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ABSTRACT 

By investigating some family of elementary order-2 mavices, new 
transforms of real vectors are introduced. When used for Boolean function 
transformations. these transforms are one-to-one mappings in a binary I 
tcmary vecwr space. The concept of different polarities of considered 
Arithmetic and Adding transforms has been introduced. 

1.  INTRODUCTION 
Encouraged by a multiplicity of applications of Fourier, Walsh and Reed-Muller 

transforms the authors are investigating new orthogonal transforms that can 6nd applica- 
tions in Boolean minimization. testing. image coding, cryptography and communication. 
Wid1 respect to the simplicity of the implementation the authors assume that the opera- 
lions used in the transformation are the ordinary addition and subtraction. One of these 
transforms is simply the well-known Iladamard-Walsh tramform [ l .  2, 6-8. 13-15, 181 
hat is xpplied here to binary and temary vectors. One of the other considered transforms 
wlten applied U) binary vectors is known under the name of Arithmetic tramform [5, 141. 
Howcver. this transform h s  never been applied to temary vectors. The third transform is 
cortiplrfcly new. is called in this presentation under the name of Adding transform, and is 
applied to temary and binary vectors. 

Considered transforms are obtained by introducing some operations on matrices 
and considering some family of order-I matrices. Two new operations on matrices: the 
ruw-wise and column-wise joins (concatenations) of two matrices are used in order w 
crciite tlic transforms of radix-2. Later on, the elementary order-2 matrices are expanded 
by using the standard lensor producl of mafrices known also under the names of direct or 
Kronrckerproduct [ I .  2, 6, IO, 13. 15, 181. 

I t  has been shown in this paper that when the elementary order-2 matrices are 
camposed of only 0, 1 and - 1 then there are only four essential types of radix-2 
transforms (one of them is the identity matrix), since all other permutations of elements 0, 
I, ond - 1 create the order-2 matrices that can be obtained from the essential types by 
iniiIti~)lic:ition with some permutation matrices. Since the identity matrix is a trivial case 
from l l ie point of view of the transformation then there are only three essential matrices 
of order-2 Illat are considered. After expansion of the basic types by using Kronecker 
product the obtained transfonns of higher radices are used to create spectra of binary and 
terntiry vectors. 

For cnch of the three tr~ansfons, the interpretation of the meaning of each particu- 
liir s[irctr:il coefficient on Kamaugh map is presented. All mathematical relationships 
hctwccn tlic nuniber of true. false, and don't care minterms in the areas of Kamaugh 
niiips which correspond to standard Irivial/unctiow (where the standard trivial function 
is an ;area of Kamaugh map corresponding to the given spectral coefficient) are stated for 
two dliferm codings and all duce typcs of transforms. 

I n  this presentation only ordinary subtractiodaddition operations are used. Since 
llie gencriiliied Reed-Muller transforms [3,4, 5 ,  11, 121 (with all possible 2" fixed polari- 
t ies lor t i  vwiahlc Boolean functions) have been found useful in Boolean minimization, 
cieslgn t o r  testability, and image processing, the authors propose here Lo appiy the sanlz 
idr;i of fixed polarjties for all the b e e  transforms. The concept of different polarities of 
IICW u~nsfuomls is important from rhe point of view of analysis and synthesis of digital 
Ilctworks - i t  is already well known, for example, that fixed-polarity Reed-Muller form 
cim liiivc much better implementation for many Boolean functions than standard sum-of- 
products expression [4]. The same savings from the point of view of the computer 
memory storing the spectra are valid for the new transforms as well. 

The mathematical relationships which exist between the several alternative spc t ra  
tli;it nixy be used to represent any Boolean function (or simply binary or temary vectors) 
cm bc found in another article by the authors [9]. It is possible, for example. to calculate 
the arithmetic transform of any polarity from Walsh-type of transforms, where the 
H;id;im;ird-Walsh ordering corresponds to the zero polarity. In the cases of other polari- 
ties. die Hadamard-Walsh transform is transformed to the Walsh-type transform still in 
tl;id:im;ud ordering which has, however. reversed signs for all but one row. Hence, there 
exist logether 2" such combinations, and each of them corresponds to one possible polar- 
ity of generalized arithmetic representation of the given Boolean function. The relation- 
ships helween the considered transforms and the Reed-Muller transform are valid for 
cnch polarity. The Reed-Muller expansion of a given polarity can be obtained from either 
Aritlimcdc or Adding transforms by replacing in the transform matrix all 
iidditii)ns/subtractions operations with a modulo 2 operation and reducing all spectral 
cocflicients modulo 2. 

A very important property of the new transforms should also be noticed. In the 
c i ~ e  of h e  Reed-Muller transforms there exist more than one expression for an incom- 
plctcly specified Boolean function [ 121. In the case of the new transforms this property is 
no Inngcr valid - on the contrary, each incompletely specified Boolean function has only 
$1 single spccuum. Hence, there is an exact relationship between incompletely specified 
Boolean functions and their spectra. So, i t  is always possible for the new transforms to 
culculiite the inverse transforms for incompletely specified Boolean functions. In the case 
of completely specified Boolean functions all the new transforms as well as the Reed- 

Muller transform do not lose any information and it is always possible to calculate the 
inverse transforms. 

2. DEFINITIONS OF ESSENTIAL RADIX-2 MATRICES 
Some families of matrices will be defined. The building blocks for the definitions 

are three elementary elements (matrices of orders 1 x 1) : 0, - 1. and + 1. The following 
operations on matrices are introduced. 
Deftnition 2.1: A row-wise join or concatenation of a matrix A of order n x m and a 
matrix E of order n x m is the partitioned matrix C of order n x 2m such that its f i s t  m 
rows are exactly the same as the rows of matrix A and the rows from m + 1 U) 2m are 
exactly the same as the rows of matrix E.  This operator is denoted by the symbol "RWJ". 
Deftnition 2.2: A c o l m - w i s e  join or concatenation of a matrix A of order n Xm and a 
matrix E of order n x m is the partitioned matrix C of order 2n x m such that its first n 
columns are exactly the same as the columns of matrix A and the columns from n + 1 to 
2n are exactly the same as the columns of matrix B.  This operator is denoted by the sym- 
bol "CWJ". 

Let us apply the operator CWJ to three elementary matrices of orders 1 x 1 for all 
possible concatenations of these matrices. There are 9 different matrices of order 2 x 1 as 
the result of the application of the CWJ to all three elementary matrices. They are shown 
in Fig. 1.  

Let us now apply the operator RWJ to all possible combinations of matrices from 
Fig. 1. There exist together 81 different matrices of order 2 x 2 - some of them are non- 
orthogonal and are not of interest in this case. All orthogonal matrices can be classified 
intofour basic types (denoted by I. II, Ill, and IV). The first 45 matrices with marked 4 
basic types are shown in Fig. 2. The way of the generation of the remaining 36 matrices 
should be obvious from this picture. In each row of the picture. one of the nine matrices 
from Fig. 1 is the first matrix on which the RWJ operation is performed with all matrices 
from Fig. 1. The same 81 matrices could be generated by first applying the operator RWJ 
to the basic elements and obtaining the matrices of order 1 x 2 (9 such matrices), and next 
applying the operator CWJ to the elementary row matrices obtained in the previous step. 
The latter operation is performed in a way similar to the operation of the generation of the 
4 x 4 matrices obtained by the operator RWJ described previously. 

All basic types have been found by observing the following property of these 
matrices: any matrix (of order 2 x 2) from the basic type can be obtained from the other 
matrix of the same type by applying some of the following operations on matrices: 
mutual transposition of rows, mutual transposition of columns, change of the signs in the 
whole row, change of the signs in the whole column. Hence, there exist only four 
elementary types of the matrices o l  orders 2 x 2 composed out of the elements U. + 1. and 
-- 1. One of this types, denoted by the type I * .  is the identity matrix, and therefore is not 
interesting from the point of view of the transformations. Then, three types of orthogo- 
nal, radix-2 matrices exist and their application to the transformation of binary and ter- 
nary vectors are presented in the sequel. Out of each of the three types, one particular 
representative has to be chosen. In our case, in order to get some already h n w n  
transforms, the matrices denoted by * in Fig. 2 have been chosen. The three elementary 
matrices of orders 2 x 2 (other than identity) will be denoted by symbols H ,  ( H a d m r d  
tramform [I. 2, 6-9. 13, 15. 181), AR, (Arithmetic tramform [5. 141). and AD,  (Adding 
transform)). 

The Walsh functions in Hadamard order are generated when the standard 
Kronecker product of the elementary Hadamard matrix H 2  is performed with itself. 
Similarly. the Arithmetic transform of higher orders is obtained by successive application 
of the Kronecker product to the core matrix AR,. The same is valid for the Adding 
transform as well - the core matrix being AD,. When all these three elementary matrices 
are denoted by the same symbol TR,, then 

(1) TR, = ( TR2 ) I n  1 , 

where [ n 1 in the exponent means the application of the Kronecker product n times, N is 
the order of the transform matrix, and n = log, N. 
It will be shown in the sequel, how the obtained transforms are used to create spectra of 
temary and binary vectors. Since the detailed description of the properties of Hadamard- 
Walsh spectrum of Boolean functions has been presented elsewhere in this Proceedings 
181. only the application and properties of Arithmetic and Adding transforms will be con- 
sidered. 

3. GENERALIZED ARITHMETIC AND ADDING TRANSFORMS 
The Arithmetic transform AR, has been used for the generation of an arithmetic 

cnnonic expansion of Boolean functions [5, 14, 171. In the literame, this expansion has 
been used only for completely specified Boolean functions. The authors propose three 
edensions of currently used Arithmetic transform. First, it is proposed to use this 
transform not only for completely specified Boolean functions but for incompletely 
specified ones as well. Hence, the Arithmetic tramform can be applied not only to binary 
but also to ternary vectors. Secondly, two types of codings of Boolean functions are 
used. In the first w e ,  in the case of the completely specified Boolean function, the true 
minterms of the function are represented by 1 and false minterms by 0. When the second 
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codmg is used. the hue minterms are represented by - 1 and the false minterms by 1. In 
the case of the incompletely specified Boolean functions. in the k s t  coding scheme the 
don't care minterms are represented by 0.5. and in the second coding scheme by 0. The 
coding of the true and false minterms for the functions with don't cares is the same as the 
one for the completely specified Boolean functions. The same types of coding schemes 
have been used for Hadamard-Walsh spectrum of Boolean functions and the correspond- 
ing Walsh spectra are known in the literature under the names of the R spectrum (for the 
h t  type of coding, later called the R coding), and the S spectrum (for the second type of 
coding, called the S coding), accordingly [7. 8, 131. Thirdly, the notion of the polarity of 
the Arithmetic tramform is introduced. Since for the Boolean function having n variables 
there exist 2n possible substitutions of a given i-* variable by its complement then there 
is possible to have an equal number (2") of possible expansions in which each variable is 
in either complemented or not-complemented form. These all possible expansions will be 
called the generalized Arithmetic tramforms and are classified by their polarities. The 
latter notion is similar to the one used for Reed-Muller transforms [ l l ,  121 and will be 
rewritten for our needs. 
Defvlition 3.1: A polarity number is calculated by taking the decimal equivalent of the 
n-hit straight binary code formed by writing a 0 or a 1 for each variable dependently 
whether this variable is in positive or complemented form, respectively. 

Let us illustrate the introduced notions on the following example. 
&ample 3.1: An example of the calculation of the Arithmetic transform of four variable 
completely specified Boolean function in the R coding is shown in Fig. 3. The transform 
is in the zero polarity, and all the variables describing the coefficients of the arithmetic 
canonical expansion are positive. In the matrix AR from Fig. 3 the rows correspond to 
the standard trivial functions (explained in more detail in Section 4). The arithmetic 
canonical expansion for this function corresponding to the vector C in Fig. 3 is as fol- 
lows: 

(2) 

The addition symbol in the canonic arithmetic expansion "+" is an arithmetic add- 
tion and not Boolean *'or''. The value of a given minterm can be obtained from the arith- 
metic expansion of any polarity when the binary values of variables x4, x 3 ,  x 2 ,  and x1 
equivalent to the minterm are substituted in the expansion, the value of each term in the 
expansion is calculated logically and the ones that correspond to the terms that are true 
after the first substitution are arithmetically added or subtracted. This rule is valid for 
both codings of completely and incompletely specified Boolean functions. 
As it can be easily checked, the values of all the minterms of this function can be gen- 
erated from its canonical arithmetic expansion by replacing the literals x4, x 3 .  x 2 ,  and x1 
with the binary code of a given minterm. For instance, the minterm 0000 has the value 0, 
andtheminterm 1111 has thevalue 1+ 1 - 1 - 1 - 1 +  1 + 1 = 1. 
The other arithmetic canonical expansion can be obtained for this function from the 
second coding S. The coefficients for the second expansion are shown in Fig. 4 (the vec- 
tor on the right side of this picture with the arrow AR pointing to it). Since the polarity is 
zero again, then the variables of the Boolean function occurring in the terms of this arith- 
metic canonical expansion are exactly the same as in the previous case. And again, it can 
be easily checked that the value of a minterm of the function in the S coding can be 
obtained from the second canonical form by substituting the variables x4. x 3 ,  x 2 .  and x ,  
with the values resulting from the binary code of this minterm. 

The Arithmetic transform can be applied to both completely and incompletely 
specilied Boolean functions in both codings S and R. Similarly to the Arithmetic 
transform, the Adding transform can be applied to both completely and incompletely 
specified Boolean functions. Two types of codings can be used for this transform as well. 
Moreover, the Adding transform can have the same polarities as the Arithmetic 
transform. Before showing the examples of other polarities. and applications of the 
transform to incompletely specified Boolean functions let us state the fundamental rela- 
tionship between both these transforms. For the zero polarify, both matrices ARN and 
AD, are inverses of each other, i.e., 

f ( X ) = x ,  X I  +x4  -x4  X Z  X ]  - X I  x 3  - x 4  XJ x1 + 
x4 1 3  x2 +x4 XI 1 2  X I  

( A R N ) - ' = A D N  (3) 

and 

( A D ,  ) - 1  =AR, (4) 

The transform matrix for the Adding transform looks similar to the transform matrix for 
the Arithmetic transform shown in Fig. 3 - the only difference being the fact that all the 
entries are + 1 in all the matrix i.e., all - 1 in the matrix for the Arithmetic transform 
should be replaced by + 1 for the Adding transform and all + 1 are not changed. The next 
two examples are only for the polarity zero. 
Example 3.2: An example of both Arithmetic and Adding spectra for the same four vari- 
able completely specified Boolean function X, (in the coding R )  and X, (in the coding S) 
is shown in Fig. 4. It is the same function that was used in Example 3.1. The mows on 
this picture show the applications of the Arithmetic AR and Adding AD transforms 
accordingly. It is also shown that both transforms' matrices are inverses of each other. 
Example 3.3: Transformations of the same four variable incompletely specified Boolean 
functions in two codings by means of the Arithmetic and Adding transforms are shown in 
Fig. 5. Even for incompletely specified Boolean functions both transforms' matrices are 
inverses of each other. 

It is very important to notice that both Arithmetic and Adding spectra are the 
canonical representatiom of completely and incompletely specified Boolean functions 
for any polarity. The latter property of both transforms makes them especially distinct 
from other related transforms. For example, the Reed-Muller transform that has the same 
tansformation matrix as the Adding transform (for any given polarity this correspon- 
dence exists) and only the operations of addition are executed "modulo-2" instead of nor- 
mal arithmetic addition as in the case of the Adding transform. does not have a canonical 
form for the transformation of incompletely specified Boolean function [12]. 

An important relationship exists between the Arithmetic spectral coefficients cal- 
culated according to R and S codings for both completely and incompletely specified 
Boolean functions and for all polarities, accordingly. When arr, (where I are different 

natural numbers) denotes the coefficients calculated for the R coding, and ars, denotes 
the coefficients calculated for the S coding then for all ai,  but aro the following formula 
holds: 

1 (5) arr, = - - ars, 

For a v o  and ars, Equation (5 )  is not valid. Instead. the following formula holds For such 
a case: 

L 

Let us notice, that the same relationship as Equation (5) is valid for Hadamard-Walsh 
spectral coefficients [8, 131. However, Equation (5) does not hold for all coefficients from 
the Adding spectrum what can be easily checked in Fig. 4. and 5. Equation (6) is valid 
also for ad, spectral coefficients, where airo is replaced by adr,. and arso is replaced by 
ads,, respectively. 

Let us now show examples of the generalized Arithmetic transform for the same 
completely specified Boolean function. Due to the lack of the space only one example of 
the generalized Arithmetic transform for the polarity 001 1 is shown and only for the com- 
pletely specified Boolean function. The Adding transform can be calculated for this 
polarity by replacing all - 1 by + 1, and rewriting all + 1 from the manix describing the 
Arithmetic transform. Only one coding R is shown. It should already be obvious from 
the previous examples, how to calculate the generalized Arithmetic and Adding 
transforms for any coding and any Boolean function. 
Example 3.4: The calculation of the Arithmetic transform in the polarity 001 1 for the four 
variable completely specified Boolean function is shown in Fig. 6. The coefficients of the 
arithmetic canonical expansion for this polarity have positive and complemented forms as 
shown in Fig. 6. 
Example 3 5 :  The calculation of the inverse Arithmetic transform for the polarity 001 1 
for the function from the previous example is shown in Fig. 7. 

Let us notice, that for not zero polarity the relationships (3) and (4) are no longer 
valid. The methods that show how to calculate the forward and inverse Arithmetic and 
Adding transforms for any polarity without the necessity of inversing the forward 
transform are shown in [91. 

4. LINKS OF ARITHMETIC AND ADDIh'G TRANSFORMS WITH CLASSICAL 
LOGIC DESIGN 

Let us show the real meaning of the Arithmetic and Adding spectral coefficients in 
classical logical terms. Let symbol a, denotes the spectral coefficient from either Arith- 
metic or Adding transform in any coding. The definition of standard trivialfunctiom and 
their relationships to the spectral coefficients ( from both Arithmetic and Adding spectra ) 
follows. 
Defvition 5.1: Each spectral coefficient a, gives a correlation value between the Boolean 
function F and a standard rrivialfmtion U, co!-responding to this coefficient. The stan- 
dard trivial functions for the spectral coefficients are, respectively, for the coefficients a, ( 
where I = 0 ) - the minterm of the Boolean function corresponding to a given polarity 
denoted by U,. for the first order coefficients a, ( where I = i , i # 0 ) - the minterm of the 
Boolean function uo and one of its neighbors, in tum, denoted by U,, for the second order 
coefficients a, ( where I = ij. i # 0, j # 0 ) - the minterm of the Boolean function uo and 
three of its neighbors, in tum, denoted by u # ~ .  for the third order coefficients a, and ( 
I = ijk. i # 0, j # 0. k # 0 ) - the minterm of the Boolean function uo and seven OF its 
neighbors, in tum, denoted by uZjE, etc. 

Since the formulas for the calculation of spectral coefficients are derived for both 
spectra then the necessary symbols are introduced together. Moreover, let us expand our 
considerations for incompletely specified Boolean functions as well. The following syn- 
bok will be used. Let U, be the number of m e  minterms of Boolean function F. where 
both the function F and the standard mvial function U, have the logical values 1; let b, he 
the number of m e  minterms of Boolean function F, where the function F has the logical 
value 1 and the standard trivial funchon U, has the logical value 0; let c, be the number of 
don't care minterms of Boolean function F, where the standard trivial function U, has the 
logical value 1; let d, be the number of don't care minterms of Boolean function F. where 
the standard trivial function U, has the logical value 0. 
The arr, Arithmctic specual coefficients for the completely specified Boolean function in 
the coding R, having n variables, can be defined in the following way : 

arr, = a,, (7) 

and 

arr, = a, - b, whenl#O *8) 

The aril Arithmetic spectral coefficients for the incompletely specified Boo1e.m function 
in the coding R. having n variables. can be d e h e d  in the following way : 

1 
2 

airo = a o  + - co, (9 )  

and 

arr, = ( a, - bl ) +  f ( c ,  -df ), when I #  0. (10) 

The formulas for the calculation of the Arithmetic spectral coefficients in thc coding 7 
caili he found from Equations ( 5 ,  6,7-10). 

When the Adding spectrum in the coding R is to be calculated then the formulas 
For its coefficients are the same as Equations (7-10) - the only difference being the 
replacement in all these formulas of the sign - onto +. 
Exanple 5.1: The standard trivial functions for the same completely specified Boolean 
function as in Example 3.1 for the polarity 0000 are shown in Fig. 8. The circles denote 
the areas where the standard trivial functions have the logical values 1 while the triangles 
denote the areas where the standard trivial functions have the logical values 0. The 
coefficients of the arithmetic canonical expansion for this polairy have only positive 
forms which are written below the Kamaugh maps showing the corresponding standard 
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trivial functions for each coefficient. One can easily check that by calculating spectral 
coefficients according to the above formulas one obtains exactly the same results as pre- 
viously. 
Example 5.2: The standard trivial functions for the function from previous example for 
h e  polarity 001 1 are shown in Fig. 9. Since it is the same polarity as the one considered 
prcviously then one can easily check that again Equations (7-10) give the correct results. 

5. CONCLUSION 
By using two types of coding, each of the three basic rypes of considered 

transforms has two types of spectra for a given Boolean function. Our considerations are 
confined only to the tansforms that are created by Kronecker products of three elemen- 
iary order-2 matrices. Such a limitation has been applied in order to satisfy the require- 
ments of hardware/software realizations of transforms in recursive data-flow or systolic 
architectures [Z, 6, 161. This approach enables to create for each of the considered 
tansform the corresponding fast transforms according to Good's formula [2. 6, 181. the 
specual classificationof Boolean functions, 

Since the Walsh spectal coefficients have received recently a considerable atten- 
tion for network analysis, synthesis and test purposes then it is interesting to consider 
applications of thenew uansforms in these areas as well. For instance, the authors see the 
possibility of using these transforms for spectral-based testing, layered Boolean network 
decomposition and adaptive image coding. These are the topics of ongoing research of 
Ihc aulhors. 

Bcsides the applications in designing and testing of digital circuits the new 
transforms can have applications in multidimensional digital signal processing ( including 
image proccssing ) 118). It is well known that the most simple representation form of 
images is a binary or temary vector representation. By applying new transforms the struc- 
ture of the binary or temary images can be represented in the compact form. 
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Rg.3. Calculation of Arilhmetic liansfom for wmplelely specified 
Boolean function. 

Rg.4. Calculation of Anlhmerlc and Adding transforms for 4 vanable 

:ompletcl) spcLiFicd Boolcm functmn. 
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Fxg.5. Calculation of Arithmenc and Adding transforms for 4 variable 
incompletely specified Boolean function. 
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Fig.6. Calculation of Anthmetic vdllsform for wmplelcly specified 

Boolean function forplanty 0011. 
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Fig.7. Calculation of an inverse Arithmetic transform for wmpletely specified 
Bmlean function forpolantj 0011. 

0 

0 
0 

0 

0 
1 

0 
1 

1 

1 

1 

0 

0 
0 

1 

1 

1 0  
x, 

1 1  
'4 

Fig 8. Standard trivial lunctioruj carresponding to all anihmedc coefficienct 

for p ~ i m y  m 

0 0 -  X- a = O  b=O I 0 0  - 

Flg.9. Standard trivial funclions corresponding to all ariihmedc coefficienct 

for polarity w11. 
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