
ARITHMETIC
OPERATIONS

Operations in C
▸ Bit-wise boolean operations
▸ Logical operation
▸ Arithmetic operations

WE HAVE THE DATA, WHAT NOW?

2

Algebraic representation of logic
▸ Encode “True” as 1 and “False” as 0
▸ Operators & | ~ ^

BOOLEAN ALGEBRA

3

AND (&)
TRUE when both A = 1 AND B = 1

& 0 1

0 0 0

1 0 1

OR (|)
TRUE when either A = 1 OR B = 1

| 0 1

0 0 1

1 1 1

Algebraic representation of logic
▸ Encode “True” as 1 and “False” as 0
▸ Operators & | ~ ^

BOOLEAN ALGEBRA

4

NOT (~)
Inverts the truth value

~

0 1

1 0

^ 0 1

0 0 1

1 1 0

XOR “Exclusive OR” (^)
TRUE when A or B = “1”,
but not both.

Applies to any “Integer” data type
▸ That is… long, int, short, char
▸ View arguments as bit vectors
▸ Operations applied in a “bit-wise” manner

Examples:

BOOLEAN ALGEBRA

5

 01101001
& 01010101
 01000001

 01101001
| 01010101
01111101

 01101001
^ 01010101
00111100

~ 01010101
 10101010

0x69 & 0x55

PARTNER ACTIVITY

6

 01101001
& 01010101
 01000001

= 0x41

0x69 ^ 0x55

 01101001
^ 01010101
 00111100

= 0x3C

0x69 | 0x55

 01101001
| 01010101
 01111101

= 0x7D

~ 0x55

~ 01010101
 10101010

= 0xAA

Left Shift: x << y
▸ Shift bit-vector x left y positions

▹ Throw away extra bits on left
▹ Fill with 0’s on right

Right Shift: x >> y
▸ Shift bit-vector x right y positions

▹ Throw away extra bits on right
▸ Logical shift

▹ Fill with 0’s on left
▸ Arithmetic shift

▹ Replicate most significant bit on left
▹ Recall two’s complement integer representation
▹ Perform division by 2 via shift

SHIFT OPERATIONS

7

Argument x 01100010

x << 3 00010000

Argument x 10100010

Logical >> 2 00101000

Arith. >> 2 11101000

PARTNER ACTIVITY

8

x x << 3
x >> 2

(Logical)
x >> 2

(Arithmetic)

0xF0 0x80 0x3C 0xFC

0x0F 0x78 0x03 0x03

0xCC

0x55

0x60 0x33 0xF3

0xA8 0x15 0x15

Operations always return 0 or 1

Comparison operators
▸ > >= < <= == !=

Logical Operators
▸ && || !
▸ Logical AND, Logical OR, Logical negation
▸ In C (and most languages)

▹ 0 is “False”
▹ Anything non-zero is “True”

LOGIC OPERATIONS IN C

9

Examples (char data type)
▸ !0x41 == 0x00
▸ !0x00 == 0x01
▸ !!0x41 == 0x01

What are the values of
▸ 0x69 || 0x55
▸ 0x69 | 0x55

What does this expression do?
▸ (p && *p)

LOGIC OPERATIONS IN C

10

Watch out!

▸ Logical operators versus bitwise

&& versus &
|| versus |
== versus =

Two integers x and y

For any processor, independent of the size of an integer, write C expressions
without any “=“ signs that are true if:
▸ x and y have any non-zero bits in common in their low order byte

▸ 0xFF & (x & y)
▸ x has any 1 bits at higher positions than the low order 8 bits

▸ ~0xFF & x
▸ (x & 0xFF) ^ x
▸ (x >> 8)

▸ x is zero
▸ !x

▸ x == y
▸ !(x ^ y)

USING
BITWISE AND LOGICAL OPERATIONS

11

Signed / Unsigned
▸ Addition and subtraction
▸ Multiplication
▸ Division

ARITHMETIC OPERATIONS

12

Binary (and hexadecimal) addition similar to decimal
Assuming arbitrary number of bits, use binary addition to calculate 7 + 7

 0111
+ 0111

Assuming arbitrary number of bits, use hexadecimal addition to calculate
168+123 (A8+7B)

 A8
 + 7B

UNSIGNED ADDITION WALKTHROUGH

13

Binary subtraction similar to decimal
Assuming 4 bits, use subtraction to calculate 6 - 3

 0110
- 0011

In hardware, done via 2s complement negation followed by addition,
(2s complement negation of 3 = ~3 + 1) 0011 => 1100 => 1101 (-3)

 0110
+ 1101

UNSIGNED SUBTRACTION
WALKTHROUGH

14

Hexadecimal subtraction similar to decimal
Use subtraction to calculate 266-59 (0x10A – 0x3B)

 10A
- 03B

UNSIGNED SUBTRACTION
WALKTHROUGH

15

Suppose we have a computer with 4-bit words

What is 9 + 9?
▸ 1001 + 1001

With w bits, unsigned addition is regular addition, modulo 2w

▸ Bits beyond w are discarded

UNSIGNED ADDITION AND OVERFLOW

16

= 0010 (2 or 18 % 24)

Assuming an arbitrary number of bits, calculate

 0x693A
+ 0xA359

What would the result be if a 16-bit representation was used instead?

PARTNER ACTIVITY

17

With 32-bits, unsigned addition is modulo 232

What is the value of

 0xc0000000
 + 0x70004444

UNSIGNED ADDITION

18

#include <stdio.h>
unsigned int sum(unsigned int a, unsigned int b)
{
 return a+b;
}
int main () {
 unsigned int i=0xc0000000;
 unsigned int j=0x70004444;
 printf("%x\n",sum(i,j));
 return 0;
}

Output: 30004444

Assuming 5 bit 2s complement representation, what is the decimal value of
the following sums: (7 + 11), (-14 + 5), and (-11 + -2)

Recall: -16 8 4 2 1

 00111 10010 10101
 + 01101 + 00101 + 11110
 ------- ------- -------

What would the result be if a 16-bit representation was used instead?

PARTNER ACTIVITY

19

Always unsigned

Based on size of the type being pointed to
▸ Incrementing a (int *) adds 4 to pointer
▸ Incrementing a (char *) adds 1 to pointer

POINTER ARITHMETIC

20

Consider the following declaration on
▸ char* cp = 0x100;
▸ int* ip = 0x200;
▸ float* fp = 0x300;
▸ double* dp = 0x400;
▸ int i = 0x500;

What are the hexadecimal values of each after execution of these
commands?

PARTNER ACTIVITY

21

cp++;

ip++;

fp++;

dp++;

i++;

0x101

0x204

0x304

0x408

0x501

DATA SIZES IN C

22

C Data Type Typical 32-bit x86-64

char 1 1
short 2 2

int 4 4
long 4 8
float 4 4

double 8 8
pointer 4 8

Same problem as unsigned

The bit-level representation for two’s-complement and unsigned is identical
▸ This simplifies the integer multiplier

As before, the interpretation of this value is based on signed vs. unsigned

Maintaining exact results
▸ Need to keep expanding word size with each product computed
▸ Must be done in software, if needed

▹ e.g., by “arbitrary precision” arithmetic packages

TWO’S COMPLEMENT MULTIPLICATION

23

What happens if you shift a decimal number left one place?
▸ 3010 => 30010

▹ Multiplies number by base (10)

What happens if you shift a binary number left one place?
▸ 000112 => 001102

▹ Multiplies number by base (2)

MULTIPLICATION BY SHIFTING

24

What if you shift a decimal number left N positions?
▸ (N = 3) 3110 => 3100010
▸ Multiplies number by (base)N or 10N (1000 for N = 3)

What if you shift a binary number left N positions?
▸ 000010002 << 2 = 001000002
▸ (810) << 2 = (3210)

▸ Multiplies number by (base)N or 2N

MULTIPLICATION BY SHIFTING

25

CPUs shift and add faster than multiply

u << 3 == u * 8

▸ Compiler may automatically generate code to implement multiplication via
shifts and adds
▹ Dependent upon multiplication factor

▸ Examples
▹ K = 24

(u << 5) – (u << 3) == u * 32 – u * 8 == u * 24
▹ K = 18

(u << 4) + (u << 1) == u * 16 + u * 2 == u * 18

MULTIPLICATION BY SHIFTS AND ADDS

26

What happens if you shift a decimal number right one digit?

3110 => 310

Divides number by base (10), rounds down towards 0

What happens if you shift an unsigned binary number right one bit?

000001112 => 000000112 (7 >> 1 = 3)

Divides number by base (2), rounds down towards 0

DIVISION BY SHIFTING

27

Question:

If:
7 >> 1 == 3

What would you expect the following to give you?
-7 >> 1 == ?

DIVISION BY SHIFTING

28

Try using a byte
 7 == 00000111
-7 == 11111001 (flip bits, add 1)
-7 >> 1 == 11111100 (-4)!

What happens if you shift a negative signed binary number right one bit?
▸ Divides number by base (2), rounds away from 0!

German parliament (1992)
▸ 5% law before vote allowed to count for a party
▸ Rounding of 4.97% to 5% allows Green party vote to count
▸ “Rounding error changes Parliament makeup” Debora Weber-Wulff, The

Risks Digest, Volume 13, Issue 37, 1992

Vancouver stock exchange (1982)
▸ In January 1982 the index was initialized at 1000 and iteratively updated

with each subsequent trade.
▸ After each update, the index was truncated to three decimal places. The

truncated value was used to calculate the next value of the index. Updates
occurred approximately 3000 times each day.

▸ The accumulated truncations led to an erroneous loss of around 25 points
per month. Over the weekend of November 25–28, 1983, the error was
corrected, raising the value of the index from its Friday closing figure of
524.811 to 1098.892.

WHY ROUNDING MATTERS

29

What is the output of this code?

#include <stdio.h>
int main () {
 int i = 3;
 printf("%d\n", i*8 - i*2);
 printf("%d\n", i<<3 – i<<1);
}

OPERATOR PRECEDENCE

30

$./a.out
18
6

C OPERATOR PRECEDENCE

31

