A few details ... using Armstrong's axioms

Supplement to Normalization Lecture Lois Delcambre

Armstrong's Axioms – with explanation and examples

Reflexivity: If $X \supseteq Y$, then $X \rightarrow Y$. (identity function is a function)

- Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$, for any Z. (parallel application of one function and the identity function is a function)
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$. (composition of two functions is a function)

Examples:

Reflexivity: ssn→ssn, ssn,name→ssn

Augmentation: If ssn \rightarrow name then ssn,color \rightarrow name,color

Transitivity: If ssn→mgr-id and mgr-id→mgr-name, then ssn→mgr-name.

Using Armstrong's Axioms

Reflexivity: If $X \supseteq Y$, then $X \rightarrow Y$. Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$, for any Z. Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.

Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$ Proof:

 $X \rightarrow YZ$ given $YZ \rightarrow Y$ Reflexivity (trivial FD) $X \rightarrow Y$ Transitivity(Similarly, $X \rightarrow Z$.)

Using Armstrong's Axioms (cont.)

Proposition - Superkeys can be derived from keys: If $X \rightarrow Y$, then $XA \rightarrow Y$, for any A

Example: If SSN \rightarrow name, then SSN,color \rightarrow name Proof:

- $X \rightarrow Y$ Given
- $XA \rightarrow YA$ Augmentation
- $XA \rightarrow Y$ Decomposition (proved on previous slide)

I can construct a superkey from a key.

Using Armstrong's Axioms (cont.)

Proposition: If X \rightarrow A and X is a superkey (and not a key) for the table, then X \rightarrow A is derivable from a key.

Proof:

 $X \rightarrow A$ Given

 $X = Y \cup Z$ where:

- Y is a key,
- Z is non-empty,

Y and Z disjoint Because X is a superkey but not a key

 $Y \rightarrow A$ Because Y is a key for the table that A is in

Therefore $X \rightarrow A$ follows from: $Y \rightarrow A$ (implied by the key) and the result from the previous slide.

Formal definition of BCNF (in the textbook) - revisited

- For a table R, every FD X → A that occurs among attributes of R then either:
 - A is an element of X (X \rightarrow A is trivial)

A is part of a key (don't worry about "key" attributes)

- X is a superkey of R consider the following 2 cases:
 - X is a key for R (good)
 - X is a superkey for R (and not a key). The X → A is derivable from a key using augmentation and decomposition.

For a table to be in BCNF, every FD is either trivial or derivable from the FDs implied by the key(s).

Informally, I often say, BCNF if all FDs are implied by the key(s).

Formal definition of 3NF (in the textbook)

- For a table R, every FD X → A that occurs among attributes of R then either:
 - A is an element of X (X \rightarrow A is trivial)
 - A is part of a key (ignore the "key" attributes)
 - X is a superkey of R Consider the following 2 cases:
 - X is a key for R (good)
 - X is a superkey for R (and not a key). The X → A is derivable from a key using augmentation. (Stay tuned.)
- A table is in 3NF if all the non-key attributes are either trivial or implied by FDs derivable from the FDs implied by the key(s).

Using Armstong's Axioms to show dependency preservation (that SSN →dname is not lost) Employee (SSN, name, phone, dept, dept-name)

Employee (<u>SSN</u>, name, phone, dept) Department (<u>dept</u>, dname)

F = {SSN→name, SSN→phone, SSN→dept, SSN→dept-name, dept→dname} original set of FDs

G = {SSN→name, SSN→phone, SSN→dept, SSN→dept-name, dept→dname} the set of FDs projected from F But G⁺ includes SSN→dept-name because we can derive it: SSN→dept Given (it is in G) dept→dname Given (it is in G) SSN→dname Because of transitivity.

Example showing that we must project from F⁺ when considering dependency preservation

 $R(\underline{a, b}, c)$ where ab is a key, $a \rightarrow b$, $b \rightarrow a$, $a \rightarrow c$

 $F = \{ab \rightarrow c, b \rightarrow a, a \rightarrow b, a \rightarrow c\}$

Suppose we decompose to

X(a, b) and Y(b, c)

If we project F onto X and Y, we see:

 $a \rightarrow b$, $b \rightarrow a$ and that's it. We appear to have lost many FDs.

But F⁺ includes this additional FD:

 $b \rightarrow c$ (because $b \rightarrow a$ and $a \rightarrow c$)

If we project F⁺ onto X and Y we see:

 $a \rightarrow b$, $b \rightarrow a$, and $b \rightarrow c$ in G.

G⁺ then includes $a \rightarrow b$, $b \rightarrow a$, $b \rightarrow c$, plus $a \rightarrow c$ (by transitivity), $ab \rightarrow c$ (by augmentation).

Same example using realistic attribute names

R(<u>ssn, id</u>, name)

```
where (ssn, id) is a key,
```

 $F = {ssn \rightarrow id, id \rightarrow ssn, ssn \rightarrow name}$

X(<u>ssn</u>, <u>id</u>) Y(<u>id</u>, name)
Projection of F = {ssn →id, id→ssn}
But F⁺ includes id→name (because id →ssn, and ssn →name)
Projection of F⁺ includes {ssn →id, id→ssn, id →name}
From that projection, we can compute G+ which includes ssn→name (because ssn→id, id→name)

Challenge Question

Proposition:

If AB \rightarrow C (where A and B are disjoint sets of attributes) then A \rightarrow C and B \rightarrow C.

Is this true or false? Can you prove/disprove it?

Other Normalization Results

- When a table is in BCNF, it is not possible to have redundancies or update anomalies caused by FDs.
- There are other dependencies besides FDs.
 - Multi-valued dependency ... leads to the definition of 4NF
 - Join dependency ... leads to the definition of 5NF
- For FDs, MVDs, and JDs, the project operator is used to decompose and the join operator is used to recontruct.
- There are no redundancies or update anomalies that remain in a table in 5NF that can be solved by projecting/joining. 5NF is sometimes PJNF.

Normalization made easy

Every attribute in a table must depend on the key (definition of a key), the whole key (2NF – no partial dependencies) and nothing but the key (3NF – no transitive dependencies).
Every non-key attribute in a table must depend on the

- key (definition of a key) the whole key (2NF – no partial dependencies) and
 - nothing but the key

(3NF – no transitive dependencies).