
A few details … using
Armstrong’s axioms

Supplement to Normalization Lecture

Lois Delcambre

1

Armstrong’s Axioms –
with explanation and examples

Reflexivity: If X  Y, then XY. (identity function is a function)

Augmentation: If XY, then XZYZ, for any Z. (parallel
application of one function and the identity function is a
function)

Transitivity: If XY and YZ, then XZ. (composition of two
functions is a function)

Examples:

Reflexivity: ssnssn, ssn,namessn

Augmentation: If ssnname then ssn,colorname,color

Transitivity: If ssnmgr-id and mgr-idmgr-name, then
ssnmgr-name.

2

Using Armstrong’s Axioms

Reflexivity: If X  Y, then XY.

Augmentation: If XY, then XZYZ, for any Z.

Transitivity: If XY and YZ, then XZ.

Decomposition: If X  YZ, then XY and XZ

Proof:

X YZ given

YZY Reflexivity (trivial FD)

XY Transitivity

(Similarly, XZ.)

3

Using Armstrong’s Axioms (cont.)

Proposition - Superkeys can be derived from keys:

If XY, then XAY, for any A

Example: If SSN  name, then SSN,color  name

Proof:

XY Given

XAYA Augmentation

XA Y Decomposition (proved on previous slide)

I can construct a superkey from a key.

4

Using Armstrong’s Axioms (cont.)

Proposition: If X A and X is a superkey (and not a key) for the
table, then XA is derivable from a key.

Proof:

XA Given

X = YZ where:

Y is a key,

Z is non-empty,

Y and Z disjoint Because X is a superkey but not a key

YA Because Y is a key for the table that A is in

Therefore XA follows from: Y A (implied by the key) and the
result from the previous slide.

5

Formal definition of BCNF
(in the textbook) - revisited

• For a table R, every FD X → A that occurs among
attributes of R then either:
– A is an element of X (X → A is trivial)

– A is part of a key (don’t worry about “key” attributes)

– X is a superkey of R
consider the following 2 cases:
• X is a key for R (good)

• X is a superkey for R (and not a key). The X → A is derivable from a
key using augmentation and decomposition.

For a table to be in BCNF, every FD is either trivial or
derivable from the FDs implied by the key(s).

Informally, I often say, BCNF if all FDs are implied by the
key(s).

6

7

Formal definition of 3NF
(in the textbook)

• For a table R, every FD X → A that occurs among
attributes of R then either:

– A is an element of X (X → A is trivial)

– A is part of a key (ignore the “key” attributes)

– X is a superkey of R
Consider the following 2 cases:
• X is a key for R (good)

• X is a superkey for R (and not a key). The X → A is derivable from a
key using augmentation. (Stay tuned.)

A table is in 3NF if all the non-key attributes are either
trivial or implied by FDs derivable from the FDs implied
by the key(s).

CS386/586 Winter 2010, Copyright Lois Delcambre

Using Armstong’s Axioms to show dependency
preservation (that SSNdname is not lost)

Employee (SSN, name, phone, dept, dept-name)

Employee (SSN, name, phone, dept)
Department (dept, dname)

F = {SSNname, SSNphone, SSNdept, SSNdept-name,
deptdname} original set of FDs

G = {SSNname, SSNphone, SSNdept, SSNdept-name,
deptdname} the set of FDs projected from F

But G+ includes SSNdept-name because we can derive it:
SSNdept Given (it is in G)
deptdname Given (it is in G)
SSNdname Because of transitivity.

8

Example showing that we must project from F+

when considering dependency preservation
R(a, b, c) where ab is a key, ab, ba, ac

F = {abc, ba, ab, ac}

Suppose we decompose to
X(a, b) and Y(b, c)

If we project F onto X and Y, we see:
ab, ba and that’s it. We appear to have lost many FDs.

But F+ includes this additional FD:
bc (because ba and ac)

If we project F+ onto X and Y we see:
ab, ba , and bc in G.

G+ then includes ab, ba , bc, plus ac (by transitivity),
abc (by augmentation).

9

Same example using realistic attribute names

R(ssn, id, name)

where (ssn, id) is a key,

F = {ssnid, idssn, ssnname}

X(ssn, id) Y(id, name)

Projection of F = {ssnid, idssn}

But F+ includes idname (because id ssn, and ssnname)

Projection of F + includes {ssnid, idssn, id name}

From that projection, we can compute G+ which includes
ssnname (because ssnid, idname)

10

Challenge Question

Proposition:

If ABC (where A and B are disjoint sets of attributes)

then AC and BC.

Is this true or false?

Can you prove/disprove it?

11

Other Normalization Results

• When a table is in BCNF, it is not possible to have
redundancies or update anomalies caused by FDs.

• There are other dependencies besides FDs.

– Multi-valued dependency … leads to the definition of 4NF

– Join dependency … leads to the definition of 5NF

• For FDs, MVDs, and JDs, the project operator is used to
decompose and the join operator is used to recontruct.

• There are no redundancies or update anomalies that
remain in a table in 5NF that can be solved by
projecting/joining. 5NF is sometimes PJNF.

12

Normalization made easy

Every attribute in a table must depend on the
key (definition of a key),
the whole key (2NF – no partial dependencies)
and
nothing but the key

(3NF – no transitive dependencies).

Every non-key attribute in a table must depend on the
key (definition of a key)
the whole key (2NF – no partial dependencies)
and
nothing but the key

(3NF – no transitive dependencies).

13

