed.



What is high-level logic used
for?

● Logic is available for establishing
whether a complicated argument, e.g. a
legal case, makes sense or not.



What is high-level logic used for?
● Logic is a tool for mathematical research.
●  The mathematician has available a set of

propositions which have been established as
true -
● these are referred to as "the axioms".

● He/she has a proposition, or set of propositions,
that he/she wants to prove to be true -
●  referred to as "the theorem".

● Both sets can be written as statements in logic:
● the problem is to find a set of sound logical

manipulations to convert one into the other.



More on processing logical
formulae

● The “build a truth table” technique
described earlier always works,
● at least for the simple form of logic we’ve

been using so far.
●  However, sometimes it isn’t necessary.

Instead, to solve a problem in logic, we
can use:
●  Rules of inference
●  Logical equivalencies



 Rules of inference

● These are well-established ways of
proving an argument in logic.



 The most useful are:
●  modus ponens: P ⇒ Q.   P.  ∴ Q.
●  modus tolens: P ⇒ Q.   ¬Q. ∴ ¬P.
●  disjunctive syllogism:P ∨  Q.   ¬P. ∴ Q.
●  hypothetical syllogism: P ⇒ Q.   Q ⇒ R.

∴ P ⇒ R.
●  contraposition: P ⇒ Q. ∴ ¬Q ⇒ ¬P.
●  In English, the first of these would read “If you

know that P implies Q, and you know that P is
true, then you know that Q is true.”

●  These can be used to establish the truth of
arguments involving complicated formulae.



 Logical equivalences:

●  these are well-established ways of turning
a logical statement containing one set of
logical connectives into a statement
containing a different set.



Logical equivalences

● Here are some of the more important ones.
● Idempotency
P  is logically equivalent to  (P ∧  P)
● Double negation
P  is logically equivalent to  ¬¬P
● Commutative laws
(P ∧  Q)  is logically equivalent to  (Q ∧  P)
(P ∨  Q)  is logically equivalent to  (Q ∨  P)



Logical equivalencies

● Associative laws
(P ∧  (Q ∧  R)  is logically equivalent to ((P ∧  Q) ∧  R)
(P ∨  (Q ∨  R))  is logically equivalent to ((P ∨  Q) ∨  R)

● Distributive laws
(P ∧  (Q ∨  R)  is logically equivalent to ((P ∧  Q) ∨  (P ∧  R))
(P ∨  (Q ∧  R)) is logically equivalent to ((P ∨  Q) ∧  (P ∨  R))



Logical equivalences
● De Morgan’s laws

¬(P ∧  Q)  is logically equivalent to (¬P ∨  ¬Q)
¬(P ∨  Q)  is logically equivalent to (¬P ∧  ¬Q)

● Contraposition
(P ⇒ Q)  is logically equivalent to (¬Q ⇒ ¬P)



Logical equivalences

● Redefining material conditional as a
disjunction or conjunction

(P ⇒ Q)  is logically equivalent to (¬P ∨  Q)
(P ⇒ Q)  is logically equivalent to ¬(P ∧  ¬Q)

● Exportation
(P ⇒ (Q ⇒ R))  is logically equivalent to

((P ∧  Q) ⇒ R))



Logical equivalencies

● It's not necessary to remember the
elaborate names, or the exact details of
these equivalences.

● It is important to appreciate that, by using
one of these equivalences, a logical
formula can be turned into a formula
which looks quite different, but which
actually has exactly the same truth value.



Tautologies and contradictions

• A logical statement which is always true
(no matter what values you give to the
parts that make it up) is called a
tautology.

• A statement which is always false is
called a contradiction.

• All other logical statements are known
as contingent statements.



Tautologies and contradictions

● example: Consider the statement
(¬P ⇒ ((P ∨  Q) ⇔ Q)).

P could be true and Q could be true.
P could be false and Q could be false.
P could be true and Q could be false.
P could be false and Q could be true.
● In every one of these cases, the whole

statement would be true.
● So the statement is a tautology.



Propositional calculus

● The simple form of logic which
we have been using so far, in which
the symbols stand for ideas which
can be expressed as whole
sentences, is known as
PropositionalPropositional Calculus Calculus.



Propositional calculus

● Propositional calculus is decidable:
● it's always possible to decide whether

an argument in propositional calculus
is valid or not.

● You can either use the logical
equivalence rules, and the rules of
inference, described above, or you
can build a big truth table.



Propositional calculus

● Propositional calculus:
●  is the simplest form of logic,
● and also the weakest,

    in terms of its power to express ideas.
● Other forms of logic have been invented

to express more complex ideas.



Predicate calculus

● Another form of logic: first order
predicate calculus.

●  There are many fairly simple, obvious
arguments that propositional calculus
cannot handle at all. 

e.g. All lawyers are scoundrels. Sir James
Thames is a lawyer. Therefore Sir James
Thames is a scoundrel.



Predicate calculus
● 1st order predicate calculus has some extra

features: the statements joined by the logical
connectives can be predicates. e.g.

      a(b)           a(b, c)
          lawyer(Sir_James_Thames)
             owes(Jim, Sid, 500pounds)

These can convey ideas such as "b is an a", “b
has the quality a”, or "b & c are connected by
the property a".
 A predicate can have any number of places, i.e.

items in brackets.



Predicate calculus

● The items inside the brackets of a predicate
can be constants (names of things or
relationships) or variables.
● If they're variables, they don't refer to

specific things; specific items can be
substituted for them.

● When this happens, all variables with the
same name will refer to the same thing.



Predicate calculus - the universal
quantifier

● 1st order predicate calculus has a
symbol ∀∀∀∀  called the universal
quantifier.

● ∀ x means "for every x".



Predicate calculus - the universal
quantifier

● Thus, if lawyer(x) means "x is a lawyer"
and scoundrel(x) means "x is a
scoundrel",

∀ x ( lawyer(x) ⇒ scoundrel(x) )
means "for every x, if that x is a lawyer,
then that x is a scoundrel".
Which is the predicate calculus way of
saying "All lawyers are scoundrels."



Predicate calculus - the existential
quantifier

●  1st order predicate calculus has a

symbol ∃∃∃∃  called the existential
quantifier.

● ∃ x means "there is an x such that".



Predicate calculus - the existential
quantifier

● If lawyer(x) means "x is a lawyer" and
scoundrel(x) means "x is a scoundrel",

∃ x ( lawyer(x) ∧  scoundrel(x) )
means "There is an x such that x is a lawyer,
and x is a scoundrel".
Which means that there is at least one lawyer
who is a scoundrel, and is the predicate
calculus way of saying "Some lawyers are
scoundrels."



Predicate calculus

●  Predicate calculus uses the same
logical connectives as propositional
calculus.



Logic and ambiguity

● One of the problems with converting statements
in English into statements in some other
knowledge representation is that English
statements are often ambiguous.  e.g.

"Someone is mugged in Soho every day."
[Could mean: "a particular person goes to Soho
every day, and gets mugged"; or "A mugging
takes place in Soho every day (not necessarily
with the same victim)".]



Logic and ambiguity

●  Statements in predicate calculus aren't
ambiguous, so translating English into
predicate calculus forces the ambiguity to be
ironed out. The previous statement translates
into:

∃ x( person(x) ∧  ∀ y( day(y) ⇒
(mugged_on(x, y) ∧  mugged_in(x, Soho))))

or    ∀ x( day(x) ⇒ ∃ y( person(y) ∧
mugged_on(y, x) ∧  mugged_in(y, Soho))))



Predicate calculus

● Establishing whether an argument is
valid or not, in First Order Predicate
Calculus:

● this is harder than in propositional
calculus.

● You can't use truth tables.



Predicate calculus

● There are some rules of inference (i.e. ways
of proving an argument) which correspond to
those found in propositional calculus;
e.g.  universal instantiation:

∀∀∀∀ x( p(x) ⇒⇒⇒⇒ c(x) ) p(a).      ∴ c(a).

and the rules already established for
propositional calculus apply here too.



Predicate calculus

● There are techniques for proving an
argument in FOPC - sequences of steps
which will always show that an argument is
true, if it is true.

● If it isn't true, the sequence of steps is liable
to go on for ever, without producing a result.

● For this reason, FOPC is said to be semi-
decidable.



Problems and Assignments

● Read Chapter 2 in the Luger/Stubblefield
book.

● Read chapter 3.3 in the Luger/Stubblefield
book.

● Read chapter 5.4 in the Luger/Stubblefield
book.

● Create a robot planner using predicate
calculus, next program it in Prolog.



Sources

● John Platts


