
1

Lecture 3
CS 410/510

Information Retrieval on the Internet

Models in IR

I have met with but one or two persons in the course of my life who
understood the art of Walking, that is, of taking walks,—who had a genius,
so to speak, for sauntering: which word is beautifully derived from “idle
people who roved about the country, in the Middle Ages, and asked charity,
under pretence of going à la Sainte Terre,” to the Holy Land, till the children
exclaimed, “There goes a Sainte-Terrer,” a Saunterer, a Holy-Lander. They
who never go to the Holy Land in their walks, as they pretend, are indeed
mere idlers and vagabonds; but they who do go there are saunterers in the
good sense, such as I mean. Some, however, would derive the word form
sans terre, without land or a home, which, therefore, in the good sense, will
mean, having no particular home, but equally at home everywhere. For this
is the secret of successful sauntering. He who sits still in a house all the
time may be the greatest vagrant of all; but the saunterer, in the good
sense, is no more vagrant than the meandering river, which is all the while
sedulously seeking the shortest course to the sea. But I prefer the first,
which, indeed, is the most probable derivation. For every walk is a sort of
crusade, preached by some Peter the Hermit in us, to go forth and
reconquer this Holy Land from the hands of the Infidels.

- from an essay by Henry David Thoreau

What is this essay about? Justify your answer.

Taxonomy of IR models

• Basic taxonomy:
– Boolean (set theoretic)
– Vector (algebraic)
– Probabilistic (probabilistic)

• Note, will only consider “ad hoc” retrieval
tasks, not filtering or routing tasks

Note: See chapter 2 of Baeza-Yates text for more complete treatment of
definitions and formalisms

Formal characterization of IR models

An IR model is a quadruple where:
1. is a set of logical views (representations) for

the documents in the collection
2. is a set of logical views (representations) for

the user information needs (queries)
3. is a framework for modeling document

representations, queries, and their relationships
4. is a ranking function that associates a

real number with and a that
defines an ordering among documents wrt the
query .

Qqi ∈ Dd j ∈

iq

)],(,,,[ji dqRFQD
D

Q

F

),(ji dqR

Basic concepts

• Documents described by representative
keywords called index terms
– Could be assigned, extracted, selected

• May want to assign numerical weights to
indicate importance, reflecting ability to
– Summarize document contents
– Discriminate this document from others

• Ranking function generally predicts the
relevance of query to documentiq jd

Weighted index terms
• Let be an index term and be a document

– is the weight associated with
– Quantifies the importance of for describing

or for discriminating from other documents

• Let be a vector of weighted
index terms to describe
– where t is the number of index terms

• Usually make a simplifying assumption that the
index terms weights are independent
– They are not independent
– Some systems try to exploit co-occurrence data

),(jdk
i

i
k jd

0, ≥jiw
i

k jd
jd

),...,,(,,2,1 jtjjj wwwd =
jd

2

Boolean model

• Queries are Boolean expressions
• Retrieval based on set theory & Boolean

algebra

Documents
with index

term k1

Documents
with index

term k2

Query: k1 AND k2

Documents
Retrieved

Boolean model

Documents
with index

term k1

Documents
with index

term k2

Query: k1 OR k2

Documents
Retrieved

Documents with
index term k1

Documents
with index

term k2

Documents
Retrieved

Query: k1 NOT k2

Boolean model

• Index term weights all = 1
– Index terms either present or absent

• similarity =
1 if any of the conjunctive

components of the query is
satisfied*

0 otherwise

*Where query is written as a Boolean
expression in CNF

Note similarity to data
retrieval and DB query
language

),(qd j

Boolean model

• Prediction of relevance is binary
– relevant or nonrelevant

• No inherent ranking function; need some
way to order results (but may not be useful)
– Publication date
– Alphabetically, e.g. by title or author
– Random

• Boolean operators difficult for many users
• Result set often too small or too large

We had so much fun at the Kohler factory that Kaye suggested we
check out the GM plant in Janesville. It's a huge plant, 3.5 million
square feet, with 3 assembly lines. Two of them make trucks and
Bluebird bus frames, but the line we saw makes Chevy Suburbans
and similar light trucks, at the rate of one every 67 seconds.

A few overall comments on the Suburban line. Janesville is an
assembly plant, so all the parts are made elsewhere, and come to
the plant by truck and rail.

The Janesville facility was built by GM in 1919 as the Sampson
Tractor Plant, and started making trucks as well the next year. In
1922 they started making Chevrolet passenger cars there.

There is very little inventory of parts on site. Basically, enough
parts for one shift arrive at one time by train or truck.

Doc 1:

Doc 2:

Doc 3:

Doc 4:

Query Doc 1 Doc 2 Doc 3 Doc 4
janesville AND parts
frames OR parts
(truck OR trucks) NOT cars
(plant NOT parts) OR (truck AND train)

Vector space model

• Start with a little history

3

rank

fre
qu

en
cy

Zipf’s Law: frequency of a word ~ 1/rank
or

frequency * rank ≈ constant

A Little History A Little History: Hans-Peter Luhn

• Luhn was an early proponent (1950s) of using
statistical properties of words in documents for
automated retrieval and abstracting

• Proposed word frequency as a measure of
significance
– Repetition of words by author indicates significance
– Words that are too common constitute “noise”
– Medium frequency words are best discriminators,

have best “resolving power”
– Described early stemming algorithm to consolidate

words before calculating frequency

A Little History: Hans-Peter Luhn

• Used significance of words and proximity to
other significant words to calculate “significance
factor” of sentences
– to select sentences for auto-abstracts

• Proposed a coefficient of similarity between
documents
– Based on relative word frequencies
–
– Where fi is the relative frequency of word i in

document X and gi is the relative frequency of i in Y
• Rel freq of i in X = freq of i in X/total number of words in X

∑= i ii gfYXsim),min(),(

From: Luhn, HP. The Automatic Creation of
Literature Abstracts. IBM JOURNAL, 1958.

A little history: Gerard Salton
• Developed and extensively studied the vector

space model for retrieval (with colleagues and
students)

• Implemented the model
– SMART experimental IR system

• Studied effect of many parameters and
improvements
– e.g. stemming, similarity measures, term-weighting

approaches
• Provided evidence that terms with best

discriminating value were those of medium to
rare (but not too rare) frequency

Vector space model

• Indexing terms are coordinates in a
multidimensional information space

• Documents and queries represented as
n-dimensional vectors
– n = total number of terms
– i-th element in vector is weight of the i-th term

• Weight derived from a term-weighting algorithm
• Term-weighting most often uses some form of

word frequency calculation

4

Vector space model

• Allows assignment of non-binary weights
to index terms

• Allows computation of similarity between
documents and queries
– Usually calculated as the cosine of the angle

between two vectors and (or a variation
on that calculation)

– Natural to return ranked
list of documents

jd q

Vector space model

Cosine of angle between two vectors:
q is the same for all docs;

does not affect ranking

jd allows normalization for
length of the document

sim(dj, q) ranges from
0 to +1

∑∑
∑

==

=

×

×
=

t

i qi
t

i ji

qi
t

i ji

ww

ww

1
2
,1

2
,

,1 ,

qd

qd
qdsim

j

j
j

×

•
=),(

cosine coefficient for
similarity can be used
with either binary or
real-valued term
weights

Vector space model

• Assignment of term weights is typically based on
word frequencies
– Frequency of term in document

• High frequency indicates term reflects document content
– Frequency of term in the entire collection

• Document frequency is # documents with term
• Low frequency in collection suggests good discriminator

– TF*IDF
• TF is frequency of term in document (possibly normalized)
• IDF is inverse of document frequency (usually calculated as

log (N/ni) where N = #docs in collection, ni = #docs with term i)

Vector space model
• Many variations on term-weighting have been

tried, e.g.
– Logarithmic term frequencies
– Term frequencies normalized to max term frequency

and scaled to fall in range 0.5 – 1
– Salton and Buckley experimented extensively with

various permutations in the SMART system using
multiple test collections

• Query terms may be weighted or binary
– Weighted may be useful for long queries, such as

documents or long descriptions of information needs

Vector space model

• Advantages
– Term weighting improves performance

compared to term overlap (weights = 0 or 1)
– Allows partial matching
– Allows ranked retrieval

• Drawbacks
– Assumes indexing terms are independent

Query: Chevy assembly Janesville

Doc1
Chevy assembly occurs
in Janesville at the
Chevy factory.

Doc2
Assembly of cars in
Janesville is interesting.

Doc3
Factory assembly of
Chevy cars is interesting.

Term TF1 TF2 TF3 DF log(N/ni) wi,d1 wi,d2 wi,d3 wi,q

occurs
janesville
factory
cars

chevy
assembly

interesting

Doc Similarity to query:
1

2

3

Raw term freq
IDF

5

Probabilistic approach

• Answer the “Basic Question”:
– “What is the probability that this document is relevant

to this query?”*

• Rank documents by probability of relevance
– estimate P (Relevance|Document)

• Follows from Probability Ranking Principle
– “If retrieved documents are ordered by decreasing

probability of relevance on the data available, then
the system’s effectiveness is the best to be gotten for
the data.” *

*K. Sparck Jones, S Walker, S.E. Robertson. A Probabilistic Model of Information
Retrieval: Development and Status. TR 446, Cambridge University Computer Laboratory,
September 1998.

Probabilistic model

• Ranking is based on probability of
relevance to the query, not similarity

• Relevance assumed to be binary
• Relevance of one document assumed to

be independent of relevance of other
documents

• Relevance assumed to be an attribute of
the relationship between document and
query, independent of user situation

A little history: Probabilistic model

• Maron and Kuhns (1960)
– Proposed calculation of a relevance number

• A measure of the probable relevance of a
document for a requestor

• A number used to rank documents
– Proposed probabilistic indexing

• Indexer assigns terms with a probability
– probability that the document will be relevant to a user

who is interested in the subject designated by the term
• Weighted index terms will characterize content

more accurately

A little history: Probabilistic model

• Maron and Kuhns (1960)
– Proposed techniques for finding the “closest”

index terms to the original query terms in
order to retrieve more documents

• Query expansion
– Proposed expanding the result set using a

distance function (based on weighted index
terms) to find documents similar to the original
retrieved documents

• Relevance feedback

Probabilistic model

• Goal: rank documents according to
probability of being in the relevant set
– estimate P(Relevance|Document) for a query

• Based on Bayes theorem

)()|()()|(
)()|(

)(
)()|()|(

APABPAPABP
APABP

BP
APABPBAP

+
==

Probabilistic model

• Bayes theorem
– P(A) is prior probability

• Assumes no knowledge of P(B)
– P(A|B) is conditional probability

• Is the probability of A given a known value for B

• Conditional probability defined:

• Combine with corresponding equation for
P(A|B) and rearrange:

)(
)()|()|(

BP
APABPBAP =

)(
)()|(

BP
BAPBAP ∩

=

)()|()()()|(APABPBAPBPBAP =∩=

6

Example

• Suppose my friend recommends a movie.
I don’t like many movies, in fact I only like
about 10% of them. My friend likes 90%
of the movies I like, and about 50% of the
ones I don’t like. What’s the probability
that I’ll like this one?

Probabilistic model

• Initial model
– Used binary term weights
– Assumed term independence
– Formulated so as to compute probabilities of

relevance based on user feedback
• Following initial simple retrieval

– Also inspired work to predict relevance
weighting with little or no relevance
information

Probabilistic model

• Like vector space model
– Uses vector representation of terms in

document and query with term weights
– Uses a ranking function to order retrieved

documents
– May use term frequency data to estimate

probability
• Unlike vector space model

– Ranking based on calculation of probability,
not similarity

Probabilistic model

• Where do all those equations come from?

Probabilistic model
• Starting point: want to calculate a score based

on

– P(L) is probability user will like document (i.e.
relevance)

• For convenience, use log-odds which is order
preserving

• Since will not affect ranking order, we
ignore it

)(
)()|()|(

DP
LPLDPDLP =

)(
)(log

)|(
)|(log

)()|(
)()|(log

)|(
)|(log

LP
LP

LDP
LDP

LPLDP
LPLDP

DLP
DLP

+==

)(
)(log

LP
LP

Probabilistic model

• We want to find a score based on:
• We can consider document D as a set of

attributes, or term weights

– Where Ai is the i-th attribute and ai is its value
for a given document

• Substitute; now our score is calculated as:

)|()|(LaAPLDP i
i

i ==∏

)|(
)|(log

LDP
LDP

∑ =
=

i
ii

ii

LaAP
LaAP

)|(
)|(log

7

Probabilistic model
• Problem with

– Requires a component for each term that is absent
(Ai = 0); a zero value would be natural

– Subtract the “natural zero” component from every
document, only consider terms present

– Order-preserving transformation:

– Let W be a function that assigns a weight for each
value of each attribute:

• W(Ai = ai) =
• W(Ai = 0) = 0
• Score =

∑ =
=

i
ii

ii

LaAP
LaAP

)|(
)|(log

∑∑ ==
==

=
=
=

−
=
=

i
iii

iii
i

i

i

ii

ii

LAPLaAP
LAPLaAP

LAP
LAP

LaAP
LaAP

)|0()|(
)|0()|(log)

))0(
)|0(log

)|(
)|((log

∑ =
i ii aAW)(

)|0()|(
)|)0()|(log

LAPLaAP
LAPLaAP

iii

iii

==
==

Probabilistic model

• Score is based on:

• Weight for term presence:
– where pi = P(termi present|L)
– and qi = P(termi present|L)

• So, how to assign wi?
– i.e. how to assign pi and qi?

)1(
)1(log

ii

ii
i pq

qpw
−
−

=

∑ ==
==

i
iii

iii

LAPLaAP
LAPLaAP

)|0()|(
)|0()|(log

Probabilistic model

• Consider possible ways to assign values
to pi
– Unweighted: presence/absence of term

• (pi, qi = 0 or 1)
– Collection frequency weights
– Incorporate relevance information from user
– Term frequency (within document) weights

NN – R R

N – nN – n – R + rR – r Does not
contain term

nn – r rContains term

Non-relevantRelevant

Contingency table

NN – R R

N – nN – n – R + rR – r Does not
contain term

nn – rrContains term

Non-relevantRelevant

Probabilistic model

• To use contingency table to assign weights:
– For any i,

• So
R
rp = RN

rnq
−
−

=

))((
)(log

rnrR
rRnNr

−−
+−−

=
)1(
)1(log

ii

ii
i pq

qpw
−
−

=

Probabilistic model

• Must estimate values for p and q
• To get a well-behaved formula, add 0.5 to all

central cells in contingency table
• If no relevance info available, using collection

frequencies for weighting:
– Assume R is small relative to N
– Estimate q as n/N (proportion of docs that contain

term)
– Assume p = a constant
– Transform equation, get CFW = ∑i

in
Nlog

8

Probabilistic model

• If relevance info available
– Use term frequency information from relevant

documents to estimate p and q using the
contingency table (after addition of 0.5 to
central cells)

• RW = ∑ +−+−
++−−+

i
iii

iii

rnrR
rRnNr

)5.0)(5.0(
)5.0)(5.0(log

Probabilistic model
• No relevance data: using within document term

frequency data
• Early work modeled as two types of occurrences

– Document is about the topic of the term
• document is elite for that term

– Document not about the topic of the term
– Modeled as a mixture of two Poisson distributions
– Very complex formula, difficult to estimate

parameters, little performance benefit
– Simplified equation (with tuning parameters) has

similar desired behavior; has been very successful

Probabilistic model

• Summary
– Based on estimating the probability that a

document is relevant to a query
– Requires various assumptions
– Like the vector model, calculates a score to

be used for relevance and uses a weighted
vector to represent the terms in queries and
documents

– Underlies some very successful research
prototypes

