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ABSTRACT

By investigating some family of elementary order-2 matrices, new
transforms of real vectors are introduced. When used for Boolean function
transformations, these transforms are one-to-one mappings in a binary /
ternary vector space. The concept of different polarities of considered
Arithmetic and Adding transforms has been introduced.

1. INTRODUCTION

Encouraged by a multiplicity of applications of Fourier, Walsh and Reed-Muller
ransforms the authors are investigating new orthogonal transforms that can find applica-
tions in Boolean minimization, testing, image coding, cryptography and communication.
With respect to the simplicity of the implementation the authors assume that the opera-
tions used in the transformation are the ordinary addition and subtraction. One of these
ransforms is simply the well-known Hadamard-Walsh transform [1, 2, 6-8, 13-15, 18}
that is applied here to binary and temary vectors. One of the other considered transforms
when applied Lo binary vectors is known under the name of Arithmetic transform [5, 14].
However, this transform has never been applied to ternary vectors. The third transform is
completely new, is called in this presentation under the name of Adding transform, and is
applied to temary and binary vectors.

Considered transforms are obtained by introducing some operations on matrices
and considering some family of order-1 matrices. Two new operations on matrices: the
row-wise and column-wise joins (concatenations) of two matrices are used in order to
create the transforms of radix-2. Later on, the elementary order-2 matrices are expanded
by using the standard tensor product of matrices known also under the names of direct or
Kronecker product [1, 2, 6, 10, 13, 15, 18).

It has been shown in this paper that when the elementary order-2 matrices are
composed of only 0, 1 and - 1 then there are only four essential types of radix-2
transforms (one of them is the identity matrix), since all other permutations of elements 0,
1, and - 1 create the order-2 matrices that can be obtained from the essential types by
multiplication with some permutation matrices. Since the identity matrix is a trivial case
from the point of view of the transformation then there are only three essential matrices
of order-2 that are considered. After expansion of the basic types by using Kronecker
product the obtained transforms of higher radices are used to create spectra of binary and
mm:lry vectors.

For cach of the three transforms, the interpretation of the meaning of each particu-
lar spectral coefficient on Karnaugh map is presented. All mathematical relationships
between the number of true, false, and don’t care minterms in the areas of Karmnaugh
maps which correspond to sfandard trivial functions (where the standard trivial function
is an area of Karnaugh map corresponding to the given spectral coefficient) are stated for
two different codings and all three types of transforms.

In this presentation only ordinary subtraction/addition operations are used. Since
the generalized Reed-Muller transforms [3, 4, 5, 11, 12] (with all possible 2” fixed polari-
ties for 2t variable Boolean functions) have been found useful in Boolean minimization,
aesign for testability, and image processing, the authors propose here Lo apply l.hf: ‘same
idea of fixed polarities for all the three transforms. The concept of different polarities of
siew wansforms is important from the point of view of analysis and synthesis of digital
networks - it is already well known, for example, that fixed-polarity Reed-Muller form
can have much better implementation for many Boolean functions than standard sum-of-
products expression [4]. The same savings from the point of view of the computer
memory storing the spectra are valid for the new transforms as well.

The mathematical relationships which exist between the several alternative spectra
that may be used to represent any Boolean function (or simply binary or ternary vectors)
can be found in another article by the authors [9]. It is possible, for example, to calculate
the arithmetic transform of any polarity from Walsh-type of transforms, where the
Hadamard-Walsh ordering corresponds to the zero polarity. In the cases of other polari-
ties, the Hadamard-Walsh transform is transformed to the Walsh-type transform still in
Hadamard ordering which has, however, reversed signs for all but one row. Hence, there
exist together 27 such combinations, and each of them corresponds to one possible pollan
ity of generalized arithmetic representation of the given Boolean function. The rel?uon—
ships between the considered transforms and the Reed-Muller transform are valid for
each polarity. The Reed-Muller expansion of a given polarity can be obtained from either
Arithmetic or Adding transforms by replacing in the transform matrix all
additions/subtractions operations with a modulo 2 operation and reducing all spectral
caefficients modulo 2.

A very important property of the new transforms should also be noticed. In the
case of the Reed-Muller transforms there exist more than one expression for an incon}-
pletely specified Boolean function [12]. In the case of the new transforms this property is
no longer valid - on the contrary, each incompletely specified Boolean function has only
a single spectrum. Hence, there is an exact relationship between incompletely specified
Boolean functions and their spectra. So, it is always possible for the new transforms to
calculate the inverse transforms for incompletely specified Boolean functions. In the case
of completely specified Boolean functions all the new transforms as well as the Reed-

Muller transform do not lose any information and it is always possible to calculate the
inverse transforms.

2. DEFINITIONS OF ESSENTIAL RADIX-2 MATRICES

Some families of matrices will be defined. The building blocks for the definitions
are three elementary elements (matrices of orders 1 x 1) : 0, - 1, and + 1. The following
operations on matrices are introduced.

Definition 2.1: A row-wise join or concatenation of a matrix A of order n Xm and a
matrix B of order n X m is the partitioned matrix C of order n X 2m such that its first m
Tows are exactly the same as the rows of matrix A and the rows from m + 1 10 2m are
exactly the same as the rows of matrix B, This operator is denoted by the symbol "RWJ".

Definition 2.2: A column-wise join or concatenation of a matrix A of order n X m and a
matrix B of order n x m is the partitioned matrix C of order 2n X m such that its first »
columns are exactly the same as the columns of matrix A and the columns from n + 1 to
2r are exactly the same as the columns of matrix B. This operator is denoted by the sym-
bol "CWJ",

Let us apply the operator CWJ to three elementary matrices of orders 1 x 1 for all
possible concatenations of these matrices. There are 9 different matrices of order 2 x 1 as
the result of the application of the CWJ to all three elementary matrices. They are shown
in Fig. 1.

Let us now apply the operator RWJ to all possible combinations of matrices from
Fig. 1. There exist together 81 different matrices of order 2 x 2 - some of them are non-
orthogonal and are not of interest in this case. All orthogonal matrices can be classified
into four basic types (denoted by 1, II, TII, and IV). The first 45 matrices with marked 4
basic types are shown in Fig. 2. The way of the generation of the remaining 36 matrices
should be obvious from this picture. In each row of the picture, one of the nine matrices
from Fig. 1 is the first matrix on which the RWJ operation is performed with all matrices
from Fig. 1. The same 81 matrices could be generated by first applying the operator RWJ
to the basic elements and obtaining the matrices of order 1 x 2 (9 such matrices), and next
applying the operator CWJ to the elementary row matrices obtained in the previous step.
The latter operation is performed in a way similar to the operation of the generation of the
4 x 4 matrices obtained by the operator RWJ described previously.

All basic types have been found by observing the following property of these
matrices: any matrix (of order 2 x 2) from the basic type can be obtained from the other
matrix of the same type by applying some of the following operations on matrices:
mutual transposition of rows, mutual transposition of columns, change of the signs in the
whole row, change of the signs in the whole column. Hence, there exist only four
elementary types of the matrices of orders 2 X 2 composed out of the elements 0, + 1, and
- 1. One of this types, denoted by the type I, is the identity matrix, and therefore is not
interesting from the point of view of the transformations. Then, three types of orthogo-
nal, radix-2 matrices exist and their application to the transformation of binary and ter-
nary vectors are presented in the sequel. Qut of each of the three types, one particular
representative has to be chosen. In our case, in order to get some already known
transforms, the matrices denoted by * in Fig. 2 have been chosen. The three elementary
matrices of orders 2 x 2 (other than identity) will be denoted by symbols H, (Hadamard
transform (1, 2, 6-9, 13, 15, 181), AR, (Arithmetic transform [5, 14]), and AD, (Adding
transform).

The Walsh functions in Hadamard order are generated when the standard
Kronecker product of the elementary Hadamard matrix H, is performed with itself.
Similarly, the Arithmetic transform of higher orders is obtained by successive application
of the Kronecker product to the core matrix AR,. The same is valid for the Adding
transform as well - the core matrix being AD,. When all these three elementary matrices
are denoted by the same symbol 7R ,, then

TRy =(TR,) !, M

where [ n] in the exponent means the application of the Kronecker product n times, N is
the order of the transform matrix, and # = log, N.

It will be shown in the sequel, how the obtained transforms are used to create spectra of
ternary and binary vectors. Since the detailed description of the properties of Hadamard-
Walsh spectrum of Boolean functions has been presented elsewhere in this Proceedings
[SJ ox;ly the application and properties of Arithmetic and Adding transforms will be con-
sudered.

3. GENERALIZED ARITHMETIC AND ADDING TRANSFORMS

The Arithmetic transform ARy has been used for the generation of an arithmetic
canonic expansion of Boolean functions (5, 14, 17]. In the literature, this expansion has
been used only for completely specified Boolean functions. The authors propose hree
extensions of currently used Arithmetic transform. First, it is proposed to use this
transform not only for completely specified Boolean functions but for incompletely
specified ones as well. Hence, the Arithmetic transform can be applied not only to binary
but also to ternary vectors. Secondly, two types of codings of Boolean functions are
used. In the first type, in the case of the completely specified Boolean function, the true
minterms of the function are represented by 1 and false minterms by 0. When the second
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coding is used, the true minterms are represented by — 1 and the false minterms by 1. In
the case of the incompletely specified Boolean functions, in the first coding scheme the
don’t care minterms are represented by 0.5, and in the second coding scheme by 0. The
coding of the true and false minterms for the functions with don’t cares is the same as the
one for the completely specified Boolean functions. The same types of coding schemes
have been used for Had. d-Walsh sp of Boclean functions and the correspond-
ing Walsh spectra are known in the literature under the names of the R spectrum (for the
first type of coding, later called the R coding), and the S spectrum (for the second type of
coding, called the S coding), accordingly [7, 8, 13]. Thirdly, the notion of the polarity of
the Arithmetic transform is introduced. Since for the Boolean function having n variables
there exist 2" possible substitutions of a given i ™ variable by its complement then there
is possible to have an equal number (2") of possible expansions in which each variable is
in either pl d or not-compl i form. These all possible expansions will be
called the generalized Arithmetic transforms and are classified by their polarities. The
latter notion is similar to the one used for Reed-Muller transforms [11, 12] and will be
rewritten for our needs.

Definition 3.1: A polarity number is calculated by taking the decimal equivalent of the

n-bit straight binary code formed by writing a 0 or a 1 for each variable dependently
whether this variable is in positive or complemented form, respectively.

Let us illustrate the introduced notions on the following example.

Example 3.1: An example of the calculation of the Arithmetic transform of four variable
completely specified Boolean function in the R coding is shown in Fig. 3. The transform
is in the zero polarity, and all the variables describing the coefficients of the arithmetic
canonical expansion are positive. In the matrix AR from Fig. 3 the rows correspond to
the standard trivial functions (explained in more detail in Section 4). The arithmetic
canonical expansion for this function corresponding to the vector C in Fig. 3 is as fol-
lows:

FX)=X32) + x4 =XaXaX) ~Xa X3 —Xg X3 %, + 2)
X4 X3Xp+Xy X3 X3 X,

The addition symbol in the canonic arithmetic expansion "+" is an arithmetic addi-
tion and not Boolean "or". The value of a given minterm can be obtained from the arith-
metic expansion of any polarity when the binary values of variables x4, x1, x5, and x,
equivalent to the minterm are substituted in the expansion, the value of each term in the
expansion is calculated logically and the ones that correspond to the terms that are true
after the first substitution are arithmetically added or subtracted. This rule is valid for
both codings of completely and incompletely specified Boolean functions.

As it can be easily checked, the values of all the minterms of this function can be gen-
erated from its canonical arithmetic expansion by replacing the literals x4, x5, X5, and x;
with the binary code of a given minterm. For instance, the minterm 0000 has the value 0,
and the minterm 1111 hasthe value 14+1-1-1-1+1+1=1.

The other arithmetic canonical expansion can be obtained for this function from the
second coding S. The coefficients for the second expansion are shown in Fig. 4 (the vec-
tor on the right side of this picture with the arrow AR pointing to it). Since the polarity is
zero again, then the variables of the Boolean function occurring in the terms of this arith-
metic canonical expansion are exactly the same as in the previous case. And again, it can
be easily checked that the value of a minterm of the function in the § coding can be
obtained from the second canonical form by substituting the variables x4, x5, X,, and x,
with the values resulting from the binary code of this minterm.

The Arithmetic transform can be applied to both completely and incompletely
specified Boolean functions in both codings S and R. Similarly to the Arithmetic
transform, the Adding transform can be applied to both completely and incompletely
specified Boolean functions. Two types of codings can be used for this transform as well.
Moreover, the Adding wansform can have the same polarities as the Arithmetic
transform. Before showing the examples of other polarities, and applications of the
transforms to incompletely specified Boolean functions let us state the fundamental rela-
tionship between both these transforms. For the zero polarity, both matrices ARy and
ADy, are inverses of each other, ie.,

(ARy) ~'=ADy (©)

and

(ADy) ~' = ARy @
The transform matrix for the Adding transform looks similar to the transform matrix for
the Arithmetic transform shown in Fig. 3 - the only difference being the fact that all the
entries are + 1 in all the matrix i.e., all ~ 1 in the matrix for the Arithmetic transform
should be replaced by + 1 for the Adding transform and all + 1 are not changed. The next
two examples are only for the polarity zero.

Example 3.2: An example of both Arithmetic and Adding spectra for the same four vari-
able completely specified Boolean function X, (in the coding R) and X (in the coding S)
is shown in Fig. 4. It is the same function that was used in Example 3.1. The arrows on
this picture show the applications of the Arithmetic AR and Adding AD transforms
accordingly. It is also shown (hat both transforms’ matrices are inverses of each other.

Example 3.3: Transformations of the same four variable incompletely specified Boolean
functions in two codings by means of the Arithmetic and Adding transforms are shown in
Fig. 5. Even for incompletely specified Boolean functions both transforms’ matrices are
inverses of each other.

It is very important to notice that both Arithmetic and Adding spectra are the
canonical representations of completely and incompletely specified Boolean functions
for any polarity. The latter property of both transforms makes them especially distinct
from other related transforms. For example, the Reed-Muller transform that has the same
transformation matrix as the Adding transform (for any given polarity this correspon-
dence exists) and only the operations of addition are executed "modulo-2" instead of nor-
mal arithmetic addition as in the case of the Adding transform, does not have a canonical
form for the transformation of incompletely specified Boolean function {12].

An important relationship exists between the Arithmetic spectral coefficients cal-
culated according to R and § codings for both completely and incompletely specified
Boolean functions and for all polarities, accordingly. When arr, (where I are different
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natural numbers) denotes the coefficients calculated for the R coding, and ars; denotes
the coefficients calculated for the S coding then for all ar; but ar, the following formula
holds:
arrp=— % arsy 5)

For arry and ars, Equation (5) is not valid. Instead, the following formula holds for such
acase:

arrg= ;— (l-arsg). (6)
Let us notice, that the same relationship as Equation (5) is valid for Hadamard-Walsh
spectral coefficients [8, 13]. However, Equation (5) does not hold for all coefficients from
the Adding spectrum what can be easily checked in Fig. 4. and 5. Equation (6) is valid
also for ad spectral coefficients, where arr is replaced by adrg, and arsg is replaced by
ads,, respectively.

Let us now show examples of the generalized Arithmetic transform for the same
completely specified Boolean function. Due to the lack of the space only one example of
the generalized Arithmetic transform for the polarity 0011 is shown and only for the com-
pletely specified Boolean function. The Adding transform can be calculated for this
polarity by replacing all — 1 by + 1, and rewriting all + 1 from the matrix describing the
Arithmetic transform. Only one coding R is shown. It should already be obvious from
the previous examples, how to calculate the generalized Arithmetic and Adding
transforms for any coding and any Boolean function.

Example 3.4: The calculation of the Arithmetic transform in the polarity 0011 for the four
variable completely specified Boolean function is shown in Fig. 6. The coefficients of the
arithmetic canonical expansion for this polarity have positive and complemented formns as
shown in Fig. 6.

Example 3.5: The calculation of the inverse Arithmetic transform for the polarity 0011
for the function from the previous example is shown in Fig. 7.

Let us notice, that for not zero polarity the relationships (3) and (4) are no longer
valid. The methods that show how to calculate the forward and inverse Arithmetic and
Adding wansforms for any polarity without the necessity of inversing the forward
transform are shown in [9].

4, LINKS OF ARITHMETIC AND ADDING TRANSFORMS WITH CLASSICAL
LOGIC DESIGN

Let us show the real meaning of the Arithmetic and Adding spectral coefficients in
classical logical terms. Let symbol g; denotes the spectral coefficient from either Arith-
metic or Adding transform in any coding. The definition of standard trivial functions and
their relationships to the spectral coefficients ( from both Arithmetic and Adding spectra )
follows.

Definition 5.1: Each spectral coefficient q; gives a correlation value between the Boolean
function F and a standard trivial function u; corresponding to this coefficient. The stan-
dard trivial functions for the spectral coefficients are, respectively, for the coefficients g; (
where / =0 ) - the minterm of the Boolean function corresponding to a given polarity
denoted by u, for the first order coefficients @, ( where / =i , i # 0 ) - the minterm of the
Boolean function #, and one of its neighbors, in turn, denoted by u;, for the second order
coefficients a; ( where [ = ij, i # 0, j #0 ) - the minterm of the Boolean function u, and
three of its neighbors, in tum, denoted by u;;, for the third order coefficients a; and (
I=ijk, i#0, j#0, k#0) - the minterm of the Boolean function %4 and seven of its
neighbors, in turn, denoted by x5, etc.

Since the formulas for the calculation of spectral coefficients are derived for both
spectra then the necessary symbols are introduced together. Moreover, let us expand our
considerations for incompletely specified Boolean functions as well. The following sym-
bols will be used. Let @; be the number of true minterms of Boolean function F, where
both the function F and the standard trivial function % have the logical values 1; let b; be
the number of true minterms of Boolean function F, where the function F has the logical
value 1 and the standard trivial function u; has the logical value 0; let ¢; be the number of
don’t care minterms of Boolean function F, where the standard trivial function 4, has the
logical value 1; let ¢; be the number of don't care minterms of Boolean function F, where
the standard trivial function #; has the logical value 0.

The arr; Arithmetic spectral coefficients for the completely specified Boolean function in
the coding R, having ~ variables, can be defined in the following way :

@

arrg = do,

and
when [ # 0. (8)

The arr; Arithmetic spectral coefficients for the incompletely specified Boolean function
in the coding R, having n variables, can be defined in the following way :

arr,=a, — by

1
2 e [C))

arro=ag+

and

(10

The formulas for the calculation of the Aﬁmm;ﬁc spectral coefficients in the coding §
can be found from Equations (5, 6, 7-10).

1
arr,=(a,—b,)+;(c,—d,), when [ # 0.

When the Adding spectrum in the coding R is to be calculated then the formulas
for its coefficients are the same as Equations (7-10) - the only difference being the
replacement in all these formulas of the sign ~ onto +.

Example 5.1: The standard trivial functions for the same completely specified Boolean
function as in Example 3.1 for the polarity 0000 are shown in Fig. 8. The circles denote
the areas where the standard trivial functions have the logical values 1 while the triangles
denote the areas where the standard trivial functions have the logical values 0. The
coefficients of the arithmetic canonical expansion for this pelarity have only positive
forms which are written below the Karnaugh maps showing the corresponding standard



trivial functions for each caefficient. One can easily check that by calculating spectral
coefficients according to the above formulas one obtains exactly the same results as pre-
viously.

Example 5.2: The standard trivial functions for the function from previous example for
the polarity 0011 are shown in Fig. 9. Since it is the same polarity as the one considered
previously then one can easily check that again Equations (7-10) give the correct results.

5. CONCLUSION

By using two types of coding, each of the three basic types of considered
transforms has two types of spectra for a given Boolean function. Our considerations are
confined only to the transforms that are created by Kronecker products of three elemen-
tary order-2 matrices. Such a limitation has been applied in order to satisfy the require-
ments of hardware/software realizations of transforms in recursive data-flow or systolic
architectures [2, 6, 16]. This approach enables to create for each of the considered
transform the corresponding fast transforms according to Good’s formula [2, 6, 18]. the
spectral classification of Boolean functions,

Since the Walsh spectral coefficients have received recently a considerable atten-
tion for network analysis, synthesis and test purposes then it is interesting to consider
applications of the new transforms in these areas as well. For instance, the authors see the
possibility of using these transforms for spectral-based testing, layered Boolean network
decomposition and adaptive image coding. These are the topics of ongoing research of
the authors.

Besides the applications in designing and testing of digital circuits the new
transforms can have applications in multidimensional digital signal processing ( including
image processing ) [18]. Tt is well known that the most simple representation form of
images is a binary or ternary vector representation. By applying new transforms the struc-
ture of the binary or ternary images can be represented in the compact form.
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Nine different matrices of order 2 x 1.
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Fig.8. Standard trivial functions
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Fig.9. Standard trivial functions corresponding to all arithmetic coefficients
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Fig.7. Calculation of an inverse Arithmetic transform for completely specified



