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Lecture 3
CS 410/510

Information Retrieval on the Internet

Models in IR

I have met with but one or two persons in the course of my life who 
understood the art of Walking, that is, of taking walks,—who had a genius, 
so to speak, for sauntering: which word is beautifully derived from “idle 
people who roved about the country, in the Middle Ages, and asked charity, 
under pretence of going à la Sainte Terre,” to the Holy Land, till the children 
exclaimed, “There goes a Sainte-Terrer,” a Saunterer, a Holy-Lander. They 
who never go to the Holy Land in their walks, as they pretend, are indeed 
mere idlers and vagabonds; but they who do go there are saunterers in the 
good sense, such as I mean. Some, however, would derive the word form 
sans terre, without land or a home, which, therefore, in the good sense, will 
mean, having no particular home, but equally at home everywhere. For this 
is the secret of successful sauntering. He who sits still in a house all the 
time may be the greatest vagrant of all; but the saunterer, in the good 
sense, is no more vagrant than the meandering river, which is all the while 
sedulously seeking the shortest course to the sea. But I prefer the first, 
which, indeed, is the most probable derivation. For every walk is a sort of 
crusade, preached by some Peter the Hermit in us, to go forth and 
reconquer this Holy Land from the hands of the Infidels. 

- from an essay by Henry David Thoreau

What is this essay about?  Justify your answer.

Taxonomy of IR models

• Basic taxonomy:
– Boolean (set theoretic)
– Vector (algebraic)
– Probabilistic (probabilistic)

• Note, will only consider “ad hoc” retrieval 
tasks, not filtering or routing tasks

Note:  See chapter 2 of Baeza-Yates text for more complete treatment of 
definitions and formalisms

Formal characterization of IR models

An IR model is a quadruple                            where:
1. is a set of logical views (representations) for 

the documents in the collection
2. is a set of logical views (representations) for 

the user information needs (queries)
3. is a framework for modeling document 

representations, queries, and their relationships
4. is a ranking function that associates a 

real number with and a              that 
defines an ordering among documents wrt the 
query    .
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Basic concepts

• Documents described by representative 
keywords called index terms
– Could be assigned, extracted, selected

• May want to assign numerical weights to 
indicate importance, reflecting ability to
– Summarize document contents
– Discriminate this document from others

• Ranking function generally predicts the 
relevance of query to documentiq jd

Weighted index terms
• Let     be an index term and     be a document

– is the weight associated with 
– Quantifies the importance of     for describing

or for discriminating     from other documents

• Let                              be a vector of weighted 
index terms to describe 
– where t is the number of index terms

• Usually make a simplifying assumption that the 
index terms weights are independent
– They are not independent
– Some systems try to exploit co-occurrence data
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Boolean model

• Queries are Boolean expressions
• Retrieval based on set theory & Boolean 

algebra

Documents 
with index 

term k1

Documents 
with index 

term k2

Query: k1 AND k2

Documents 
Retrieved

Boolean model

Documents 
with index 

term k1

Documents 
with index 

term k2

Query: k1 OR k2

Documents 
Retrieved

Documents with 
index term k1

Documents 
with index 

term k2

Documents 
Retrieved

Query: k1 NOT k2

Boolean model

• Index term weights all = 1
– Index terms either present or absent

• similarity           = 
1 if any of the conjunctive 

components of the query is 
satisfied*

0   otherwise

*Where query is written as a Boolean 
expression in CNF

Note similarity to data 
retrieval and DB query 
language
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Boolean model

• Prediction of relevance is binary
– relevant or nonrelevant

• No inherent ranking function; need some 
way to order results (but may not be useful)
– Publication date
– Alphabetically, e.g. by title or author
– Random

• Boolean operators difficult for many users
• Result set often too small or too large

We had so much fun at the Kohler factory that Kaye suggested we 
check out the GM plant in Janesville. It's a huge plant, 3.5 million 
square feet, with 3 assembly lines. Two of them make trucks and 
Bluebird bus frames, but the line we saw makes Chevy Suburbans
and similar light trucks, at the rate of one every 67 seconds. 

A few overall comments on the Suburban line. Janesville is an 
assembly plant, so all the parts are made elsewhere, and come to
the plant by truck and rail. 

The Janesville facility was built by GM in 1919 as the Sampson 
Tractor Plant, and started making trucks as well the next year. In 
1922 they started making Chevrolet passenger cars there. 

There is very little inventory of parts on site. Basically, enough 
parts for one shift arrive at one time by train or truck. 

Doc 1:

Doc 2:

Doc 3:

Doc 4:

Query Doc 1 Doc 2 Doc 3 Doc 4
janesville AND parts
frames OR parts
(truck OR trucks) NOT cars
(plant NOT parts) OR (truck AND train)

Vector space model

• Start with a little history
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Zipf’s Law: frequency of a word ~ 1/rank
or

frequency * rank ≈ constant

A Little History A Little History: Hans-Peter Luhn

• Luhn was an early proponent (1950s) of using 
statistical properties of words in documents for 
automated retrieval and abstracting

• Proposed word frequency as a measure of 
significance
– Repetition of words by author indicates significance
– Words that are too common constitute “noise”
– Medium frequency words are best discriminators, 

have best “resolving power”
– Described early stemming algorithm to consolidate 

words before calculating frequency

A Little History: Hans-Peter Luhn

• Used significance of words and proximity to 
other significant words to calculate “significance 
factor” of sentences
– to select sentences for auto-abstracts

• Proposed a coefficient of similarity between 
documents
– Based on relative word frequencies
–
– Where fi is the relative frequency of word i in 

document X and gi is the relative frequency of i in Y
• Rel freq of i in X = freq of i in X/total number of words in X

∑= i ii gfYXsim ),min(),(

From:  Luhn, HP. The Automatic Creation of 
Literature Abstracts. IBM JOURNAL, 1958.

A little history: Gerard Salton
• Developed and extensively studied the vector 

space model for retrieval (with colleagues and 
students)

• Implemented the model
– SMART experimental IR system

• Studied effect of many parameters and 
improvements
– e.g. stemming, similarity measures, term-weighting 

approaches
• Provided evidence that terms with best 

discriminating value were those of medium to 
rare (but not too rare) frequency

Vector space model

• Indexing terms are coordinates in a 
multidimensional information space

• Documents and queries represented as    
n-dimensional vectors
– n = total number of terms
– i-th element in vector is weight of the i-th term

• Weight derived from a term-weighting algorithm
• Term-weighting most often uses some form of 

word frequency calculation



4

Vector space model

• Allows assignment of non-binary weights 
to index terms

• Allows computation of similarity between 
documents and queries 
– Usually calculated as the cosine of the angle 

between two vectors      and       (or a variation 
on that calculation)

– Natural to return ranked 
list of documents

jd q

Vector space model

Cosine of angle between two vectors:
q is the same for all docs; 

does not affect ranking

jd allows normalization for 
length of the document

sim(dj, q) ranges from 
0 to +1
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cosine coefficient for 
similarity can be used 
with either binary or 
real-valued term 
weights

Vector space model

• Assignment of term weights is typically based on 
word frequencies
– Frequency of term in document

• High frequency indicates term reflects document content
– Frequency of term in the entire collection

• Document frequency is # documents with term
• Low frequency in collection suggests good discriminator

– TF*IDF
• TF is frequency of term in document (possibly normalized)
• IDF is inverse of document frequency (usually calculated as 

log (N/ni) where N = #docs in collection, ni = #docs with term i)

Vector space model
• Many variations on term-weighting have been 

tried, e.g.
– Logarithmic term frequencies
– Term frequencies normalized to max term frequency 

and scaled to fall in range 0.5 – 1
– Salton and Buckley experimented extensively with 

various permutations in the SMART system using 
multiple test collections

• Query terms may be weighted or binary
– Weighted may be useful for long queries, such as 

documents or long descriptions of information needs

Vector space model

• Advantages
– Term weighting improves performance 

compared to term overlap (weights = 0 or 1)
– Allows partial matching 
– Allows ranked retrieval

• Drawbacks
– Assumes indexing terms are independent

Query: Chevy assembly Janesville

Doc1
Chevy assembly occurs 
in Janesville at the 
Chevy factory.

Doc2
Assembly of cars in 
Janesville is interesting.

Doc3
Factory assembly of  
Chevy cars is interesting.

Term TF1 TF2 TF3 DF log(N/ni) wi,d1 wi,d2 wi,d3 wi,q

occurs
janesville
factory
cars

chevy
assembly

interesting

Doc Similarity to query: 
1

2

3

Raw term freq
IDF
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Probabilistic approach

• Answer the “Basic Question”:
– “What is the probability that this document is relevant 

to this query?”*

• Rank documents by probability of relevance
– estimate P (Relevance|Document)

• Follows from Probability Ranking Principle
– “If retrieved documents are ordered by decreasing 

probability of relevance on the data available, then 
the system’s effectiveness is the best to be gotten for 
the data.” *

*K. Sparck Jones, S Walker, S.E. Robertson.  A Probabilistic Model of Information 
Retrieval: Development and Status.  TR 446, Cambridge University Computer Laboratory, 
September 1998.

Probabilistic model

• Ranking is based on probability of 
relevance to the query, not similarity

• Relevance assumed to be binary
• Relevance of one document assumed to 

be independent of relevance of other 
documents

• Relevance assumed to be an attribute of 
the relationship between document and 
query, independent of user situation

A little history: Probabilistic model

• Maron and Kuhns (1960) 
– Proposed calculation of a relevance number

• A measure of the probable relevance of a 
document for a requestor

• A number used to rank documents
– Proposed probabilistic indexing

• Indexer assigns terms with a probability
– probability that the document will be relevant to a user 

who is interested in the subject designated by the term
• Weighted index terms will characterize content 

more accurately

A little history: Probabilistic model

• Maron and Kuhns (1960) 
– Proposed techniques for finding the “closest”

index terms to the original query terms in 
order to retrieve more documents

• Query expansion
– Proposed expanding the result set using a 

distance function (based on weighted index 
terms) to find documents similar to the original 
retrieved documents

• Relevance feedback

Probabilistic model

• Goal: rank documents according to 
probability of being in the relevant set
– estimate P(Relevance|Document) for a query

• Based on Bayes theorem
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Probabilistic model

• Bayes theorem
– P(A) is prior probability

• Assumes no knowledge of P(B)
– P(A|B) is conditional probability

• Is the probability of A given a known value for B

• Conditional probability defined:

• Combine with corresponding equation for 
P(A|B) and rearrange:
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Example

• Suppose my friend recommends a movie.  
I don’t like many movies, in fact I only like 
about 10% of them.  My friend likes 90% 
of the movies I like, and about 50% of the 
ones I don’t like.  What’s the probability 
that I’ll like this one?

Probabilistic model

• Initial model 
– Used binary term weights
– Assumed term independence
– Formulated so as to compute probabilities of 

relevance based on user feedback
• Following initial simple retrieval

– Also inspired work to predict relevance 
weighting with little or no relevance 
information

Probabilistic model

• Like vector space model
– Uses vector representation of terms in 

document and query with term weights
– Uses a ranking function to order retrieved 

documents
– May use term frequency data to estimate 

probability
• Unlike vector space model

– Ranking based on calculation of probability, 
not similarity

Probabilistic model

• Where do all those equations come from?

Probabilistic model
• Starting point: want to calculate a score based 

on                           

– P(L) is probability user will like document (i.e. 
relevance)

• For convenience, use log-odds which is order 
preserving

• Since              will not affect ranking order, we 
ignore it
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Probabilistic model

• We want to find a score based on:
• We can consider document D as a set of 

attributes, or term weights

– Where Ai is the i-th attribute and ai is its value 
for a given document

• Substitute; now our score is calculated as:
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Probabilistic model
• Problem with

– Requires a component for each term that is absent 
(Ai = 0); a zero value would be natural

– Subtract the “natural zero” component from every 
document, only consider terms present

– Order-preserving transformation:

– Let W be a function that assigns a weight for each 
value of each attribute:

• W(Ai = ai)  =
• W(Ai = 0) = 0
• Score = 
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Probabilistic model

• Score is based on:

• Weight for term presence:
– where pi = P(termi present|L)
– and qi = P(termi present|L)

• So, how to assign wi?  
– i.e. how to assign pi and qi?
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Probabilistic model

• Consider possible ways to assign values 
to pi
– Unweighted: presence/absence of term 

• (pi, qi = 0 or 1)
– Collection frequency weights
– Incorporate relevance information from user
– Term frequency (within document) weights

NN – R R

N – nN – n – R + rR – r Does not 
contain term

nn – r rContains term

Non-relevantRelevant

Contingency table

NN – R R

N – nN – n – R + rR – r Does not 
contain term

nn – rrContains term

Non-relevantRelevant

Probabilistic model

• To use contingency table to assign weights:
– For any i, 

• So
R
rp = RN
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Probabilistic model

• Must estimate values for p and q
• To get a well-behaved formula, add 0.5 to all 

central cells in contingency table
• If no relevance info available, using collection 

frequencies for weighting:
– Assume R is small relative to N
– Estimate q as n/N (proportion of docs that contain 

term)
– Assume p = a constant
– Transform equation, get CFW = ∑i

in
Nlog
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Probabilistic model

• If relevance info available
– Use term frequency information from relevant 

documents to estimate p and q using the 
contingency table (after addition of 0.5 to 
central cells)

• RW = ∑ +−+−
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Probabilistic model
• No relevance data: using within document term 

frequency data
• Early work modeled as two types of occurrences

– Document is about the topic of the term
• document is elite for that term

– Document not about the topic of the term
– Modeled as a mixture of two Poisson distributions
– Very complex formula, difficult to estimate 

parameters, little performance benefit
– Simplified equation (with tuning parameters) has 

similar desired behavior; has been very successful

Probabilistic model

• Summary
– Based on estimating the probability that a 

document is relevant to a query
– Requires various assumptions
– Like the vector model, calculates a score to 

be used for relevance and uses a weighted 
vector to represent the terms in queries and 
documents

– Underlies some very successful research 
prototypes


