
Data Structures

Topic #3

Today’s Agenda

• Ordered List ADTs

– What are they

– Discuss two different interpretations of an
“ordered list”

– Are manipulated by “position”

• Use of Data Structures for Ordered Lists

– arrays (statically & dynamically allocated)

– linear linked lists

Ordered Lists

• Now that we have seen a simple list

example, and started to examine how we

can use different data structures to solve

the same problem

• We will move on to examine an ordered

list ADT

– implemented using a linear linked list, circular linked

list, linked list of linked lists, doubly linked lists, etc.

Ordered Lists

• So, what is an ordered list?
• Immediately, a sorted list comes to mind
• But...this isn’t the only definition!

– think of lists ordered by time,

– grocery lists? In the order you think about it

– to-do lists? In priority order...

• In fact, typically an ordered list is:

– ordered by “position”

– whereas a “sorted” list is a “value oriented list”, this is a
“position oriented list”

Ordered Lists

• But, an ordered list has many many
different interpretations

• We will discuss two:

– absolute lists

– relative lists

• Why? Well, there are a variety of
interpretations of where data is inserted and
whether or not the list has “holes”

Absolute Ordered Lists

• An absolute ordered list

– may have holes

– which means if the first data inserted is at position 12,

there are 11 holes (1-11) prior

– may “replace” data if inserted at the same position

(another insert at position 12 could replace the

previously inserted data at that position...it never shifts

the data)

– similar to “forms” such as a tax form

Relative Ordered Lists

• A relative ordered list

– may not have holes

– which means if the first data inserted is at position 12, it

would actually be inserted at the first position!

– may “shift” data if inserted at the same position (another

insert at position 1 would shift what had been at position

1 -- now to be at position 2)

– similar to “editors” such as vi

Absolute List Operations

• For an absolute ordered list, what are the
operations?

– insert, retrieve, remove, create, destroy, display

– insert, retrieve, and remove would all require the client
program to supply a position number

– notice we are not inserting in sorted order, or retrieving
by a “value”

– instead we insert at an absolute position, retrieve the data
at that position, remove data at a given position --- not
affecting the rest of the list!

Relative List Operations

• For a relative ordered list, what are the
operations? (the same!)

– insert, retrieve, remove, create, destroy, display

– insert, retrieve, and remove would all require the client
program to supply a position number

– instead we insert at a relative position, retrieve the data
at that position, remove data at a given position --- this
time affecting the rest of the list!

– A remove at position 1 would require every other piece
of data to shift down (logically)

Absolute/Relative Operations

• Notice what was interesting about the
last two slides

• The operations for a relative and absolute
list are the same

• One exception is that a relative list might
also have an “append” function

• And, an absolute list might restrict insert
from “replacing”, and add another
function to specifically “replace”

Client Interface

• Therefore, the client interface for these

two interpretations might be identical!

– so...how would the application writer know which type

of list the ADT supports?

– Documentation! Critical whenever you implement a list

– What does it mean to insert? Where?

– What implications does insert and remove have on the

rest of the data in the list?

Client Interface

class ordered_list {

public:

ordered_list();

~ordered_list();

int insert(int, const data &);

int retrieve(int, data &);

int display();

int remove(int);

Client Interface

• With the previous class public section

– the constructor might be changed to have an
integer argument if we were implementing this
abstraction with an array

– the int return types for each member function
represent the “success/failure” situation; if more
than two states are used (to represent the error-
code) ints are a good choice; otherwise, select a
bool return type

Data Structures

• Now let’s examine various data structures

for an ordered list and discuss the

efficiency tradeoffs, based on:

– run-time performance

– memory usage

• We will examine:

– statically/dynamically allocated arrays

– linked lists (linear, circular, doubly)

Data Structures

• Statically Allocated array...
private:

data array[SIZE];

int number_of_items;

• Absolute lists:

– direct access (insert at pos12 : array[11] = ...

– remove only alters one element (resetting it?)

– problem: memory limitations (fixed size)

– problem: must “guess” at the SIZE at compile time

Data Structures

• Relative lists: (statically allocated arrays)

– direct access for retrieve

– problem: searching! Insert might cause the data to be
inserted somewhere other than what the position specifies
(i.e., if the position # is greater than the next “open”
position)

– problem: shifting! Remove, insert alters all subsequent
data

– problem: memory limitations (fixed size)

– problem: must “guess” at the SIZE at compile time

Data Structures

• Dynamically Allocated array...
private:

data * array;

int number_of_items;

int size_of_array;

• Absolute lists:

– direct access (insert at pos12 : array[11] = ...

– remove only alters one element (resetting it?)

– problem: memory limitations (fixed size)

Data Structures

• Relative lists: (dynamically allocated

arrays)

– direct access for retrieve

– problem: searching for the correct position for

insert

– problem: shifting with insert and remove

– problem: memory limitations (fixed size)

Data Structures

• What this tells us is that a dynamically
allocated list is better than a statically
allocated list (one less problem)

– if the cost of memory allocation for the array is
manageable at run-time.

– may not be reasonable if a large quantity of instances of
an ordered_list are formed

– is not required if the size of the data is known up-front at
compile time (and is the same for each instance of the
class)

Data Structures

• We also should have noticed from the

previous discussion that...

– absolute ordered list are well suited for array

implementations, since they are truly direct access

abstractions

– relative ordered list are rather poorly suited for arrays,

since they require that data be shifted

• therefore, hopefully the array consists of pointers to our data, so

that at least when we shift we are only moving pointers rather

than the actual data!!

Data Structures

• Linear Linked list...
private:

node * head;

node * tail; //???helpful?

• Absolute lists: (a poor choice)

– holes: how to deal with them? add a position number to
the contents of each node....don’t really allocate nodes
for each hole!!!!

– insert, retrieve, removal requires traversal

– how can a tail pointer help? if data is entered in order
by position!

Data Structures

• Relative lists: (linear linked lists)

– no holes -- so no extra position needed in each node

– insert, retrieve, remove requires traversal

– a tail pointer assists if appending at the end

– no shifting!!

• So, while we still have to “search”, and the search
may be more expensive than with an array -- this is
greatly improved for a relative list, since there is
not shifting!!

Data Structures

• Circular Linked list...
private:

node * head;

node * tail; //???helpful?

• There is nothing in an ordered list that
will benefit from the last node pointing to
the first node

• A circular linked list will require
additional code to manage, with no
additional benefits

Data Structures

• Doubly Linked list...
private: (each node has a node * prev)

node * head;

node * tail; //???helpful?

• Again, there is nothing in an ordered list
that will benefit from each node having a
pointer to the previous node.

• UNLESS, there were operations to
backup or go forward from the “current”
position. In this case a doubly linked list
would be ideal

Data Structures

• What about a linked list of arrays

– where every n items are stored in the first node, the

next n items are stored in the second node, etc.

– This still requires traversal to get to the right node, but

then from there direct access can be used to insert,

retrieve, remove the data

– May be the best of both worlds for relative lists,

limiting the amount of shifting to “n” items while at

the same time keeping the traversal to a manageable

level

Data Structures

• Are there other alternatives?

– How about an array of linked lists?

– How about “marking” data in a relative list as
“empty” to avoid shifting with an array?!

• Given the data structures discussed, which is
best and why for:

– absolute ordered list

– relative ordered list

Next Time...

• Now that we have applied data structures
to an ordered list

• We will move on to examine stack and
queue abstractions

• Again, we will examine them from the
standpoint of arrays, linked list, circular
linked list, linked list of linked lists,
doubly linked lists, etc. beginning next
time!

Data Structures

Programming

Assignment

Discussion

