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ABSTRACT

Spectral representation of multiple-valued input
binary functions is proposed for the first time. Such a
representation is composed of a vector of Walsh
transforms, each of them is defined for one pair of the
input variables of the function. The new representation
has the advantage of being real-valued having by that
an easy interpretation. Since two types of codings of
values of binary functions are used then two different
spectra are introduced. The meaning of each spectral
coefficient in classical logic terms is discussed. The
mathematical relationships between the number of true,
false, and don’t care minterms and spectral coefficients
are stated. These relationships can be used to calculate
the spectral coefficients directly from the graphical
representations of binary functions. Similarly to the
spectral methods in classical logic design, the new
spectral representation of binary functions can find
applications in many problems of analysis, synthesis,
and testing of circuits described by such functions.

Indexing terms: Logic design, Sum-of-products expression, Com-
pletely and incompletely specified multiple-valued binary func-
tions, Standard trivial functions, Orthogonal functions, False, true,
don’t care minterms, Walsh transforms, Spectral coefficients

1. INTRODUCTION

Spectral techniques (Walsh transforms) in digital logic design
have been used for more than thirty years. They have been used to
classification of logic functions, analysis, synthesis, and fault
detection of logic circuits [8}-[13). It has been shown by many
authors that some problems that are difficult to solve in the logic
domain can be solved quite easily in the spectral domain [8]-[13],
[18]. Hence, the interest in developing of new mathematical

descriptions and transforms is growing and manifested by recent
publications [5]-[7].

A multiple-valued input binary function is an extension of a
Boolean function. The multiple-valued input binary functions find
several applications in logic design, pattern recognition, and other
areas [3], [14]-[17], [20]. In logic design, they are primarily used
for the minimization of PLA’s that have 2-bit decoders on the
inputs [16]. A PLA with r-bit decoders implements directly a
sum-of-products expression (SOPE) of a 2"-valued input binary
function. As shown in [15], every set of m Boolean functions,
where each of them has » binary variables, can be represented as a
n + 1 multiple-valued input binary function with n binary inputs
and one m-valued input.
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The choice of an orthogonal transform for a given problem is
very important since it affects the complexity of the calculations in
the spectral domain as well as the calculation of the forward and
inverse transforms. Currently, the main tools that are used for
Boolean and multiple-valued (on input as well as on output) func-
tions are the following transforms : Walsh, Chrestenson, Haar,
Watari, polynomial Fourier transform, number-theoretic transform
and the generalized discrete Fourier transform [2], [11], [12]. In
general, the interpretation of the meaning of spectral coefficients
for all but Walsh above transforms is cumbersome or impossible.
Only Walsh spectrum, that can be applied for Boolean functions,
has interpretation in classical logic terms and the spectral
coefficients can be calculated either from minterms or disjoint
cube representation of the function [5]-[7]. Special transforms for
multiple-valued input binary functions have never been proposed.

In [15] the concept of Mixed-Radix Exclusive Sum of Pro-
ducts was introduced for multiple-valued input binary functions
that points out the usefulness of multiple-valued generalizations of
Reed-Muller transforms. Similarly, in this paper Walsh-type spec-
tra for multiple-valued input binary functions are proposed. There
exist two Walsh spectra for Boolean functions: S and R [8], [9],
[11]. Conventionally, the first spectrum is used for analysis and
synthesis of Boolean functions while the second one is used in the
design for testability of digital circuits [11]. It should be noticed,
however, that each of these spectra can be used interchangeably
with one another since they are linearly related [7], [9]. One can
expect the similar applications of the transforms S and R intro-
duced here for multiple-valued input binary functions.

The main reason for the introduction of such type of new
transforms was for the authors the requirement of having the
transform which has a minimal number of coefficients and an easy
to understand interpretation. This paper introduces a new
approach to spectral methods. First, the transform for a binary
function of n multiple-valued variables is a vector of |,| partial

transforms of all pairs of these variables what minimizes the
necessary spectral information to be kept about the function (par-
tial coefficients). Secondly, the partial coefficients describe some
global properties of the function and can be used not only to gen-
erate final coefficients but also by themselves. Thirdly, the
interpretation of each partial transform is given in classical logic
terms. By investigating links between spectral techniques and
classical logic design methods this interesting area of research is
presented in a simple manner. Moreover, an algorithm is shown for
easily handling the calculation of partial spectral coefficients for
completely and incompletely ‘specified multiple-valued input
binary functions. All mathematical relationships between the
number of true, false, don’t care minterms of binary functions and
spectral coefficients are stated.



All presented investigations can be applied to any multiple-
valued input binary function. In the case that such a function has
more than two multiple-valued variables then either the presented
below approach can be applied to them or the multidimensional
Walsh transform can be used [2]. The latter approach is similar to
pattern analysis and image processing and is not a subject of the
consideration in this paper.

2. MULTIPLE-VALUED INPUT BINARY FUNCTIONS

A multiple-valued input binary function (binary function for
short) is a mapping
AXy, X2, ..., X, )Py xXPy%,....,P, =B, where X; is a
multiple-valued variable that takes the values from the set
P;={0,1,...,p;—1} and B={0, 1,-} ( where — denotes a
don’t care value ). This is then the generalization of an ordinary
n-input incompletely specified Boolean function f :B" — B.

A literal of multiple-valued input variable X;, denoted by X }si ,
is defined as follows:

X‘?i 1 ifX[E S,'
i

0 ifx;es;
where S; C P;.

A product of literals, X3', X3, ..., X3t, (k <n ) is referred
to as a product term (also called as zerm for short). A product term
that includes literals for all function variables X1, X5, X3, ..., X,
is called a full term. A minterm of a multiple-valued input binary
function is a full term in which every set S; reduces to a single log-
ical value. The logical function has value 1 for a true minterm,
value O for a false minterm and is not specified for a don’t care
minterm. A sum of products is denoted as a sum-of-products
expression (SOPE) while a product of sums is called as a product-
of-sums expression (POSE).

3. DEFINITIONS AND BASIC PROPERTIES OF TWO-
DIMENSIONAL MAPS FOR MULTIPLE-VALUED INPUT
BINARY FUNCTIONS

Two spectral representations S and R are introduced in the
next paragraph for multiple-valued input binary functions. The
analogous definitions exist for Boolean functions (see for example
[71-[9)). In order to apply new spectral representations to binary
functions, they are first represented by the set of two-dimensional
maps on which the Walsh type transforms are performed. The
auxiliary algorithm allowing to present any multiple-valued input
binary function by corresponding to it set of two-dimensional
maps will be introduced.

The approach presented in this article is not the only one pos-
sible to find new spectral representations of the multiple-valued
input binary functions. For example, instead of presenting each
multiple-valued input binary function in the form of two-
dimensional maps it is possible to use high-dimensional Hadamard
matrices and transforms [1]. The presented approach enables, how-
ever, the application of two-dimensional transforms to two-
dimensional maps and, by that, each spectral coefficient has an
easy interpretation in logical terms. Moreover, the spectra can be
calculated by known fast Walsh algorithms that are used in many
areas from image processing to designing of logical circuits [1],
[2], 19], [12).

The following symbols will be used. Let # denote the number
of different variables of a completely or incompletely specified
multiple-valued input binary function. Let p,, denote the number
of different logical values that can be assigned to any of the vari-
ables. It is obvious, that there exists only one such p,, that is maxi-
mal for the entire set of input variables, and that each input vari-
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able can take a different number of logical values.

The following properties are valid for any multiple-valued
input binary function and can be proved by mathematical induc-
tion.

Property 3.1:
represented by
the coordinates, two different variables from the set of all variables
and the dimension of p; x pj where p; and p; are the maximal
number of logical values that can be assumed by two different
variables X; and X j» accordingly.

Property 3.2: A full term of a multiple-yalued input binary func-
tion of n variables is represented by two-dimensional maps.

multiple-valued input binary function can be
two-dimensional maps where each map has, as

n-1 n
full term can be found according to the formula 3 m; Y my
j=1 i=j+1
where m; is the number of logical values of the i ~* literal. This
property is valid for any term. However, for variables that are not
included in this term, one has to take the value of p; instead of m;
in the above formula for each variable X;.

The number of cells (areas on these map) that corrcTond to thj
!

Property 3.3: A minterm of a multiple-valued input binary func-
tion of n variables is represented by r two-dimensional maps and

on each of these maps the minterm is represented by one cell.
Hence the number of cells that correspond to such a minterm is
equal to the number of two-dimensional maps.

Property 34: The two-dimensional p,, X p,, maps described above
can be transformed to partial spectral coefficients by an orthogonal
Walsh-type transform without loss of any information if both
numbers p,, and p,, are some powers of 2, possibly different.

Let us observe, that while in classical tables for multiple-
valued logic [14], [15] each minterm corresponds to a cell, in the
proposed representation each minterm is represented by a set of
cells, one cell from each map. The last requirement (Property 3.4)
for the dimension of the map representing the function is due to
the known ways of generation of Hadamard matrices and require-
ments for the orthogonality of such matrices [19]. Since such a
requirement would limit the possible number of different logical
values for input variables then the more general approach is
presented below.

Proposition 3.1: The two-dimensional p,, X p, map is expanded to
the two-dimensional pjk xp¥ map where p, and p, are any
integer values describing the multiplicity of logical values of input
variables, P =pm+4—(prmod4) and
DX =Dn+4~(p,mod4) accordingly. When the map is
expanded then all introduced cells have don’t care values.
Proposition 32: The number of additional don’t care cells that
have to be added during the expansion process of the two-
dimensional p,, X p, map is equal to

a) pnl4-(pnmod4)] when (p,modd)=0 and
(Ppmmod 4)#0

b) pnld4-(p.mod4)] when (pmmod 4)=0 and
(ppmod4)+0

©) Pald4—(Pnmod4)]+p,[4-(p,mod4)]
+[4=(pnmod4)] [4-(p, mod 4)] when both

(Pmmod 4)+#0and (p,, mod 4)=0.

The following algorithm describes how an arbitrary
multiple-valued input binary function can be represented by the set
of two-dimensional maps. It is assumed in the following descrip-
tion that the function is represented in the SOPE form. The dual
algorithm can be derived for the function represented in the POSE



form. It is obvious, that the algorithm can be applied to the binary

function represented in the form of cubes as well.

Algorithm 3.1: Transformation of multiple-valued input binary

function in SOPE form to the set of two-dimensional matrices of

any dimensions.

1. Set nl (number of literals in the binary function) and n¢
(numbser of terms in SOPE form).

2. For each pair of literals of the function create a two-
dimensional p,,; X P, map where pp, and py,; are the maxi-
mal values of the i ~* and j ~t literal. The number of such

maps is equal to ';_ (Property 3.1).

3.  For each term from the SOPE expression enter the true values
into some cells of the two-dimensional maps. The total
number of such cells in the maps having true values can be
found for each term according to Property 3.2. If step 3 has
been performed for each term (i.e, nt times) then stop.

Hence, by using Algorithm 3.1, one can represent any
multiple-valued input binary function in the form of the set of
two-dimensional maps. In general, both dimensions of such maps
are equal to any integer numbers. Due to Property 3.4, the addi-
tional algorithm converts a two-dimensional map to its equivalent
(from the point of view of the logical function this map is
representing) that has the dimensions equal to 2/ where j is any
integer number.

Algorithm 3.2: Conversion of any two-dimensional map having

one or two dimensions different from a power of 2 to its logical

equivalent having the dimensions that are powers of 2.

1.  Set the value k - the number of two-dimensional maps for a
given multiple-valued input binary function.

2. For each map do:
k=k-1.
If either p, or p, or both these values are not some
powers of 2 then modify either p,, or p, or both to either
p orp¥ or both according to Proposition 3.1.
If there was any modification of the dimensions of the
map then fill the expanded map’s cells with don’t cares,
and the number of such cells can be calculated accord-
ing to Proposition 3.2.

3. If k =0 then stop otherwise go to step 2.

The following proposition deals with the dimension of the
transform matrix that is necessary to calculate the spectrum of a
two-dimensional map. In the case when Algorithm 3.2 has not
expanded the original map’s dimension (dimensions) then instead
of p or p} the original values p,, and p, should be used in the
following formula.

Proposition 3.3: The Hadamard-Walsh matrix T of the dimension
2"%2" can transform the two-dimensional map having the dimen-
sion p x px iff n =log; TV * p:‘:T.

The application of both algorithms will be shown in the fol-
lowing example.
Example 3.1: Consider the following three-variable multiple-
valued input binary function:
f1=X{°} yil} 4 x(12) y{0.3} z{1,2.3}

Then, according to Algorithm 3.1 nl=3 and nt =2. The three
two-dimensional maps for this binary function that correspond to
each pair of the variables are shown in Fig. 1. (the areas on the
maps filled with ones and zeros only). For instance, the term
x {9} y{1} corresponds on the map X Y to the cell X% y{1 on
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the map Y Z to the cells Y1/ z{0.1.2.3] and on the map X Z to
the cells X{%/ Zf% 123} Then all these areas are filled with
ones. Originally, according to Algorithm 3.1 the dimensions of
these maps are 4 x 3, 4 x4 and 3 x4. After the application of
Algorithm 3.2 the dimension of the first and third maps have
increased to 4 x4 and the expanded areas are filled with don’t
cares. The final result is shown in Fig. 1.

Hence, by using Algorithm 3.1 and Algorithm 3.2 one can
always represent a multiple-valued input binary function in the
form of a set of two-dimensional maps having the dimensions
equal to powers of 2. In the next paragraph it will be shown how
to apply Walsh-type transforms to these two-dimensional maps.

4. BASIC PROPERTIES OF HADAMARD-WALSH SPEC-
TRA S AND R FOR TWO-DIMENSIONAL MAPS
REPRESENTING MULTIPLE-VALUED INPUT BINARY
FUNCTIONS

In order to shorten the notation and make it similar to that of
the other authors, it is assumed that the symbol » that is used in the
sequel confirms to the requirements of Proposition 3.3. The
Hadamard-Walsh spectrum § of a two-dimensional map is an alter-
native representation of this map. When the map is represented as
a vector V formed of the consecutive rows, then the Hadamard-
Walsh spectrum S is formed from the multiplication of the <+1, 0,
-1> vector representation VS ( corresponding to the original vector
V for an incompletely specified map ) by a 2" x 2" Hadamard-
Walsh matrix T [2], [9], [12]. In the coding scheme, the conven-
tional <0, 1, -> values correspond to <+1, -1, 0> coding, respec-
tively (- stands for a don’t care). In the case of a completely
specified two-dimensional map the conventional <0, 1> values
correspond to <+1, -1> coding only.

If one keeps the original coding scheme then the alternative
spectrum R can be defined. The Hadamard-Walsh spectrum R of a
two-dimensional map is an alternative representation of this map.
When the map is represented as a vector V formed of the consecu-
tive rows, then the Hadamard-Walsh spectrum R is formed from
the multiplication of the <0, 1, 0.5> vector representation yR
(corresponding to the original vector V for an incompletely

specified map) by a 2" x 2" Hadamard-Walsh matrix T [2], [9],
{12]. In the coding scheme, the conventional <0, 1, -> values
correspond to <0, 1, 0.5> coding, respectively.

The principal properties of the spectra R and S for two-
dimensional maps are described below. It will be assumed without
loss of generality that each map has two 4-valued variables as the
coordinates denoted in this description as X - horizontal variable
and Y - vertical variable, accordingly. Also, for the simplicity of
the used notation, instead of using the full set notation for the
description of multiple-valued literals only the members of the set
will be denoted. For example, the literal X{ ¥ will be described
as X '3 - the same abbreviation in the notation for spectral
coefficients will be used as well. When the properties of the spec-
tral coefficients from both spectra S and R are the same then such
properties will be given for the coefficients from the spectrum S
only and this fact will be noticed in the description of a given pro-
perty. When these properties differ then both spectra will be
described separately.

Given below new properties of the spectra for two-
dimensional map representation of the multiple-valued input
binary functions can be proved in an analogous way to the proofs
derived for Walsh transforms used in Boolean logic [8], [9], [11].
The used below names of transforms, refer, of course, to the
multiple-valued counterparts of the respective transforms known in



the literature as Walsh-Kaczmarz, Walsh-Paley, Rademacher-
Walsh, and Hadamard-Walsh. Only these four basic orderings are
compared. Although the transform matrices for each of these four
basic orderings are the same for multiple-valued input binary func-
tions and Boolean functions, the former are described by the vector
of spectra of each two-dimensional map (where each of such maps
is treated as a separate two-variable binary function), while the
latter is described by only one spectrum (a Boolean function can
be treated as only one two-variable binary function and be
represented by only one two-dimensional map). Due to the lack of
space, the properties of spectra of two-dimensional maps are only
given but not proved and the detailed algorithms of calculation of
these spectra are not included. The careful reader can, however,
reconstruct these proofs from the orthogonality of transform
matrices and the requirements on their dimensions. Since in the
classical Boolean domain the Hadamard ordering is preferred over
other orderings, all our examples are given for this ordering only.

4.1. The transform matrix is complete and orthogonal, and there-
fore, there is no information lost in the spectra S and R, con-
cerning the cells of the map.

Only the Hadamard-Walsh matrix has the recursive
Kronecker product structure [1], (2], (9], [21], and for this
reason is preferred over other possible variants of the Walsh
transform, known in the literature as Walsh-Kaczmarz,
Rademacher-Walsh, and Walsh-Paley transforms.

Out of the four considered orderings of Walsh functions, only
the Rademacher-Walsh transform is not symmetric ; all other
variants of Walsh transform are symmetric, so that, disregard-
ing a scaling factor, the same matrix can be used for both the
forward and inverse transform operations.

When the classical matrix multiplication method is used to
generate the spectral coefficients for different Walsh
transforms, then the only difference is the order in which par-
ticular coefficients are created. The values of all these
coefficients are the same for every Walsh transform.

4.2.

4.3,

4.4,

4.5. Each spectral coefficient s; (as well as ry) gives a correlation
value between the two-variable input binary function F
corresponding to a given two-dimensional map and a stan-
dard trivial function u; corresponding to this coefficient. The
standard trivial functions for the spectral coefficients are,
respectively, for the dc coefficient (direct current coefficient)
- the universe of the function (where all cells on the map have
true value) denoted by ug; for the coefficients sy1.2, syz.3,
Sy1.2, sy2.3 etc. (first order coefficients) - the literals X+ 2,
X%3, 712,723 of the binary function shown on the map
and denoted by uyi i, uxi ¥, uyii, uyi; for the coefficients
Sxl.2g@y23, Sx23@yl.2, Sx2.3gy23, Syl.2 oy!z2, etc. (second
order coefficients) - the exclusive-or function between literals
xl2gy23 xi3gyl? x23 Y23, xl2gyl? of
the binary function shown on the map and denoted by
uyijgyi* or by uyiigyis. In all the formulas, i, j, and &
are different integer numbers, i =1, j =2, k = 3. In short, the
dc coefficient can be denoted by s; (I =0), first order
coefficients by sp7 (I=i, j, i#0, j#0, i#j, and L is a
literal), second order coefficients by spvery =i, j,i#0,
J#0,i#j,and L1, L2 are two different literals).

The sum of all spectral coefficients of spectrum S for any
completely specified two-dimensional map is + 2",

4.6.
4.7. The sum of all spectral coefficients of spectrum S for any
incompletely specified two-dimensional map is not + 2".

The maximal/minimal value of any individual spectral
coefficient of spectrum § is +2". This happens when the

4.8.
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binary function represented on a given two-dimensional map
is equal to either a standard trivial function y; (sign +) or to
its complement (sign -). In either case, all the remaining
spectral coefficients have zero values because of the ortho-
gonality of the transform matrix T.
The maximal/minimal value of any but ¢ individual spectral
coefficient r; is +2" ~ 1. This happens when the binary func-
tion represented on a given two-dimensional map is equal to
either a standard trivial function u; (sign -) or to its comple-
ment (sign +). In either case, all but ro remaining spectral
coefficients have zero values because of the orthogonality ot
the transform matrix T.
4.10.The maximal value of r( spectral coefficient is 2”. It happens
when all the cells of the two-dimensional map have the logi-
cal value 1.
4.11.Each but u standard trivial function u; corresponding to a
two-dimensional map has the same number of true and false
minterms equal to 2"~ 1,
4.12.The spectrum S of each true cell of a two-dimensional map is
given by s9=2"-2, and all remaining 2" —1 spectral
coefficients sy are equal to & 2.
4.13.The spectrum S of each don’t care cell of a two-dimensional
map is given by sg =2" — 1, and all remaining 2" — 1 spectral
coefficients sy are equal to * 1.
4.14.The spectrum S of each false minterm of a two-dimensional
map is given by s; =0.
Example 4.1: An example of a spectrum R of a completely
specified two-dimensional map is shown in Fig. 2. The spectrum §
for the same map is shown in Fig. 3. The next example of a spec-
trum R of an incompletely specified two-dimensional map is
shown in Fig. 4. The spectrum § for the same incompletely
specified map is shown in Fig. 5. All the examples are taken from
the Fig. 1 and represent two maps of the multiple-valued input
binary function considered previously. The spectrum for the third
map of this function can be calculated in a similar way.
Recursive algorithms, data flow-graph methods and parallel
calculations similar to Fast Fourier Transform [1], (2], [9], [12],
[21] can also be used to calculate the transforms introduced above.

4.9.

5. LINKS BETWEEN SPECTRAL TECHNIQUES AND
CLASSICAL LOGIC DESIGN

The material presented in this paragraph is valid not only for
two-dimensional maps representing multiple-valued input binary
functions but for Boolean functions and their Karnaugh maps
representation as well. If the latter is the case then in all the fol-
lowing formulas r corresponds to the number of variables of the
Boolean function and the two-dimensional map corresponds to a
Karnaugh map rewritten from Gray-code to straight binary code
(in the case of 4 x 4 dimension of the map rows and columns
second and third have to be mutually interchanged). For multiple-
valued input binary functions n fulfills the requirements of Propo-
sition 3.3 and when both p} and p} from this proposition are
equal then n represents the number of different logical values that
can be assumed by each of the literals of the binary function. The
meaning of all other symbols that are going to be introduced below
is the same for both Boolean functions and two-dimensional maps.

Hence, let us show more clearly in the classical logic terms
what is the real meaning of spectral coefficients for each map. The
following symbols will be used. Let a; be the number of true cells
in the two-dimensional map, where both the map and the standard
trivial function #; have the logical values 1; let b; be the number of
false cells in the two-dimensional map, where the map has the log-



ical value O and the standard trivial function u; has the logical
value 1; let ¢; be the number of true cells in the two-dimensional
map, where the map has the logical value 1 and the standard trivial
function u; has the logical value 0; let d; be the number of false
cells in the two-dimensional map, where both the map and the
standard trivial function ; have the logical values 0, let ¢; be the
number of don’t care cells in the two-dimensional map, where the
standard trivial function u; has the logical value 1, and f be the
number of don’t care minterms of two-dimensional map, where the
standard trivial function u; has the logical value 0. Then, for com-
pletely specified two-dimensional map having dimension n X n,
these formulas hold:

a,+b1+c1+d, =2"

and

a;+b1=c,+d,=2""1 .
Accordingly, for incompletely specified two-dimensional map hav-
ing dimension n x n, hold:

a1+b,+c,+d,+e1+f1=2"

and

a+bj+e=cr+di+fi=2""1
The s; spectral coefficients for a completely specified two-
dimensional map can be defined in the following way :

sp=2"-2xa;, whenI =0,

sy =2x (ag+dp)—2", when 0.
The spectral coefficients for an incompletely specified two-
dimensional map can be defined in the following way :

s;=2"-2xa;~ep, whenl=0

and

sp=2x%(a +d))+e+f;—2", whenI=0.
As one can see, for the case when both ¢y =0, and f; =0, ie., for
the completely specified two-dimensional map the above formulas
reduce to the formulas presented previously. And again, by easy
mathematical transformations, one can define all but sq spectral
coefficients in the following way:

s,=2x(a,+d1)+e,+f1—2"=

2x (a1+d1)+e]+f1—(a,+b1+cl+d1+e1+f1)=

(ay +dp) — (b +¢7), when I #0.
Simultaneously, the so spectral coefficient can be rewritten in the
following way:

S,=2"—2X(1]—e]=

a,+b1+c1+d1+e,+f1—2xa1—e,=

b+e+di+fi—ar=br—-aq,
since for I =0, ¢, dj, and fj are always equal to 0.
Thus, in the final formulas, describing all s; spectral coefficients,
the number of don’t care minterms ¢; + f7 can be eliminated from
them. Moreover, the final formulas are exactly the same as the
ones for the completely specified two-dimensional map. Of
course, it does not mean that the spectral coefficients for the
incompletely specified two-dimensional map do not depend on the
number of don’t care minterms. They do depend on those numbers,
but the problem is already taken into account in the last two for-
mulas themselves. Simply, the previously stated formula for the
numbers ay, by, ¢, dr, e, and fr bonds all these values together.

Let us show now the meanings of r; spectral coefficients.

The meanings of all the symbols a;, by, cf, di, e/, and fi are exactly
the same as described previously.
The r; spectral coefficients for a completely specified two-
dimensional map can be defined in the following way :
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ry=ar, when!l =0,
ry=cr—ay, whenl #0.
The spectral coefficients for an incompletely specified two-
dimensional map can be defined in the following way :
€
r1=a1+-§’—,whcn1=0

and
e

fi
rr=cy—ay+ ,when! #0.

As one can see, for the case when ¢; =0 and f; =0, ie., for the
completely specified two-dimensional map, the above formulas
reduce to the formulas presented previously for r; spectral
coefficients.

The application of the above formulas will be shown in the
following examples (all examples are for the spectra in
Hadamard-Walsh order).

Example 5.1: Consider the completely specified two-dimensional
map describing the relationship between four-valued variables ¥
and Z for the binary function from Fig. 1. All standard trivial func-
tions and the corresponding values of ay, ¢y, and dy for this map are
shown in Fig. 6.
The spectrum R for this map can be calculated as follows:
ro=4ao,
and
rp=cy—ar, whenl #0.
ro=10,r23=4-6=-2,
rp3=4-6==-2,r12=4-6=-2,
ryx,s =3—7=_4,r22.3@y1.3 =5-5=0,
rligyld = 5-5=0, L2yl = 5-5=0,
ry2.3 =7—3=4,r22,3®y2.3 =5-5=0,
rL3gy2s = 5-5=0, rl2gy23 = 5-5=0,
rpz=6-4=2r23g,12=4-6=-2,
rtigy2z=4-6=-2,rl2gy2=4-6=-2.
The spectrum S for this map can be calculated as follows:
so=2"~2Xay,
and
s;=2%x(a;+d;)-2" whenl #0.
50=16-20=-4,5,23=20-16=4,
5,13 =20-16=4,5,1.2=20-16=4,
sy1.3 =24-16=8, 5,239,413 =16-16=0,
5;139y13=16-16=0, 512,13 =16 -16=0,
523 =8-16=-38,5,239,23=16-16=0,
5:139y23 =16-16=0,5,1.29,23 =16-16=0,
syt =12 - 16=-4, 523 @yh? =20-16=4,
s13gyt2=20-16=4,5,129,1.2 =20-16=4.
As one can find out, the obtained spectra R and S are exactly the

same as the ones calculated by the classical method shown in Fig.
2 and Fig. 3.

Example 5.2: Consider the incompletely specified two-dimensional
map describing the relationship between four-valued variables Y
and X for the binary function from Fig. 1. All standard trivial func-
tions and the corresponding values of ay, ¢, dy, €7, and f; for this
map are shown in Fig. 7.

The spectrum R for this map can be calculated as follows:
e
rr=ay+ 71, when/ =0

and



-

,when/7 #0.

-4
ro=5+2=7,r23=3-2+ 02

ra=l-2==1,ru2=-34+2=~1,
nry=—1r2igyi=-1,

Ji
ry=cr—ay+

=1-2=-1,

rligyld =-1,rl2gyl3 == 1,
r2i=1,r2igy23=1,
rehigyzi=1nl2gy23 =1,
L2 =3, n23gyt2=-1,
rel3gyl2 =— 1, ryet2 @yh2 = -5.
The spectrum S for this map can be calculated as follows:
sy=2"-2xa;—¢; - fj,whenl =0
and
Sr=2X(ay+dp)+er+fy—2", whenl =0,
50=16-10-4=2,523=14+4-16=2,
513 =14+4-16=2,51.2=14+4-16=2,
sy13=14+4-16=2,5,23¢9,1.3=14+4~16=2,
Sxl3gyld = 14+4-16=2, Sel2gyls = 14+4-16=2,
523 =10+4 - 16=-2,523g,23=10+4-16=-2,
Sxl3gy23=10+4~-16=-2, 512y23=10+4~16=-2,
S12=6+4-16=~6,523g,12=14+4-16=2,
Sxldgyl2=14+4-16=2,51.29,1.2=22+4-16=10.
As one can find out, the obtained spectra R and § are exactly the
same as the ones calculated by the classical method shown in Fig.
4. and Fig. 5.

As the final example the spectra S and R for the third two-
dimensional map representing the binary function f will be shown.
This time, the calculations are not shown but can be performed by
any of the methods already presented.

Example 5.3: Consider the incompletely specified two-dimensional
map describing the relationship between four-valued variables X
and Z for the binary function from Fig. 1.
The spectrum R for this map is as follows:

ro=12,r23=-2,

rl3==2r12==2,

ret3 =2,r,23g,13=0,

rldgxl3 =0,r12g,1.3 =0,

23 =2,1,23g,23 =0,

rl3gy23 =0,r12g,23 =0,

L2 =0,r23g,12 =2,

rl3gxl2 =2, r12g,0L2 =2,
The spectrum S for this map is as follows:

sg=-28, 5,23 =4,

$;1.3 =4, 5,12 =4,

$;1.3 =—4,5,23g,1.3 =0,

S713@x13 =0,5,L2g,13 =0,

5323 =—4,5,235,23 =0,

5:139 2.3 =0,5,1.29,23 =0,

sx12 =0, 5,23g,1.2 =—4,

S;L3gxh2 =—4, 5,12 oxl2=-4,

Then the multiple-valued input binary function from the Fig.

1 is represented by a vector which is composed of three sets of par-
tial spectral coefficients. The values of all three spectra are given
in Example 5.1, Example 5.2, and Example 5.3, respectively.

6. CONCLUSION

A new concept of a spectral transform for a multiple-valued
input binary function has been introduced. Such transform is com-
posed of a vector of transforms of all pairs of the function input
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variables.

The class of these new transforms corresponds to the well-
known transforms for Boolean logic and can find analogical to
them applications in classification, analysis, synthesis, design for
testability and test generation of multiple-valued input binary func-
tions. Such functions have been implemented as PLA’s with
input-variable decoders [16], PLA’s with programmable encoders
[20], Mixed-Radix Exclusive Sums of Products [15], or multiple-
level functions [17] and have found applications in state assign-
ment and synthesis of any type of multiple-output Boolean func-
tions. Since the spectral methods for Boolean functions have been
used successfully to realize the PLA’s, multi-level circuits, and cir-
cuits with EXOR gates and due to the fact that the multiple-valued
input binary functions are generalizations of the Boolean func-
tions, it seems natural that the spectral transforms for the
multiple-valued input binary functions will find applications in
analysis, synthesis and testing of all the circuits mentioned above.

Classical Walsh transforms have applications to the design
with multiplexers [13], decomposition and design with EXOR
pre-processing and post-processing circuits [10]-[12], [18]. One
can expect that the similar applications can be found for multiple-
valued technologies described above. Our interpretation of spectral
coefficients from Section 5 is not only useful for hand calculations
of coefficients but, what is even more important, it helps to formu-
late new theorems and algorithms in spectral domain by analogy to
the ones in classical domain. Some of new developments deal with
decomposition and testing of circuits described by multiple-valued
input binary functions.

It would be also interesting to investigate relations of new
transforms with multidimensional transforms used in image coding
and application of the new transforms in image processing. There
are also possible other formulations of transforms for multiple-
valued input binary functions that do not use complex numbers as
the coefficients. The work in these areas as well as formulations of
the mutual relationships between different kinds of transforms are
the topics of current research of the authors.
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Fig. 2. Spectrum R for the completely specified two-dimensional map of Z and ¥ variables from Fig. 1.
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Fig. 4. Spectrum R for the incompletely specified two-dlimensional map of X and ¥ variables from Fig. 1.
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Fig. 6. Graphical represeniation of spectra R and S for completely specified two-dimensional map.
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