
SUBQUERIES IN SQL
Week 4 January 30, 2013

CS 386/586 Winter 2013

Lois Delcambre

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 1

What is a subquery?

• A subquery is a query – surrounded by parentheses.

• In relational algebra, we do this all the time:

Here’s a query:

𝜎𝑠.𝑟𝑎𝑡𝑖𝑛𝑔>4𝑠𝑎𝑖𝑙𝑜𝑟𝑠 𝑠

Put parentheses around it and apply another operator:

(𝜎𝑠.𝑟𝑎𝑡𝑖𝑛𝑔>4𝑠𝑎𝑖𝑙𝑜𝑟𝑠 𝑠) ⋈𝑠.𝑠𝑖𝑑=𝑟.𝑠𝑖𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑟

𝜋𝑠. 𝑠𝑖𝑑, 𝑠. 𝑛𝑎𝑚𝑒, 𝑟. 𝑑𝑎𝑦((𝜎𝑠.𝑟𝑎𝑡𝑖𝑛𝑔>4𝑠𝑎𝑖𝑙𝑜𝑟𝑠 𝑠) ⋈𝑠.𝑠𝑖𝑑=𝑟.𝑠𝑖𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑟)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 2

What about SQL?

• Sometimes … we can put parentheses around a complete

SQL query and apply another operator:

• union

• except

• intersect

• What else can we do?

• Let’s consider what kind of answers queries return.

• Queries return a table of rows

• How many rows?

• sometimes zero (empty answer), sometimes one, sometimes many

• How many columns?

• it is specified by the query; it could be one or more

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 3

SCALAR QUERIES

(AND SUBQUERIES)

CS386/586 Introduction to Database Systems, ©Lois

Delcambre, David Maier 1999-2013
4

Scalar queries (and thus, subqueries)

• Which queries are guaranteed to return exactly one row?

Answer: aggregate queries

select max(salary), min(salary

from agent

• This query returns exactly one row.

(If the table is empty, Null values are returned for max and

min.)

• This query returns exactly one row and exactly one

column. Such queries are called scalar queries

select avg(salary)

from agent

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 5

Back to SQL …

where can we put scalar subqueries?

• Since scalar subqueries return just one value, we can put

a scalar subquery in places where we would normally put

an atomic value.

• Let’s try it in the WHERE clause –

we compare attribute values to constants all the time.

select *

from sailors s

where rating = 7

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 6

This is a constant. Exercise: replace it with a scalar subquery.

Using a scalar subquery in place of an atomic value -

examples

select *

from agent a

where a.salary = (select max(a2.salary) from agent a2)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 7

Here we have a subquery.

It is enclosed in parentheses.

This is a scalar subquery – it returns one value – the maximum salary.

This query will return agents who make the maximum salary.

Is there at least one such agent?

Is there more than one?

Use a scalar subquery in the where clause

• Exercise: write a query that lists all agents from Poland

who have a security clearance equal to the maximum

security clearance of agents from the city of Boston.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 8

Answer

select * from agent

where country = 'Poland' and clearance_id =

(select max(clearance_id) from agent where city = 'Boston')

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 9

agent_id first middle last address city country salary clearance_id

85 Nick NULL Coeckx 105 48th Avenue Warsaw Poland 57933 5

99 Charles NULL Mou NULL Warsaw Poland 71207 5

152 Jason NULL Noel 6 97th Avenue Warsaw Poland 72403 5

237 Serguie NULL Bikkenning 6 55th Avenue Warsaw Poland 67893 5

248 George NULL Kuzas 34 64th Avenue Warsaw Poland 56593 5

280 Roberto NULL Johnson 3 86th Avenue Warsaw Poland 89667 5

Exercise: write these queries; then issue extra

queries to check your answers

• Write an SQL query that finds teams where the meeting

frequency is the maximum meeting frequency for all

teams.

• Write an SQL query that finds agents whose salary is

greater than two times the average salary of all agents

• Write an SQL query that finds missions where the access

id is equal to the minimum access id of all missions and

the mission status is not equal to the minimum mission

status of all missions.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 10

select * from team t

where t.meeting_frequency =

 (select max(meeting_frequency) from team)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 11

team_id name meeting_frequency

1 Renegade weekly

2 Haberdash weekly

7 FlyOnTheWall weekly

9 BumbleBee weekly

16 Vikings weekly

18 SqueakyClean weekly

22 Leadphut weekly

27 Swing Voters weekly

28 Cha Cha Cha weekly

29 Ghost Hunters weekly

37 Jester weekly

38 Scorpion weekly

select *

from agent a1

where a1.salary > 2 * (select avg(salary) from agent a2)

order by a1.salary

CS386/586 Introduction to Database Systems, ©Lois

Delcambre, David Maier 1999-2013
12

agent_id first middle last address city country salary
clearance

_id

749 Tim B Thune NULL Pittsburgh USA 173190 3

780 James M DeMint NULL Pittsburgh USA 173190 3

702 Richard D Salazar NULL Pittsburgh USA 173190 3

779 Pat F Obama NULL Pittsburgh USA 173190 3

744 Elizabeth P Coburn NULL Pittsburgh USA 173190 3

778 Joseph J Isakson NULL Pittsburgh USA 173190 3

757 Tom B Vitter NULL Pittsburgh USA 173190 3

748 Mel J Martinez NULL Pittsburgh USA 173190 3

769 Craig R Burr NULL Pittsburgh USA 173190 3

790 Jack M Dayton 346 RUSSELL Miami USA 173692 4

719 Mark J Lincoln 355 DIRKSEN Pittsburgh USA 178210 1

720 Michael H McConnell 361-A RUSSELL Miami USA 181222 1

758 John L Ensign 364 RUSSELL Miami USA 182728 4

select * from mission

where access_id = (select min(access_id) from mission) and

 mission_status != (select min(mission_status) from mission)

order by mission_id

CS386/586 Introduction to Database Systems, ©Lois

Delcambre, David Maier 1999-2013
13

mission_id name access_id team_id mission_status

11 Guarded City 1 20 ongoing

12 Methedras 1 15 success

38 Maura 1 14 success

43 Bofur 1 4 success

50 Iron Comb 1 30 success

53 KARÁN 1 7 success

54 Fell Winter 1 20 success

56 Nob 1 17 ongoing

70 Narchost 1 3 success

77 Twofoot 1 2 ongoing

102 Tuckborough 1 20 ongoing

111 Singollo 1 37 success

112 Ambaróna 1 2 success

Atomic values in join clause?

(If yes, can we use a scalar subquery?)

• try this (it has what we think of as a relational algebra select
clause in the ON clause of a join):
select *
from sailors s join reserves r
 on s.sid = r.sid and s.rating = 9

Here … 9 is a value in the query.
Replace it with a scalar subquery (try min).

• Here’s a join with boats and reserves and a scalar subquery:

select * from reserves r join boats b
 on r.bid = b.bid and color = (select max(color) from boats)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 14

Let’s try replacing a scalar subquery with a subquery

that is NOT scalar

select * from reserves r join boats b

 on r.bid = b.bid and color = (select color from boats)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 15

Here we have a subquery that returns lots of rows.

SQL error:

ERROR: more than one row returned by a subquery used as an expression

In statement:

select * from reserves r join boats b on r.bid = b.bid and color = (select color

from boats)

Atomic values in the select clause

• Try this:

select a.first, a.last, 36 as age

from agent a

Here we see that we can

introduce a constant into a query

result. We just list it; we often

give it a name.

What happens if you don’t give

this attribute a name? (Try it)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 16

first last age

Nick Black 36

Bill Bundt 36

Mathew Cohen 36

Jim Cowan 36

George Fairley 36

Bill Heeman 36

Andrew James 36

Kristin Delcambre 36

John Johnston 36

George Jones 36

Jim Kieburtz 36

George Launchbury 36

Chris Leen 36

constants can appear in select;

how about scalar subqueries?

Write a query that lists the first, last, and salary for all

agents along with the minimum salary (of all agents) and

the maximum salary (of all agents).

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 17

Answer

select a.first, a.last, a.salary, (select min(salary) from agent)

as min, (select max(salary) as max from agent)

from agent a

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 18

first last salary min ?column?

Nick Black 50553 50008 366962

Bill Bundt 50955 50008 366962

Mathew Cohen 55920 50008 366962

Jim Cowan 66554 50008 366962

George Fairley 76396 50008 366962

Bill Heeman 51564 50008 36696

Why does the final column not have a name?

Try using a scalar subquery in HAVING

Write an SQL query that lists the boat id and the minimum

rating of sailors that have reserved that boat where the

minimum rating of the sailors is the minimum rating of all

sailors.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 19

Try using a scalar subquery in HAVING

Write an SQL query that lists the boat id and the minimum

rating of sailors that have reserved that boat.

select r.bid, min(s1.rating)

from sailors s1 join reserves r on s1.sid = r. sid

group by r.bid

having min(s1.rating) = (select min(s2.rating) from sailors s2)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 20

bid min

102 1

103 1

101 1

104 1

Write queries to determine whether

or not this is the correct query answer.

Scope inside subqueries

select r.bid, min(s1.rating)

from sailors s1 join reserves r on s1.sid = r. sid

group by r.bid

having min(s1.rating) = (select min(s2.rating) from sailors s2)

Notice the correlation names: s1, r and s2

We are using two different copies of sailors.

But we don’t need to use different correlation names because

the inner query has its own scope. Try it.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 21

subquery

Correlation names in previous query

select r.bid, min(s1.rating)
from sailors s1 join reserves r on s1.sid = r. sid
group by r.bid
having min(s1.rating) = (select min(s2.rating) from sailors s2)

compared to:

select r.bid, min(s.rating)
from sailors s join reserves r on s.sid = r. sid
group by r.bid
having min(s.rating) = (select min(rating) from sailors)

This query works as well; the subquery works with its own
copy of sailors.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 22

Where can we use scalar subqueries in SQL?

• A scalar subquery can appear anywhere a constant can

appear:

• In the WHERE clause

this a.agent_salary = 5300

versus a.agent_salary = (select max(salary) from agent)

• In the HAVING clause

compare HAVING count(*) > 5

versus HAVING COUNT(*) > (select … from …)

• In the SELECT clause (to introduce a constant)

compare SELECT sname, ‘good sailor’ as rate FROM …

versus SELECT sname, (select … from …) as rate FROM …

• In the JOIN clause of the FROM clause (in the join condition)

compare FROM tbl1 JOIN tbl2 on rating = 8

versus FROM tbl1 JOIN tbl2 on rating = (select … from …)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 23

NONSCALAR SUBQUERIES IN

THE FROM CLAUSE

CS386/586 Introduction to Database Systems, ©Lois

Delcambre, David Maier 1999-2013
24

Can we use nonscalar subqueries?

• Nonscalar subqueries return tables (with > 1 row)

• Where do tables appear in SQL?

• In the from clause!

• We can put subqueries in the from clause.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 25

Example: subquery in the from

select p.first, p.last, p.city

from (select *

 from agent a

 where city = ‘Paris’) p

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 26

first last city

Bill Bundt Paris

Andrew James Paris

George Jones Paris

Jonathan Hammerstrom Paris

George van Santen Paris

George Day Paris

Pete Heinlein Paris

John Freitag Paris

Tom Lymar Paris

Bill Spadaro Paris

Michail Cushing Paris

Notice: we MUST use a correlation

name for the subquery in the FROM –

even if we don’t intend to use it.

Question: why do I have p.first in the

query – instead of a.first?

Using nonscalar subqueries in the from clause

• Explain these two queries in English

compare:
SELECT sid
FROM sailors

with:
SELECT sid
FROM (select sid from reserves) as x

• Notice the correlation name (x) which is not used
anywhere in the query. But it is required.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 27

Try using a scalar subquery in having clause & a

(non-scalar) subquery in from

• Find the team id for teams that have the maximum

number of members on their teams.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 28

Try using a scalar subquery in having clause & a

(non-scalar) subquery in from

• Find the team id for teams that have the maximum

number of members on their teams.

select tr.team_id

from teamrel tr

group by tr.team_id

having count(*) = (select max(mcnt) from

 (select count(*) as mcnt

 from teamrel tr2

 group by tr2.team_id) x)

order by tr.team_id

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 29

Query answer (from preceding page):

16

17

23

24

27

28

31

32

40

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 30

team_id

1

2

3

7

8

10

11

13

14

15
Issue queries to check to see whether or

not team 1 (and team 2) have the maximum

number of members on their team.

NEW PREDICATES IN

WHERE
to use with subqueries – including nonscalar subqueries

CS386/586 Introduction to Database Systems, ©Lois

Delcambre, David Maier 1999-2013
31

Predicates that work with tables in where clause

• Predicates that work on tables:

• EXISTS <table> true if table is non-empty

• NOT EXISTS <table> true if table is empty

• Additional comparators that work with tables:

• IN <table> a.salary in (select salary from agent)

• NOT IN <table> a.rating not in (select …)

• Additional predicates that work with standard comparators:

• ALL <table> a.salary > all (select salary from agent)

• NOT ALL <table> a.salary not > all (select …)

• ANY <table> s.rating = any (select ….)

SOME is a synonym for ANY

• NOT ANY <table> s.age = NOT ANY (select ….)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 32

Meaning of SOME and ALL

SELECT S.Number, S.Name

FROM Salesperson S

WHERE S.Name = SOME (SELECT C.Name

 FROM Customer;);

• For SOME, the expression must be true
for at least one row in the subquery answer
• ANY is an older form of SOME

• For ALL, the expression must be true
for all rows in the subquery answer.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 33

SOME before a subquery:
works with any scalar or non-scalar subquery

Syntax:

<attribute-name> <comparator> SOME | ANY | ALL <subquery>

can appear in the WHERE clause

SELECT S.Number, S.Name

FROM Salesperson S

WHERE S.Name = SOME (SELECT C.Name FROM Customer)

How many rows will the subquery return?

SOME evaluates to TRUE if S.Name matches at least one of the

names returned from the subquery.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 34

Exercise using some or any

• List agents where their salary is greater than at least one

agent from Boston

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 35

Exercise

select a.agent_id, a.first, a.last

from agent a where a.salary > some

 (select salary from agent where city = 'Boston')

Write queries to see if

this query answer is correct.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 36

agent_id first last

3 Mathew Cohen

4 Jim Cowan

5 George Fairley

14 John Johnston

21 Jim Kieburtz

22 George Launchbury

24 Chris Leen

27 George McNamee

Exercise

Write a query with ALL in the where clause.

Explain what your query means in English.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 37

IN or NOT IN before a subquery

SELECT C1.Number, C1.Name

FROM Customer C1

WHERE C1.Name IN

 (SELECT Name

 FROM Salesman)

IN and NOT IN can appear in these forms:

<attribute-name> IN (subquery)

(<attrib-name1>, …, <attrib-namen>) IN (subquery)

or

<attribute-name> NOT IN (subquery)

(<attrib-name1>, …, <attrib-namen>) NOT IN (subquery)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 38

Any SQL query:

How many times do subqueries run?

• Look back at all of the subqueries that we’ve written in

class so far today.

• How often do they need to be executed?

• just once?

• or, for a subquery in the WHERE clause, does it need to be

executed every time the WHERE clause is evaluated?

• All of the queries we’ve seen so far – only need to be

executed once. The answer to the subquery does not

change – during the time that the query (that it is part of)

is running.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 39

ALL – with non-correlated subquery

SELECT S.Number, S.Name

FROM Salesperson S

WHERE S.Number = ALL (SELECT C.Salesperson

 FROM Customer C

 WHERE C.CRating = 3)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 40

Notice that the inner query doesn’t mention
any attributes from the outer query. That is,
S is not mentioned in the inner query.

In this case, you only need to evaluate the
inner query once – because nothing changes
when each tuple from the outer query is evaluated.

This is a Correlated Subquery

SELECT S.Number, S.Name

FROM Salesperson S

WHERE S.Number IN (SELECT C.Salesperson

 FROM Customer C

 WHERE C.Name = S.Name)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 41

Because the subquery mentions an

attribute from a table in the outer query

The subquery must be re-evaluated every time

the WHERE clause from the outer query is evaluated.

You should look at the use of correlation names

to figure out whether it is a correlated subquery.

Subquery with “IN” – can be equivalent to a join

SELECT S.Number, S.Name

FROM Salesperson S

WHERE S.Number IN (SELECT C.Salesperson

 FROM Customer C

 WHERE C.Name = S.Name)

SELECT DISTINCT S.Number, S.Name

FROM Salesperson S, Customer C

WHERE S.Number = C.Salesperson AND C.Name = S.Name

Are these two queries equivalent?

Do we need to use the DISTINCT clause in the second
query in order for these two queries to be equivalent?

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 42

“IN” and “= SOME”

You can substitute = SOME for IN, and vice versa, to make an
equivalent query, e.g.,

SELECT C.Number, C.Name

FROM Customer C

WHERE C.address IN

 (SELECT S.address

 FROM Salesman S)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 43

SELECT C.Number, C.Name
FROM Customer C
WHERE C.address = SOME
 (SELECT S.address
 FROM Salesman S)

Is this a correlated subquery?

(query repeated from slide 6)

SELECT C1.Number, C1.Name

FROM Customer C1

WHERE C1.CRating IN

 (SELECT MAX (C2.CRating)

 FROM Customer C2)

What is the advantage of a subquery that is NOT correlated?

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 44

EXISTS before a correlated subquery

in a WHERE clause

SELECT C.Name

FROM Customer C

WHERE EXISTS (SELECT *

 FROM Salesperson S

 WHERE S.Number = C.Salesperson

 AND S.Name = C.Name)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 45

If the answer to the subquery is not empty -

then the EXISTS predicate returns TRUE

When can a query be correlated?

• In the select clause? Try this:

select a.agent_id,

 (select first from agent a2 where a.agent_id = a2.agent_id)

 as new

from agent a

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 46

agent_id new

1 Nick

2 Bill

3 Mathew

4 Jim

5 George

7 Bill

8 Andrew

See … this is correlated.

Notice, this is a scalar subquery.

It must return a single value.

Try writing a correlated subquery in the select

• try writing a correlated subquery in the select that returns

more than one column.

• Try writing a correlated subquery in the select that returns

more than one row.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 47

Correlated subqueries in the from clause

• You can’t use a correlated subquery in the from clause

select a, b, c, …

from table1 t1, table2 t2, …, (select .. from … where…)

select a, b, c, …

from table1 t1, table2 t2, …

where … EXISTS (select … from … where t1.whatever = ..)

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 48

this subquery delivers a table that is

used at the beginning of the outer query.

this subquery is in the where clause; the where clause is evaluated for

every candidate combination that is delivered from the from clause.

Challenge

• Write a query that finds for each team, the agent who

speaks the most languages on that team.

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 49

Challenge:

Write an SQL query that finds the sailors who do not have a

reservation. (Do not use outer join.)

If you succeed with that, extend your query to introduce

three Null values into the query answer – on the right side

of the existing columns – one for each reservation attribute

If you succeed with that, extend your SQL query to

compute the left outer join of sailors with reserves – without

using the left outer join operator in SQL

CS386/586 Introduction to Database Systems, ©Lois Delcambre, David Maier 1999-2013 50

