A Logic for Objects

David Maier

Technical Report CS/E-86-012
5 November 1986

Oregon Graduate Center
19600 S.W. von Neumann Drive
Beaverton, Oregon 97006-1999

Presented at the Workshop of Deductive Databases and Logic Programming,
August 1986

Revised November 1986

A Logic for Objects

by David Maier

Abstract

This report presents a logic based on terms that represent the existence and internal
structure of objects, rather than names of objects and relationships among those names.
The logic incorporates a hierarchy to organize classes of objects, and structures in this
logic are amenable to database representation. Updates in the logic preserve identity
of entities, and provide the foundation for the semantics of rules, which are treated as
deferred updates. The paper concludes by pointing out some challenges facing the top-
down evaluation of rules, which will be the next area for continued research.

What follows is an initial attempt at a formal basis for a combination of logic and
object-oriented programming as it applies to databases. I want non-procedural querying from
logic programming, along with a uniform language for query, update, virtual data definitions
and constraints. From object-oriented programming, I want complex objects that can change
their internal structure, object identity [KC] to give a handle on update, and a classification
hierarchy for organizing the database scheme. I expect databases founded on this logic to store
an explicit model, or a portion of one, as opposed to storing a theory and using an inferred
model, as in Prolog. I believe Goguen and Meseguer are getting at the same thing in FOOPs
with their semantics based on initial models [GM]. It also has some flavor of Montague’s inten-
sional logic [Mo], in that object identity is much like a constant intensional concept; it can
track the indentity of entities through various worlds. Moffat and Gray [MG] show a means to

bring objects into logic, but the semantics of the objects is outside the logic of the system.

1. Model Theory for Objects

Traditional logic was developed to give precise meaning to statements in natural
language. It supports terms to capture noun phrases, literals to capture simple sentences using
the noun phrases, and formulas to capture compound statements. It abstracts language more
than it abstracts the structure of the real-world entities the language describes. One reason
update is so clumsy in logic-based systems is that they must be cast as changes in statements

about the world, rather than as changes in the structure of the world.

Example 1: With Horn clause logic programming, two facts cannot share subparts. During
runtime, variables in different clauses can become linked, but no such linkage can be stored in
the database. Thus, when two facts are talking about the same object in the world, they dupli-

cate information about that object, and both must be updated if that object changes. If I have

dept("Sales", manager{name({"Joe", "Doe"), address({"204 SW 5th")).
dept("Marketing”, manager(name("Joe", "Doe")}, address("204 SW 5th")).

both talking about the same individual, and he moves, I must update both facts for the one

change. Furthermore, the change is made by retracting those facts and asserting new facts

dept("Sales”, manager(name{“"Joe", "Doe"), address("116 NW 6th")).
dept{"Marketing”, manager(name(“"Joe", "Doe"), address{"116 NW 6th")).

In interpreting these new facts, nothing about them requires that the domain element that
represents name({"Joe", "Doe"™) in the first case is the same as in the second. I have no way
of saying “Everything stayed the same except the address.” While Prolog can be viewed as talk-
ing about a model—the minimum Herbrand model—that model assumes “the name’s the thing:
different names mean different things and different things cannot have the same description.
Kowalski [Ko| maintains the connection between states by representing information as relation-

ships that are initiated and terminated by events explicitly associated with them.

A logician might question the need for identity, citing Liebnitz’s principle of “identity of
indiscernables’: Any two objects 2 and y are identical if and only if for every predicate P,
P(z) <> P(y). That is, if no predicate can tell the difference between z and y, then they
are the same object. Or, if two objects are not identical, some predicate must distinguish them.
As MacLennan has pointed out [Ma], while identity of indiscernables might be a reasonable view
of the real world, it is a dubious proposition for data models, because a database never
abstracts everything about the world. It is useful to represent in a database that z and y are
distinguishable, without having to find or make up a property to distinguish them. Further-
more, the property that distinguished them might not be part of their internal state, but have
to do with relationships in which they participate: two 470}, %-watt resistors in different places

in a circuit.

In the logic I present, there will not be a duality between terms and literals. All terms will

be construed as assertions of existence of objects in the world, and relationships among them. A

-2

database in the object system admits interpretation as a particular model of the logic {(and for
the world) or certain aspects of the database semantics can be ignored, to view it as a theory.
The former interpretation will be most valuable for update, while the latter view better sup-

ports the idea of rules for virtual objects and relationships.

1.1. O-Terms

Here I present O-ferms (for object terms), which are similar in syntax, if not meaning, to
the ¢-terms of Ait-Kaci [A-K]. O-terms will be built up recursively from a set D of basic terms
called date values. The set of data values can be thought of as names of all objects with no
further internal structure. For exposition purposes, I will let D be integers and strings. O-terms
need not mention any data values at all, as they can also bottom out in object variables,
denoted by capital letters. I also assume a set L of labels or field names to build terms, which I

shall consider disjoint from D.

An O-term is either
(1) A data value d € D,
(2) An object variable ¥, or
{3) A complex O-term

xX{lab1 —¥ {;,, ..., labn —>{)}

where X is an object variable, 1ab1, ..., labn arein L and ¢, ..., {, are O-terms.

I will sometimes call lab — ¢ a field, and ¢ the field value.

Example 2: The following are all legal O-terms.

-3.

E(name —* N{first —> "Joe", last —> "Doe"),
degree — D{level —» "PhD", year —> 1981,
school —¥+ S{name —» "SMU", state —> "TX"}))

E{name - N{last —¥ L),
degree —¥ D{school —+ S(name ~—¥ L)}))

E

"Joe"

In general, object variables will only be important when repeated, and we can omit non-

repeated variables from an O-term for simplicity.

1.2. O-Logic

O-logic formulas are built up from O-terms, logical connectives (A v = =>) and
quantifiers (/]) on object variables, in the same way as predicate logic formulas are built up

from atomic formulas.
Example 3: An O-logic formula f =

VY D VY M D(manager —> M) =>
M(worksIn —> D) Y Jc M(worksin —+ C(dname —+ "Admin"))

Informal translation: A manager of a department works in the department or works in a

department named "Admin®.

1.3. Object Models

Given an O-logic formula f, what is a model fér f? T will first define structures, and then
define when a formula is true for a structure. A structure ST for f is a pair <U, ¢>. U is the
universe, which is assumed non-empty. It consists of D, the set of data values, plus W, a dis-
joint set of entities. The universe is the set of all objects known to exist. The second com-
ponent of the structure, ¢, interprets labels as functions. It maps labels in L to partial func-
tions from W to U. Thus, g(worksIn} will be a partial function from entities to entities and

data values.

Example 4: For the formula f above, a structure is ST = <U, ¢> where
U={ey, €y, €3, €4, €5} U D

and
g(manager)(e;) = e, g(manager)(e;) = e,, g(worksIn)(ey) = e,, g(worksIn)(e,) = e;,
g(dname)(e;) = "Sales", g(dname)(e;) = "Manuf", g(dname)(¢;) = "RandD",

(Intuitively, e;, e; and e; are departments, and e, and e, are employees, but nothing in the
model states this condition. I will be able to impose such a constraint once I add a class hierar-
chy. Again, intuitively, this structure does not satisfy the formula f, because ¢, manages
"Manuf"” but works in "RandD".) O-logic structures talk about the internal compositions of
entities, where usual logic structures talk about relationships among objects that have no inter-

nal state.

Before defining the meaning of a formula in a structure, I need a mapping from unbound
variables to elements of the universe. Such a mapping will allow me to define the meaning func-
tion recursively in the presence of quantifiers. It will also allow me to assign meanings to open
formulas. An instantiation [is a mapping from object variables to U. I extend I to terms by
letting it be the identity on data values and the value of the head variable for complex terms.

That is, for an O-term ¢, I{¢) is
(1) Kx)ift = v,

(2) dift=d € D;

3) Ix)ife= ¥(..).

I define a meaning function Mgr | relative to a structure ST and and instantiation I. Start

with the meaning of O-terms. For d € D,
Mgy 1(d) = true. (Object I(d) = d exists.)
For any variable X,

Mgy (%) = true. (Object I(X) exists.)

-5

For a complex term ¢ =
X{lab1 —> {;, ..., labn —*{,)
define Mgy ;(t) = true if
(1) I(t) (= I(X)) is an entity, not a data value. (Only entities have internal state.)
(2) Fore=1I(t)and ¢; =I{;),1<i<n
g(1abij(e) = ¢;,

so, in particular, g(labi) is defined on e. (I(X) has an internal state consistent with the

term. Entity X may have more state than described by the term, however.)
(8) Moy (t;) = true. (Sub-entities exist and have the required internal state.)

So the term ¢ is true if the values in its fields and subfields correspond to those given by ¢, and

the values in those fields are true.

Example 5: Let I, be the instantiation where I;(D) = e; and [;(M) = ¢,. Using the structure

ST from Example 4, for ¢ =
D(manager —> M)
Mgy, 1 (t) is true, since g(managex)(e;) = e,.
For instantiation I, where [(D) = e, and [(M) = eg, MST’IQ(t) is false, because
g(manager)(e,) # es.

Msri(f A 9), Msri(f V 9), Msr (f => ¢), and Mgy ;(—f) are all defined in the obvi-

ous way. For quantifiers, I have
Mgy ;(\/ V f) = true if for every I, that agrees with I except on (possibly) v, MST’II(}’) =
true.
Msz*,z(jv [) = true if for some I, that agrees with I except on (possibly) ¥, Mgz (f) =

true.

8-

Note that Mgy ;(f) does not depend on I if f is a closed formula. If f is closed and Mgp(f) is

true, then ST is a model for f.
Example 8: Consider Mgy(f) for ST = <U, ¢> and f as given in Examples 4 and 5.

Y D ¥/ M D(manager —> M) =
M{worksIn ~—+ D) \/ 3¢ M{worksIn —» C(dname — "Admin"))

U= {el: €9, €3, €4, 65} U D

g(manager)(e,) = e, g(manager)(e;) = ¢,, g(worksiIn)(e;) = ¢;, g(worksIn)(e,) = e,

g(dname)(e,) = "Sales", g(dname)(ez) = "Manuf", g(dname)(e;) = "RandD".
For instantiation I where I(D} = e5 and /(M) = ¢,, I have

Mgy ;(D{manager —> M}) = true, and

Msr [(M{worksIn —» D)) = false.

For the formula to be true, there must be an instantiation I, that agrees with [on D and M

such that

M M{worksIn —% C{dname —» "Admin®))) = true.
ST,I,

For g(worksIn)(I;(M)) to equal I;(C), I;(C) must be e;, since [,(M) = I(M) = ¢, However,

g(dname)(e;) = "RandD". Thus, Mgy(f) is false.

The plan is to store a structure as a database. While I assume D is regular enough to be
described finitely, I do not plan to handle structures where W is infinite. Let an entily finite
structure be one in which the set of entities is finite and the set of labels for which ¢ is not the
completely undefined function is finite. (That is, ¢ has a finite set of “interesting values.”) I can
store an entity finite structure. Further, I can decide if a closed formula f is true in the struc-
ture. The only problem with applying the meaning function to f is the quantifiers. However,
for any term X or X(...), the term takes on a uniform value for all d € D. Terms of the
first sort are true for all elements of D, terms of the second sort are false. Thus a quantifier can

by evaluated by considering all entities in W and one representative from D. Actually, the

/4.

situation is not that simple. Clearly, considering one data value from D for X in
dY 4% Y(dname — X)

is not sufficient. In such cases, however, a finite set of feasible bindings can be derived from the
binding of the object variable for the enclosing term. Another approach I think works is to let
bound variables range over W plus those values from D in the range of ¢ plus one value from D

not in the range of ¢.

Implication is defined in the usual manner. Formula f logically implies formula f’ if for

all structures ST and all instantiations I,
Mgz ((f') = true means Mgy ;(f) = true.
If f and f' are closed, this just says the models of f are also models of f'.

Note that my interpretation of an O-logic term is different from that given by Ait-Kaci
and Nasr [A-KN]. They map variables to sets of entities, while I map them to single entities.
Labels are interpreted similarly, but in one case the resulting functions are applied to sets, while

in the other they are applied to individuals.

1.4. Answers

An O-logic formula that is existentially quantified can be treated as a query for answers

as well as a query for just a yes-no response. Consider a formula
dx Jy Jz g

This formula is true in a structure ST if there is an instantiation I with Mgy ;(f) = true. I
might be interested in the particular values of X, ¥ and 2 that make the formula true. I

define the answers to f under ST as
{I[x ¥ 2 |Msy (f) = true}.

Here I|X Y 2] is the restriction of the instantiation I to just a three-element domain of the

variables of interest. I[X ¥ 2| is essentially an X¥2Z-tuple, but it can have entities in it as well

-8

as data values. Thus answers can actually reference pieces of the database.

2. A Class Hierarchy

To put some structure on the space of objects I introduce a class hierarchy. Assume a

hierarchy H of classes, which need not be a strict tree.

Object
Dept PersAn Name Degree School
Employee College

I allow multiple inheritance in the hierarchy. The hierarchy is the first step towards a scheme
for O-structure databases. Perhaps a fixed hierarchy of classes such as String and Numberxr

also exist to subdivide D. I modify O-terms to have a class name as a prefix.
Example 7: Redoing some O-terms from Example 2:

Employee: E

String: "Joe"

Employee:E(name -—» PersonName:N(first —> String:"Joe", last —> String:"Doe"),
degree —» Degree:D(level —> String:"PhD", year — Number:1i381,
school —+ College:S({name ~—» String:"SMU", state —P String:"TX"))})

I can omit classes in front of data values, because the class is implicit in the literal representa-

tion.

Employee:E(name —» PersonName:N(first —F "Joe", last —F "Doe"},
degree -—¥ Degree:D{level —+ "PhD", year —F 1981,
gchool —* College:S(name —» "SMU", state —» “"TX"))})

2.1. Extending Structures to Hierarchies

I will augment structures to interpret classes in the hierarchy, and will modify the mean-

ing function to check class prefixes on variables. A structure for an O-logic formula f is now a

Q-

triple ST = <U, g, >, where U and ¢ are as before. The function & maps the classes to sets
of entities. (I assume that classes for data values are mapped in a fixed way.) So h:H —+ 2V,
The function & must respect the hierarchy. If €1 is a superclass of €2, then h{(C1) 2 h(C2).

Note that an entity can have multiple, incomparable classes.

Now the meaning function checks for one more thing. Consider an O-term of the form

Cls:Vor Cls:V(..). For Mgy ; to be true of the term, J(V) must be in A(C1s).

Example 8: Consider a structure §7 = <U, g, h> where U and ¢ are as before.
U=/{ey, ey €3 €4 e5 U D
g(manager)(e;) = e, g(manager)(e;) = e,, g(worksIn)(e,) = ¢, g(worksIn)(e,) = es,
g(dname)(e,) = "sales", g(dname)(e;) = "Manuf", g(dname)(e;) = "RandD”.

Let & be such that

k(Object) = {61, €9, €3, €4, 65}
h(Person) = h(Employee)={e,e,}
h(pept) = {¢,, €3, €5}

And suppose I have the term
Dept:D(manager —» Employee:M)

If I have an instantiation I such that /(D) = e; and I(M) = ey, there is a problem right away, for

although I(D) € h(Dept), /(M) ¢ h(Employee).

3. Storing Structures as a Database

My intent is that O-Logic be the basis of an object-oriented database. Initially, the idea
is that an O-logic database will store a structure rather than a set of formulas. The structures
will be entity finite. The database system will manage unique surrogates to identify entities in
W. The g and h parts of the structure can be stored in various ways, such as binary and unary
relations, or lists of field-value pairs. O-logic formulas can be evaluated against the structure.

Existential formulas can be used to generate answers, which are tuples of entities and data

-10-

values. Later I will describe an intensional component to the database, and will attempt to
define the semantics as the minimal model that satisfies the intensional formulas and extends

the stored structure.

There isn’t much in the way of a database scheme so far, apart from the class hierarchy.
I could easily add typing constraints that say every member of a class has certain fields, and the

values of those fields belong to certain classes.

Example 9: The formula

VEdD d E
Employee:E => E(worksIn —3% Dept:D,
name -—>» PersonName:N)

says that every Employee entity has a worksIn field whose value is a Dept object and
whose name is a PersonName object. Implications in this form could obviously be massaged

into something that looks more like a scheme declaration:
Employee{worksIn —% Dept, name —P> PersonName)

Note that such a declaration is prescriptive, not proscriptive. It says certain fields must exist,
but an object may have more than the required fields. (Such latitude allows an object to belong
to incomparable classes, such as Employee and Stockholder.) Certain restrictions on
schemes between subclasses and superclasses must exist to admit any satisfying structure: the
subclass must have at least the fields of the superclass, and the typing of those fields must be at
least as restrictive as in the superclass. Schemes have much the same meaning as Ait-Kaci’s -
terms [A-K]. However, here I have a data level as well as a type level. Everything in his system

is a type.

Relations, if desired, are represented as tuple objects. A supplier-parts relation might

have the scheme
SP{supplier ~—+ Company, provides —> Part)

Such relations are non-1NF, because attribute values can be entities.

~11-

4. Updates

I now define updates on O-structures. Updates will be used to add existing entities to

classes, set field values, and create new entities. The form of an update command is
t &= f
where ¢ is an O-term and f an O-logic formula. Formula f is used to provide a sequence of

variable bindings, which will be used to instantiate ¢{. Each instantiation of ¢ is interpreted as

a property that must be made true in the structure.
Example 10: I want to promote Joe Doe to manager of the Purchasing department.

Manager:E{manages — D} <=
Employee:E({name —* (first —> "Joe", last —» "Doe")}),
Dept:D(dname —¥ "Purchasing”)

For the moment, assume that f is an open formula that contains all the variables of . Then
the meaning of such an update command is that for all answers to f, modify the current struc-
ture so that ¢ is true under all substitutions given by those answers. Any answer A for f can
essentially be treated as an instantiation for ¢. For each such answer, I want to modify the

stored structure ST so that Mgy ;(t) = true.

Example 11: Continuing the last example, suppose there is just one answer A, where A(E) = ¢,
and A(D) = e, Then I want to modify ST, if necessary, so that E, € h(Manager) and
g(manages)(e;) = e,. Here I “create” the manages field for e, if it does not exist already. I

will cover removing fields later.

If there were another answer B with B(E) = e¢; and B(D) = ¢, (two employees named “Joe
Doe”), then I would also have to change ST so that e¢; € h(Manager) and g(manages)(es) =
€.

Some updates will be disallowed because they overconstrain the structure. If answer B
had been B(E) = ¢; and B(D) = e3 (two Purchasing departments), then I must have both

g(manages)(e;) = ¢, and g(manages)(e,) = e;. In a later section, I show an extension of O-

-192-

structures to allow multivalued fields.

If f in t < [contains all the variables of ¢, then the command can express only
updates on class membership and field values. Now suppose in ¢t <= f that ¢ has some vari-
ables not occurring in f. I will treat an uninstantiated variable in the head as a request to
create new entities. I do not want to satisfy the head of the update by conscripting some Car

entity, say, to also play the role of Manager.

Example 12: I have a similar update command to the last one, but I assume Joe is being

brought in from outside the company, and there is no entity in the database for him already.

Manager:E{manages —» D, worksIn -— D,
name - PersonName:N(first —+ "Joe", last —» "Doe"),
age —» 26) <=

Dept:D{dname — "Purchasing"}

In this case, for each answer A to f, I extend the answer by new entities not in ST on variables

of t not in f, before modifying ST to make Mgy (1) true.

Example 18: If A is an answer to the last update command body with A(D) = ¢, I extend A
to have A(E) = ¢; and A(N) = e3, where ¢, and e are entities not already in ST. I then modify

ST so that

¢s € h(Manager)
e3 € h(PersonName)

g(manages)(ey) = ¢,
g(name)(eg) = e;

g(age)(es) = 26

g(£irst)(es) = "Joe"
g(last)(es) = "Doe"

Note that e; and e; must also be added to other classes in the hierarchy to make the changes

above legal.

In practice, right sides of updates will be conjunctions of terms, and non-head variables
will all be universally quantified, as has been the case with the examples in this section. Man-

chanda and Warren [MW] use a similar syntax for update rules, however the elementary update

-] 8-

actions are embedded in right sides of rules.

4.1. Limited Negation

For removing an entity from a class, or a field from an entity, I allow limited forms of

structural negation in the head term.
Example 14: Take the manager of Purchasing out of the Stockholder class.

—Stockholder:M <<= Dept:D(name —* "Purchasing",
manager —» M)

Example 15: Remove the worksin field of Joe Doe.

E{—worksIn) <<= Employee:E(name -—> PersonName{first —> “"Joe",
last —> "Doe™)

Of course, an existing field value can be changed by asserting that field to have another value.

5. O-Rules

I now consider adding rules to a database. I restrict myself to “Horn”-type rules, as I
want to have a minimal model semantics for a database with rules. (By Horn, I mean that the
right side is a conjunction of O-terms, and the head has no negations.) As it turns out, certain

kinds of rules will require fudging the meaning of minimal a bit.

I will call Horn rules for O-logic O-rules. O-rules will have the same syntax as updates,

except for ¢- in place of <&= .

The guiding principle for the semantics of O-rules is that they behave like deferred
updates. It is as if I execute all the rules as updates just before answering a query. This
interpretation is more or less the minimal model semantics of Prolog. However, for O-logic 1
have to be careful, because an update can change a field value. Thus, it is possible to have a
rule whose head is an O-term that contradicts information in the database. Field notation in
O-logic gives a limited kind of equality, which is enough to allow a contradiction to be expressed

without negation, given a fixed interpretation of data values in D.

-14-

V{£fld —» 1) A V(fld —» 2)

While in general it is probably undecidable whether an O-rule conflicts with the database, there
are some innocuous syntactic conditions that can handle the problem, such as designating each
field as virtual or stored. An O-rule that adds an entity to a class is never a problem, as it can-

not contradict stored information. Such a rule might be redundant, however.

An O-rule that has a variable in the head that is not in the body (an entity-creating rule)
also cannot cause a contradiction, but poses a problem for defining a minimum model semantics.
As a stab at a minimal model definition, I might say that the meaning of a structure ST = <U,
g, > under a set of rules is the structure ST' = <U', ¢, h'> such that ST’ contains ST, the
rules interpreted as updates do not add anything to 577, and no structure smaller than S7" has

those two properties. Containment is interpreted componentwise:
u 2 U,
¢'(lab) is defined at least where g(1ab) is, for every label lab,
R'(€) 2 k(C) for every class C.

O-rules that add fields or add entities to classes are not a problem for minimality. I can
imagine applying such rules as updates until no more changes occur. Entity-creating rules are
another matter. Note that “applying the rule as an update” is critical. If an entity already
exists that satisfies the head of such a rule, the rule adds another entity to ST’ anyway. Also,
it does not appropriate an existing entity and move it to a new class to satisfy the head. While
that approach can give a smaller model, it would mean giving up any hope that ST could be
uniquely defined. For an entity-creating rule, since the corresponding update introduces a new
entity, I could in principle apply the rule over and over, generating more and more entities.
Thus, there would be no S77 that was unchanged under the rules, even allowing the set of enti-

ties in U’ to be infinite.

-15-

The problem with entity-creating rules is the thorniest issue in O-logic, I believe, or in for-
mal semantics of any system that models unique identity. There are similar problems with new
as a storage allocation function in programming languages. Talking to other people trying to
do formal object models, they have the same problem. Also, entity-creating rules are analogous
to embedded tuple-generating dependencies in relational dependency theory, which is a particu-

larly recalcitrant class to reason about.

I think the answer lies in a meta-axiom that limits application of entity-creating rules.
Recall that an update that creates a new entity takes an answer A for the body of the com-
mand and extends it to the variables in the head of the command. The meta-axiom says that
any one answer gets extended exactly once. Returning to the update that adds Joe Doe as a
manager, and viewing it as a rule, the meta-axiom says that exactly one set of bindings of E

and N are made for each binding of D.

Manager :E{(manages —* D, worksIn —F D,
name — PersonName:N(first —F "Joe", last —» "Doe"},
age —» 26) -

Dept:D{dname —* "Purchasing")

This axiom, I believe, allows me to say when a rule has been applied “enough” times, and so
gives a well-defined notion of minimal model. In the next section I describe a way to implement

entity-creating rules under this meta-axiom.

5.1. Skolem Surrogates

1 now look more closely at quantification in entity-creating rules. Consider an entity-
creating rule that forms an InterestingPair entity for each employee whose manager has

the same last name. I define the following rule.

InterestingPair:P(emp —* E, man —» M) :-
Employee:E{name —* PersonName:(last —> LN),
worksIn -—» Dept:{(manager —> Employee:M(
name —» PersonName:{last —» LN})}}).

The first problem is the quantification of object variable P in the head O-term. Y/ ® does not

-16-

make sense here, since I do not want to say that every object (or even every Interesting-
Pair object) has E in its emp field and M in its man field. What I really want is a “there
exists a distinct” quantifier to match the update semantics. That is, there is some Interes-

tingPaix object P for each E and M value that the body matches.

One approach is to “Skolemize” the new objects a rule posits. In the InterestingPair

rule above, I see the implicit quantification as

VEYMYN Jp.
(Since the quantifiers can be different, their order matters.) I assume one new Interesting-
Pair object for each <E, M, N> triple that matches the body of the rule. For <e, ej e3>
say, [could create a “Skolem surrogate” ip[e,, €g, €] for the new InterestingPair object.
With this approach, whenever I need an object implied by a rule in matching a goal, I will
create an object with a Skolem surrogate in temporary object space, being careful not to create
an object with the same surrogate twice. The version of minimality I get with this approach to
rules is consonant with the situation in Prolog where entities with different names are con-
sidered different. That is, assume entities are different in the absence of other information.
This approach agrees with the meta-axiom of extending each answer once in applying an

entity-creating O-rule. The constant ipley, €5, €9] is the unique extension of the answer <e, eg

e19> for the body of the rule.

5.2. Top-Down Evaluation of Rules

Closing up the O-structure stored in the database under O-rules is not an attractive way
to process queries against a database with an intensional component. I would like a top-down
mechanism to chain backwards from a query, via the rules, to the stored structure. Given an
O-term, I want to solve it by unifying it with the head of an O-rule or matching it against an
entity in the structure. There is a twist here, in that there may be a “remainder” upon
unification. Consider for the moment that I have government employees, whose pay is based on

their GS level, and government managers as a subclass. Say

-17.

GovEmp(level —+ Grade, pay -—> Money)
GovMan({level — Grade, pay —F Money, manages —P Dept)

(I have omitted other fields for simplicity) with the rule

E{pay — P) :-
GovEmp:E(level — L) A rate(level —» L, pay —> P}.

Now, if I have a goal
GovMan:M(pay —P> 28000, manages —% Dept:D{(dname —> "Forecasting"))
I can use the rule to try to match the pay — 28000, generating the subgoals
GovEmp:M(level — L}, rate(level —+ L, pay -—+ 28000)
However, I am still left with a remainder of
GovMan:M{manages -—» Dept:D{dname —> "Forecasting"))

from the original goal. The rule only takes care of the 28000 part if the subgoals succeed. I

still have to show that Mis a GovMan and that the department for Mis "Forecasting”.

The existence of a remainder upon resolution is not surprising if I look at a translation of

fields to unary and binary relations in regular logic. For the goal I get a translation

pay(M, 28000) A manages(M, D)} A dname(D, "Forecasting”)
A govMan(M) A dept(D)

while the head of the rule translates to just
pay{E, P} :~ ...

which solves only one part of the goal. The translation of the head into regular logic shows
that “Horn” O-logic is really something more than conventional logic. The head of the

InterestingPair rule translates to
emp(P, E} A man(P, M) A interestingPair(P)

which cannot be translated into two Horn rules, because of the shared variable. In a database

system that has rules much like O-rules, we were able to translate all rules into function-free

~18-

Prolog, except entity-creating rules [Zh]. Those rules required a new interpreter that created
temporary objects when applying entity creating rules. Creating temporary objects allowed us
to handle rules with a conjunction of literals in the head, as well as avoiding using the same
rule twice with the same binding. An alternative translation, suggested by Catriel Beeri and
Oded Shmueli, uses function symbols for Skolem surrogates, and dispenses with temporary

objects.

Note that ¢-term unification as defined by Ait-Kaci [A-K] does not do the right thing here
(although it can be used in the government employee example to infer type information about
M). The rule matches the goal under y-term unification, binding E to M and P to 28000, leav-

ing the goals
GovEmp:M{level —> L}, rate(level —» L, pay —> 28000)

It thereby loses the requirements on M being a manager and in the Forecasting department.
This is no defect with ¢-term unification per se, the inference step above makes sense for state-

ments about types. It just does not give a valid inference rule with my semantics for terms.

Pereira and Shieber [PS] have given a meaning to grammar productions that include
feature structures. The denotational semantics they give for the feature part of such rules may
help out here, although their semantics is expressed as bottom-up application of rules, and I
have yet to apply it for top-down processing. Mukai [Mu] has proposed a style of unification,
for terms resembling O-terms, that may give rise to a resolution procedure for top-down evalua-

tion of O-rules.
6. Extensions

6.1. Rules as Objects

The meta-predicates that give Prolog the reflexivity to treat programs as data have obvi-
ous utility for code generation and translation applications. Letting O-rules be entities in the

stored structure has other interesting implications. Such a rule could contain a reference to an

-10-

actual object in place of an O-term. Rather than having to describe a particular department
unambiguously, I can construct a rule that references the object for that department directly.

Referencing an object in the head of a rule allows the rule to be specialized to that object alone.

8.2, Negation

I showed limited negation in the heads of updates. While I do not want to support nega-
tion in the head of a rule, I see no problem with structural negation in terms in the body of a

rule.
Example 16: The term
—Manager:E
matches any entity not in the Managexr class. The term
Dept:D{—budget}
matches a Dept object with no budget field, while
Dept:D(budget —% —1140000)

matches a Dept object with a budget other than $1,140,000.

6.3. Multi-fields

I do not see insurmountable problems with allowing multiple occurrences of a field in a

structure, such as a department being assigned to more than one building. An O-term
Dept:D{building —> B)

as a query would have multiple answers with the same department entity if that department
were in more than one building. Multi-fields also mean some kinds of transitive closure rules

can be expressed without creating new objects.

E{superior —% M} :- E{worksIn —% (manager —» M}}.
E(superior —> M} :-
E{worksIn —% (manager —F N)) A N(superior —¥» M).

A set can be modeled as an object with a single multi-field:

-20-

EmpSet{element —% Employee)

Why not introduce sets as a primitive concept rather than multi-fields? I think it will be useful
for a database designer to decide whether or not to confer “objecthood” on a group of values
that represent a property of some entity.. Multifields support sets, while sets do not support

multi-fields.

Some places for care are update and negation. Field updates to multi-fields must distin-
guish between adding a new occurrence of the field and changing the value of an existing
occurrence. With negation, there is the subtle distinction between “none of the buildings for the

department is C50” and “some building for the department is not C50.”

7. Conclusion

I have given a logic based on terms that represent the existence and internal structure of
objects, rather than names of objects and relationships among those names. The logic incor-
porates a hierarchy to arganize classes of objects, and structures in this logic are amenble to
database representation. Updates in the lpogic preserve identity of entities, and provide the
foundation for the semnatics of rules, which are treated as deferred updates. I pointed out some
challenges facing the top-down evaluation of rules, which will be the next area for conintued

research.

8. Acknowledgements

Thanks to Harry Porter, Carlo Zaniolo, Dick Tsur, Catriel Beeri and Oded Shmueli for
discussions of this material. This work was supported by NSF grant IST 83 51730 (cosponsored
by Tektronix Foundation, Intel, Digital Equipment, Servio Logic, Mentor Graphics, Xerox,
Beaverton Area Chamber of Commerce, IBM) and contracts from Tektronix Computer Research

Laboratory and the MCC Database Program.

21~

9. Bibliography

[A-K|Hassan Ait-Kaci, A Lattice Theoretic Approach to Computation Based on a Caleulus of Par-
tially Ordered Type Structures," PhD Thesis, Univ. of Pennsylvania, 1984.

[A-KN]
Hassan Ait-Kaci and Roger Nasr, LOGIN: A logic programming language with budlt-in
inheritance, Journal of Logic Programming 3 (3), October 1986.

[Ca] R. G. G. Cattell, Design and implementation of a Relationship-Entity-Datum model, Xerox
CSL 83-4, May 1983.

[GM] Joseph A. Goguen and Jose Meseguer, Extensions and foundations of object-oriented pro-
gramming, presented at the Workshop on Object-Oriented Programming, IBM T. J. Wat-
son Research Center, June 1986, SIGPLAN Notices 21 (10), October 1986.

[KC] S. N. Khoshafian and G. P. Copeland, Object identity, Proceedings of the Object-Oriented
Programming Systems, Languages and Applications Conference, September-October 1986.

[Ko| R. Kowalski, Database updates in the event calculus, presented at the Workshop on Foun-
dations of Deductive Databases and Logic Programming, August 1986.

[Ma] B. J. MacLennan, A view of object oriented programming, Naval Postgraduate School
NPS52-83-001, February 1983.

[MW]S. Manchanda and D. S. Warren, Towards a logical theory of database view updates,
presented at the Workshop on Foundations of Deductive Databases and Logic Program-
ming, August 1986,

[MG] D. S. Moffat and P. M. D. Gray, Interfacing Prolog to a persistent data store, Proceedings
for the 3rd Intl. Conf. on Logic Programming, July 1986.

[Mo] Richard Montague, The proper treatment of quantification in ordinary English, in
Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar
and Semantics, Reidel Publ. Co., 1973.

Mu] K. Mukai, Anadic tuples in Prolog, presented at the Workshop on Foundations of Deduc-
tive Databases and Logic Programming, August 1986.

[PS] Fernando C. N. Pereira and Stuart M. Shieber, The semantics of grammar formalisms seen
as computer languages, 10th Intl. Conf. on Computational Linguistics, July 1984{

-29.

