A few details ... using
Armstrong’s axioms

Supplement to Normalization Lecture
Lois Delcambre

Armstrong’s Axioms —
with explanation and examples

Reflexivity: If X ©Y, then X—Y. (identity function is a function)

Augmentation: If X—Y, then XZ—YZ, for any Z. (parallel
application of one function and the identity function is a

function)

Transitivity: If X—Y and Y—Z, then X—Z. (composition of two
functions is a function)

Examples:
Reflexivity: ssn—>ssn, ssn,name—>ssn
Augmentation: If ssn—>name then ssn,color—>name,color

Transitivity: If ssn—>mgr-id and mgr-id—>mgr-name, then
ssn—mgr-name.

Using Armstrong’s Axioms

Reflexivity: If X 2 Y, then X—>Y.
Augmentation: If X—Y, then XZ2—YZ, for any Z.
Transitivity: If X—>Y and Y—Z, then X—Z.

Decomposition: If X = YZ, then X—>Y and X—>Z

Proof:

X —>YZ given

YZ—>Y Reflexivity (trivial FD)
XY Transitivity

(Similarly, X —>Z.)

Using Armstrong’s Axioms (cont.)

Proposition - Superkeys can be derived from keys:
If X—Y, then XA—Y, for any A

Example: If SSN — name, then SSN,color — name

Proof:

X —Y Given

XA —>YA Augmentation

XA —>Y Decomposition (proved on previous slide)

| can construct a superkey from a key.

Using Armstrong’s Axioms (cont.)

Proposition: If X —A and X is a superkey (and not a key) for the
table, then X —>A is derivable from a key.

Proof:
X —>A Given
X =YUZ where:

Y is a key,

Z is non-empty,

Y and Z disjoint Because X is a superkey but not a key
Y—>A Because Y is a key for the table that Ais in

Therefore X —A follows from: Y —A (implied by the key) and the
result from the previous slide.

Formal definition of BCNF

(in the textbook) - revisited

* ForatableR, every FD X — A that occurs among
attributes of R then either:

— Ais an element of X (X — A is trivial)

i o 1

— Xis a superkey of R
consider the following 2 cases:

* Xis akey for R (good)

e Xis asuperkey for R (and not a key). The X — A is derivable from a
key using augmentation and decomposition.

For a table to be in BCNF, every FD is either trivial or
derivable from the FDs implied by the key(s).

Informally, | often say, BCNF if all FDs are implied by the
key(s).

Formal definition of 3NF
(in the textbook)

* ForatableR, every FD X — A that occurs among
attributes of R then either:

— Ais an element of X (X — A is trivial)
— Ais part of a key (ignore the “key” attributes)

— Xis a superkey of R
Consider the following 2 cases:
* Xis akey for R (good)
e Xis asuperkey for R (and not a key). The X — A is derivable from a
key using augmentation. (Stay tuned.)

A table is in 3NF if all the non-key attributes are either
trivial or implied by FDs derivable from the FDs implied
by the key(s).

CS386/586 Winter 2010, Copyright Lois Delcambre

Using Armstong’s Axioms to show dependency

preservation (that SSN —>dname is not lost)
Employee (SSN, name, phone, dept, dept-name)

Employee (SSN, name, phone, dept)
Department (dept, dname)

F = {SSN—>name, SSN—phone, SSN—dept, SSN—dept-name,
dept—>dname} original set of FDs

G = {SSN—>name, SSN—>phone, SSN—dept, SSN—dept-rame,
dept—>dname} the set of FDs projected from F

But G* includes SSN—dept-name because we can derive it:
SSN—dept Given (itis in G)

dept—>dname Given (it isin G)

SSN—dname Because of transitivity.

Example showing that we must project from F*
when considering dependency preservation

R(a, b, c) where ab is a key, a —>b, b—a, a —>c
F = {ab—c, b—a, a—b, a—c}
Suppose we decompose to
X(a, b) and Y(b, c)
If we project F onto X and Y, we see:
a—b, b—a and that’s it. We appear to have lost many FDs.

But F* includes this additional FD:
b—c (because b—a and a—«c)

If we project F* onto X and Y we see:
a—b, b—a, and b—cin G.

G* then includes a—b, b—a, b—c, plus a—c (by transitivity),
ab—c (by augmentation).

Same example using realistic attribute names

R(ssn, id, name)
where (ssn, id) is a key,
F = {ssn —id, id—>ssn, ssh—>name}

X(ssn, id) Y(id, name)

Projection of F = {ssn —id, id—>ssn}

But F* includes id—>name (because id —ssn, and ssn —->name)
Projection of F* includes {ssn —id, id—ssn, id —->name}

From that projection, we can compute G+ which includes
ssn—name (because ssn—id, id—>name)

10

Challenge Question

Proposition:
If AB—C (where A and B are disjoint sets of attributes)
then A—C and B—C.

s this true or false?
Can you prove/disprove it?

11

Other Normalization Results

When a table is in BCNF, it is not possible to have
redundancies or update anomalies caused by FDs.

There are other dependencies besides FDs.

— Multi-valued dependency ... leads to the definition of 4NF
— Join dependency ... leads to the definition of 5NF

For FDs, MVDs, and JDs, the project operator is used to
decompose and the join operator is used to recontruct.

There are no redundancies or update anomalies that
remain in a table in 5NF that can be solved by
projecting/joining. 5NF is sometimes PJNF.

12

Normalization made easy

Every attribute in a table must depend on the
key (definition of a key),
the whole key (2NF — no partial dependencies)
and
nothing but the key
(3NF — no transitive dependencies).

Every non-key attribute in a table must depend on the
key (definition of a key)
the whole key (2NF — no partial dependencies)
and
nothing but the key
(3NF — no transitive dependencies).

13

