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ABSTRACT

Two new algorithms are described for the calculation of forward
Had d-Walsh for and i ly specified
Boolean functions. The first method for the calculation of Hadamard-
Walsh transform is based on the direct manipulation on Karnaugh maps.
The conversion starts from Kamaugh maps and results in Hadamard-
Walsh spectral coefficients. The second algorithm for the calculation of
forward wansform makes use of the properties of an array of disjoint
cubes of Boolean fi

1. INTRODUCTION

Spectral techniques in digital logic design have been used for more than thirty
years. They have been used for Boolean function classification and the design of logical
devices (3-5]. Another area of usage is signal p i ially im; i
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and pattem analysis [1]. Spectral methods for testing of logical network by verification
of the coefficients in the spectrum have been developed [4).

This paper gives a new insight into spectral methods. By investigating links
between spectral techniques and classical logic design methods one are able to present
this interesting area of research in a simple manner. The real meaning of spectral
coefficients in classical logic tecms is shown. Moreover, an algorithm is shown for easil:
handling the calculation of spectral coefficients for letely and i letel

specified Boolean functions by handwriting manipulations directly from Kamaugh'maps.

All mathematical relationships between the number of true, false, don't care
and spectral coefficients are stated.

One of the drawbacks of spectral techniques is the fact that practically all the exist-
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ing algorithms for calculating the spectral coefficients start from a form of Boolean func-
tion, being either a list of true minterms ( alternatively - a list of false minterms Yoran
already minimi: sum-of- Bool ex ion. The second new algorithm

this | by calculating spectral coefficients for completely and incom-
pletely specified Boolean functions directly from the disjoint cube representation of these
functions. Most of the current methods in spectral domain deal only with completely
specified Boolean functions. On the other hand, all the algorithms introduced here are
valid not only for pletely Boolean fi but for fi with don’t
cares as well.

2. LINKS BETWEEN SPECTRAL TECHNIQUES AND CLASSICAL LOGIC
DESIGN

Let us show more clearly in classical logic ierms what is the real meaning of spec-
tral coefficients. Moreover, let us expand our iderati for i ly ifi
Boolean functions as well. Since the name of standard trivial function is used in the
sequel, the description of such a function follows. Each spectral coefficient Sy gives a
correlation value b the Boolean function F and a dard trivial function u;
corresponding to this coefficient. The standard trivial functions for the spectral
coefficients are, respectively, for the dc coefficient s; (7=0 ) - the universe of the
Boolean function F denoted by u,, for the first order coefficient s; (/=i ,i #0 ) - the
variable x; of the Boolean function F denoted by u;, for the second order coefficient st (
I=ij,i#0,j#0)- the exclusive-or function between variables x; and x; of the Boolean
function F denoted by u;;, for the third order coefficient s, (I=ijk,i#0,j20,k+0)-
the exclusive-or function between variables x;, x;, and x; of the Boolean function F
denoted by uj;, etc. of Boolean function F, where both the function F and the standard
trivial function 4 have the logical values 1;

The following symbols will be used. Let a be the number of true minterms of
Boolean function F, where both the function F and the standard trivial function have the
logical values 1; let &, be the number of false minterms of Boolean function F, where the
function F has the logical value 0 and the standard trivial function u; has the logical value
1; let ¢; be the number of true minterms of Boolean function F, where the function F has
the logical value 1 and the standard trivial function u; has the logical value 0; let d,; be the
number of false minterms of Boolean function F, where both the function F and the stan-
dard trivial function u; have the logical values 0, and e be the number of don’t care min-
terms of Boolean function F.
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Fig. 1. Standard trivial functions for an incompletcly specified
Boolean function.
‘Then, the spectral coefficients for letely
in the following way :
sg=2"~2xa;, when/=0,
sp=2x(a; +d;)- 2", when 7 #0.
The spectral coefficients for incompletely specified Boolean function, having n variables,
can be defined in the following way :
so=2"-2xag;—e,wheni=0
and
s;=2x(a;+d;)+e—-2" whenl=0.
Asa i i ider the i pletely sp for
which all standard trivial functions and values of :.‘l'le corresponding ay, dy and e are given

in Fig.1. Then, ding to the above of this function is as fol-
lows:

ified Boolean fi can be defined

:6od Book £

50=4,5,=2,5,=0,5;=0,
$4=4.,512=2,513=-6,54=6,
spy=—4,54=0,54=8,515=2,
S1u==2,514==2,554=4,51m4=-2.
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3. APPLICATION OF AN ARRAY METHOD TO SPECTRAL COEFFICIENTS
CALCULATION FOR COMPLETELY AND INCOMPLETELY SPECIFIED
BOOLEAN FUNCTIONS

There exists an algorithm of calculating spectral coefficients for completely
specified Boolean functions directly from f-prod Boolean exp {4). In the
case, when the implicants are not mutually disjoint, this algorithm requires additional

cmecuon for of Boolean fu F that are included more than once in some
pli in order to the exact values of spectral coefficients. By using the
of Boolean fi in the form of an array of disjoint cubes one can

apply the existing algorithm without necessity of performing additional correction opera-
tions, since for an array of chswmt cubcs as an mpul data to this algorithm the exact spec-
tral coefficients can be . , We propose the extension of

ly
the algorithm for i ified Boolean fi
In Lhe sequel, the properties of the existing algorithm are rewritten into the notation
g to our rep ion of Boolean functions in the form of arrays of disjoint
cubes. A.ll perties describing t y speci Boolean fi have never
been publlshed.
Definition.

A cube of degree m is a cube which has m defined variables that can be cither positive or
negative (i.e., m is equal to the sum of number of zeroes and ones in the description of a
cube).

Suppose we are given arrays of disjoint ON- and DC- cubes that fully define
Boolean function F. Then, each cube of degree m can be treated as a minterm within its
particular reduced m-space of function F. Let us recall, that the spectrum of each true
minterm is given by 5o = 2" — 2, and all remaining 2* ~ 1 coefficients are equal to + 2 (4].
The cubes of degree m have the following properties:

1. The contribution of the ON- cube of degree m to full n-space spectrum of function

F ( where n is a number of variables in the function F ) is related as follows:

So in full n-space =2 -2 x(2*""™)
and
s in full n-space = s; in m-space x (2" ~™ ), where [ # 0.
2. The contribution of the DC- cube of degree m to full n-space spectrum of function

Fisrelated as follows:

5o in full n-space =2*~! - 2*~™

and

57 in full n-space = 5; in m-space X 2*~™~2, where | # 0.
As one can notice, the contribution of the DC- cube of degree m is equal to one half of
the contribution of the ON- cube that has the same degree m. Moreover, the contribution
of the ON- or DC- cube of degree m to full n-space spectrum of function F can be

d for 54 as the value of the sum of all spectral coefficients correspond-

mg to cube of degree m that are negative.

The following properties of the signs of each spectral coefficient s;, where / = 0 are
valid for ON- and DC- cubes of any degree:

1. If in a given cube the x; variable of Boolean function is in affirmation, then the
sign of the corresponding first-order coefficient is positive, otherwise for variable
that is in negation, the sign of the corresponding first-order coefficient is neg:
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Fig. 2. Spectrum S of an incompletely specified Boolean function.
the same il letely i Boolean function for

As a numerical ! P

which a graphical method was used previousl spectral ffici The
resulting spectrum is shown in Fig. 2 and as ncan bc easily checked is exactly the same
as the one obtained by graphical method.

4. CONCLUSION

New, efficient algorithms for the generation of spectral coefficients have been
shown. There is no doubt that the graphical method for calculation of spectral
coefficients directly from Kamaugh map is a powerful and efficient tool for functions
with variables less than or equal to six. The representation of completely and incom-
pletely specified Boolean function as the arrays of disjoint ON- and DC-cubes is the basis
for definitions of the second algorithm for the calculation of Hadamard-Walsh spectrum.
Dne to properties of Walsh transforms [2,4] the shown methods generate spectral

2. Thesigns of all even-order coefficients are given by the negation of the multiplica-
tion of the signs of the related first-order coefficients.

3. The signs of all odd-order coefficients are given by the multiplication of the signs
of the related first-order coefficients.

The algorithm is as follows:
Algorithm.

for any Walsh type of transform. Let us note that by using the proposed
methods each coefficient can be cal . T the hods are very
efficient when one wants to calculate only few selected spectral coefficients [4). This
feature of the second algorithm permits also on development of many ways of pamllell-
zation of the algorithm which can be i on paraliel or in di

environments. Moreover, the inherent matrix properties of the algorithm permit for
efficient implementation on pipelined vector processors and recently introduced DSP co-
P for p p It makes it also very well suited for systolic VLSI

Spectral coefficients ion for letely and i

functions.

1. For each ON- and DC- cube of degree m calculate the value and the sign of the
contribution of this cube to full n-space spectrum according to the properties

pletely specified Bool

described previously.

2. The values of all 5; but s spectral coefficients are equal to the sum of all contribu-
tions to these spectral coefficients from all ON- and DC- disjoint cubes from an
array of cubes.

3. The value of DC spectral coefficient s, is equal for a completely specified Boolean
function to the sum of all the corresponding contributions from all ON- disjoint
cubes, but it requires the correction factor — (k — 1) x 2", where k is a number of
disjoint cubes in the ON-array of cubes.

4,  The value of DC spectral coefficient s is equal for an incompletely specified
Boolean function to the sum of all the corresponding contributions from all ON-
and DC- disjoint cubes, but it requires the cormection factor
—(k~1)x2"—1x2""! where k is the number of disjoint ON- cubes, and ! is the
number of disjoint DC- cubes.

Of course, the algorithm can calculate each coefficient separately or in parallel. Should

the full of 2* spectral coefficients not be wanted for a particular application, then a

reduced set of operations is to be performed.
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