
Traffic Analysis of UDP-based Flows in Ourmon
Portland State University - Computer Science Technical Report - 0807

James R. Binkley
Computer Science Dept.
Portland State University

Portland, OR, USA
jrb@cs.pdx.edu

Divya Parekh
Computer Science Dept.
Portland State University

Portland, OR, USA
divyap@cs.pdx.edu

Abstract

We present a custom UDP flow tuple with an IP address
key and a set of simple related statistical attributes. At-
tributes are used to calculate a per host metric called the
UDP work weightwhich roughly measures the amount
of network noise caused by a host. The work weight
is used to produce a near real-time sorted top N report
for UDP host tuples. We also present a derived attribute
based on an algorithm called theUDP guesstimator. The
UDP guesstimator roughly classifies port report hosts
into various traffic categories including security threats
(DOS/scanning) or P2P hosts based on high UDP work
weights and other flow attributes. This algorithm does
not use Layer 7 data and only relies on Layer 3 and Layer
4 statistics taken from the UDP flow tuple. Although
we believe the algorithm to be fairly effective, we dis-
cuss several common sources of false positives includ-
ing DNS servers, and P2P systems which may sometimes
appear to be scanners. We also briefly present an exper-
iment that has attempted to determine P2P applications
based on UDP packet size histogram bins.

1 Introduction

Security threats based on botnets bringing with them
denial-of-service attacks, scans, spam and keylogging
are rife [6, 8]. In addition, the relatively recent emer-
gence of a pure p2p-based botnet called stormworm [14]
has caused concern amongst security professionals who
were used to the more traditional TCP-based IRC botnet
control channels. Stormworm uses UDP for its command
and control. In addition, many peer-to-peer (P2P) proto-
cols including Bittorrent have switched to using a UDP-
based control plane based on the Kademlia protocol [12].
Thus there is a clear trend in both botnet and P2P proto-
cols for using UDP for control. As a result there is also a
clear need for UDP-based detection schemes for related
security incidents and for detecting P2P-based protocols.

In this paper we discuss recent work in our ourmon
system aimed at detecting UDP-only threats including
UDP scanning and denial of service attacks, and UDP-
based P2P. Portland State University has approximately
26000 users and growing wireless and dormitory popula-
tions. Not surprisingly we see a great variety of P2P traf-
fic often aimed at providing entertainment including tra-
ditional file-sharing applications and newer video and au-
dio applications like Joost [9] and Skype [15], as well as
more traditional security incidents including UDP-based
denial of service attacks.

Our paper introduces theUDP port report which is
part of the ourmon [3, 13] monitoring system. The port
report consists of UDP port tuples collected every 30 sec-
onds by a packet sniffing ourmon probe. The port tuple
consists of a set of statistical attributes, some of which
are derived from more fundamental attributes. Each tu-
ple is indexed by the host IP address. Per tuple we com-
pute a measurement called theUDP work weightwhich
we consider to be a measure of noise generated by a host.
Typically scanners and systems engaged in DOS attacks
produce very high work weights. P2P systems (and DNS
servers) produce a high work weight when busy. Ordi-
nary hosts produce lower numbers for UDP-based pro-
tocols like Microsoft file sharing and client DNS reso-
lution. In addition we have invented another algorithm
called theUDP guesstimatorwhich is based on a few
of the attributes found in the UDP port tuple including
the UDP work weight. The guesstimator helps us clas-
sify traffic into simple classes like scanner or p2p. Note
that this algorithm is only based on Layer 3 and Layer
4 attributes. We also present a limited experiment based
on attempting to determine applications based on UDP
packet sizes. The results of the experiment are intriguing
but not conclusive. However we feel the experiment was
promising and would like to encourage other researchers
to perform similar experiments.

In Section 2 we discuss the UDP port tuple, work
weight, and guesstimator. In Section 3 we present exper-



imental results and problems associated with the guessti-
mator algorithm. In Section 4 we present our experiment
with application deduction based on packet size. In Sec-
tion 5 we discuss related work and present our conclu-
sions.

2 UDP Flow Tuple

The front-end data collector gathers UDP tuples over its
thirty second sampling period. Tuples consist of a set
of basic attributes with an IP address as an index. At
the end of the sampling period the probe software walks
the tuple set and for each tuple computes the UDP work
weight, which is a measure of per host noise (discussed
in the next section). Thus the UDP work weight is added
to the tuple set and is a second order computed attribute.
All UDP tuples are sorted by the UDP work weight and
the first N tuples (set by configuration) are passed to the
back-end for further processing and web-based display.

The set of sorted tuples produced during a sample pe-
riod are called theUDP port report. The UDP flow tu-
ple has the following simplified form including the UDP
work weight.

(IPSRC, WEIGHT, SENT, RECV,
ICMPERRORS, L3D, L4D, SIZEINFO,
SA/RA, APPFLAGS, PORTSIG}

The logical key in this tuple is the IP addressIPSRC.
We will return to the work weightWEIGHT in the next
section. SENTand RECVfields are packet counts for
UDP packets sent to/from the host in question.ICM-
PERRORSare counts for various kinds of ICMP errors
(unreachable in particular) returned to the host IP.L3D is
a count of unique L3 IP destination addresses in the sam-
ple period. Likewise,L4D is a count of unique destina-
tion UDP ports. Note that L3D and L4D provide useful
information about possible P2P behavior for the host in
question.L4S is a limited count mechanism for unique
L4 source ports and basically counts up to 10 as multi-
ple UDP source ports are uncommon in nearly all hosts.
(We have never seen more than five UDP sockets open).
TheSIZEINFOfield is a a histogram of sent packet sizes
in terms of the layer 7 byte payload counts (40, 90, 200,
500, 1000, 1500). TheSA/RAfield is a running aver-
age for layer 7 payload size of UDP packets sent by the
host (SA), and UDP packets received by the host (RA).
TheAPPFLAGSfield is a user programmable field based
on regular expressions and is used for peeking at Layer
7 content. For example we can use it to determine if a
packet matches a regular expression for various kinds of
P2P protocols (DHT Bittorrent, Gnutella). We also use
it to mark hosts sending DNS packets. The port signa-
ture (PORTSIG) field is a sample of one to ten destina-
tion UDP ports seen during the sampling period and can

sometimes be used to determine that a particular host is
running a particular protocol. It is sorted in ascending
port order and also gives a percent of packets associated
with the port in question. It has proven useful in the past
for spotting scanning botnet clients that may pick on a
small handful of destination ports due to built-in exploits.

2.1 UDP work weight

We derive an attribute called theUDP work weightfrom
a fairly simple set of fundamental per IP host attributes.

ww = (SENT ∗ ICMPERRORS) + RECV

For one sample period, we take the count of UDP
packets sent by the host and multiply it by the total num-
ber of ICMP errors returned to the host. If the ICMP
count is 0, we promote it to 1. ICMP errors are for the
most part unreachable errors. This gives us a noise mea-
surement. We then add in the count of packets returned.
Informally if there are high error counts, the work weight
tends to be much higher due to multiplication of errors by
packets sent. As a result the position of the error prone
host in question relative to hosts with less errors is higher
in the UDP port report. On the other hand if a host is
simply doing a great deal of work either sending and/or
receiving packets, we simply add those numbers together
to boost it relative to other less chatty hosts. All things
being equal sans errors, hosts doing a lot of work will
be higher in the port report compared to hosts doing less
work. Fundamentally this may be viewed as a top talker
metric where error-prone talkers are given a boost.

Per site work weights are dependent on overall net-
work speed, but the values are relative to each other
within a site. PSU has a gigabit network. In theory one
might calculate that given a rough maximum count of 1.4
million minimum-sized UDP packets per second at giga-
bit speeds, with a return of 1.4 million ICMP packets,
the highest number would be on the order of 2000 billion
(2 trillion and bad news but we have never seen a num-
ber over a billion). A single system sending around 1.4
million packets with no error packets returned would of
course have a weight of 1.4 million. The daily average
for the highest work weight is around 75000.

Extreme work weights (say 100 million or above) typ-
ically belong to hosts that are either scanning as fast as
possible or are engaged in a DOS attack. Lower work-
weights in the range 1000-200000 generally tend to be-
long to hosts that are engaged in some form of P2P or
game activity (Bittorrent, Gnutella, Joost video, Counter-
strike). This band typically includes our enterprise DNS
servers simply because they do a great deal of work and
are subject to a great deal of noise due to failed DNS
lookups (this subject needs more investigation). P2P



hosts appear here because some percentage of their sent
UDP packets go astray. In the case of P2P hosts this is
likely because their set of peers is never completely fresh
(some have gone off-line or vanished). Lower numbers
are of course typically ordinary clients simply engaged
in more mundane activities like ordinary DNS lookups
or use of typical UDP-based services like the Microsoft
distributed file system. Audio users (skype) typically fall
in the lower to lower middle bands as well because they
do not send large amounts of UDP packets.

As a result our experience suggests that the UDP work
weight tends to roughly divide UDP traffic classes up
into three levels, based on high amounts of errors, normal
with ”medium” amounts of errors or high packet activity,
and a lower threshold with small amounts of packets. In
point of fact, the first class with high error state associ-
ated with scanners or DOS attacks is of course anoma-
lous. In our network a work weight of 10 million or
more will only occur a few times a day (in our case typi-
cally due to outside in scans of our entire class B address
space) but it is not what one normally sees in the aver-
age 30-second port report. DOS attacks are rare but have
occurred and given that a gigabit UDP-based host can
easily send more than 1 million packets per second, very
high work weights indeed can occur under those circum-
stances.

The average normal highest value is on the order of
75000 or so and is typically associated with either P2P
hosts or local DNS servers. Our 10 million ”abnormal”
threshold is thus chosen to be safely above the normal
highest value for any non-attacking host and is some-
what under the values we see for external hosts scanning
our entire network space for ”interesting” UDP ports, al-
though slower scanners may only rack up a work weight
of a million or so.

We use this particular work weight threshold (10 mil-
lion) for automated packet recording in the ourmon sys-
tem. This has proven useful in a number of DOS attacks
as the ourmon probe will simply record the first 1000
or so packets using a dynamically generated Berkeley
Packet Filter (BPF) expression based on the IP address
extracted from the top UDP work weight tuple. An an-
alyst can use any BPF sniffer (e.g., tcpdump) to play-
back the packet trace. In addition, the web-based ourmon
event log typically will succeed in showing the IP ad-
dress of a single offender even if the probe itself fails due
to overload. This is probably due to the system capturing
the rising edge of the attack. As a result this recording
feature has proved invaluable on occasions when we have
had an internal DOS attack aimed at the outside world
due to a compromised host.

We will look at example data results for a simplified
UDP port report below in Section 3.

2.2 Guesstimator

The guesstimator algorithm is a decision tree based on a
few attributes derived from the UDP tuple. The attributes
in question do not include layer 7 information as we wish
to be able to detect P2P like behavior even in the pres-
ence of data payload encryption. For each host address
we try and formulate a per sample period guess with the
intent of roughly categorizing a host into either a ”scan”
or ”p2p” sub-class.

The algorithm in rough form is as follows:

guess = "unknown"
if udp work weight >

SCAN_THRESHOLD_WEIGHT
guess = "scan"
if L3D is HIGH and L4D is LOW

guess = "IP scanner"
else if L4D is HIGH and L3D LOW

guess = "port scanner"
else if L3D count and
L4D count > P2P_THRESHOLD

guess = "p2p"

Although the real algorithm is a little more complex,
it more or less boils down to the above logic. The ex-
plicit intent of the algorithm is to point out some obvious
characteristics of the UDP tuple. (In the old days this de-
cision tree might have been called an ”expert system”).
The various thresholds are rude heuristics that seem to
work well. Note that the logic boils down to first testing
to see if the host in question has a high scanner weight,
if so we assume it may be a security threat. We then try
to characterize it as either a IP destination scanner or an
IP port walker. The threshold metric here is 10 million.
This value catches external scanners typically walking
our IP address space at 100s of packets per second (as-
suming there are enough ICMP errors). It also catches
DOS attacks. It is however set high enough that it is out
of the range of most ”normal” university p2p peers and
DNS server traffic.

If the host is not a scanner, we test to see if it might
have p2p characteristics. This test is simple and the
counts we use for unique L3 IP address and L4 desti-
nation port counts are set very low (10..20). This value
might very well be set in the 100s as that is typical for
typical p2p applications like Bittorrent and Gnutella us-
ing the DHT protocol. One is more or less defining P2P
in UDP terms as simply meaning host X is talking to a
remote set of hosts at different ports. The exact threshold
value here might range from 10 to 100 but a lower num-
ber seems to work reasonably well and is more inclusive
for better or for worse than a higher number.

The algorithm is in some sense just a summary of ob-
vious attribute values. It boils down to either many er-



rors with a DOS or scan compared to a p2p guess which
has less errors but is characterized by many peer IPs and
peer UDP ports. The most important notion of the al-
gorithm is that it inherently prioritizes security concerns
over more prosaic everyday affairs (at least at universi-
ties). DOS attacks are more important than hosts run-
ning p2p applications. We have tested it by looking at
packet traces, and by running various popular p2p appli-
cations in our lab and looking at the results. Empirically
it seems roughly accurate although it could certainly be
argued that it is simply pointing out attribute combina-
tions. There are certain problems with this algorithm that
we will discuss below in the experience section.

We should also point out that our UDP tuple includes
a Layer 7 based regular expression mechanism. It has
proven useful as a method of cross verification for non
Layer-7 attributes as we have useful regular expressions
for the DHT protocol use in bittorent-based applications
as well as for DNS messages themselves.

3 Experience and Problems

In table 1 we give a small and simplified port report ta-
ble which shows a set of examples. Our examples here
as with the real port report are sorted by work weight. IP
addresses in this example are merely an index. This table
has an interesting feature that is unfortunately not avail-
able in the real world. The final column labeledtruth
shows an accurate classification based on packet knowl-
edge. We have chosen examples that also all have accu-
rate pattern matching. ’b’ is a tag that means host packets
matched a pattern for a DHT peer query (b for Bittor-
rent although this is the DHT version of Bittorrent). ’d’
is a very strong pattern for DNS payloads. ’s’ is a pat-
tern for ”spim” and matches common UDP-based exter-
nal scans of our entire IP address space looking for Win-
dows boxes that might allow a 1 packet UDP payload to
be turned into a popup (as far as we know there aren’t
any, but never mind). This is a very common external
scan performed several times daily against our network
and ironically can be seen as a reference scan.

Results due to the work weight sort fall into the large,
middle noise, and negligible noise categories as men-
tioned before. Examples 1, 2 are over 10 million so we
consider them to be ”very noisy” and hence they are la-
beled scan. Example 2 is in reality a real ”spim” scan.
Example 1 might be deemed a false positive (arguable).
Examples 3 and 4 are high in terms of overall numbers in
a normal port report (not true here because we have only
chosen some relevant tuples), and seem to have many
ports and many IP destinations therefore they have been
labeled as ”p2p”. Example 3 is really p2p. Example 4
is a DNS server. Of course in a university network there
are many variations on example 3 and not very many ex-

amples of 4 (as we have a small set of DNS servers). Ex-
ample 5 is an ordinary client that has merely used DNS
for lookups and is a very typical low noise source.

Now let us look at the more interesting examples in
which our decision tree produced a somewhat invalid
classification. In example 1, it claims that the host in
question is performing a scan. This is a somewhat com-
mon event. What is actually going on as verified by look-
ing at packet traces is that the host in question is issuing
many DHTget peerrequests. We have not been able to
reproduce such behavior in a lab setting, but we suspect
that the problem is somehow based on a stale peer to peer
remote host cache. Hence the local box is trying to find
mates, but for some reason cannot find some substantial
subset of its peers. We have seen such behavior in the
past with Gnutella in particular but at that time, Gnutella
was purely TCP-based. The pattern match here provides
a useful clue. It is also true that an anti-P2P security
policy could truly consider this bad. In a university envi-
ronment one might on the other hand consider it a false
positive. One could argue that this behavior is more or
less a scan, however it would be nice to distinguish it
from other forms of scans.

Example 4 is in fact a local DNS server. DNS servers
have many clients and many remote ports and thus by
definition fall into our simple definition of P2P (many
ports and many IP peers). However this seems spurious
on some grounds. It is perhaps enough to simply know
the IP addresses of well-known local DNS servers. Fur-
thermore our L7 pattern is very strong and works very
well. It might be enough to simply note that a large per-
centage of packets are sent to port 53. On the other hand,
once again, this is cheating and it might be more satis-
fying if we had a better heuristic means for telling DNS
servers from other hosts.

4 Guesstimator Application Recognition

Recently we performed an experiment partially inspired
by the work in [5] as we found the idea of looking at
packet sizes as a means for identification of application
types to be intriguing especially in the UDP arena. We
speculated that attention to packet sizes might produce
a useful attribute that could help in the identification
of UDP-based applications or application classes. This
might be because UDP-based socket programming may
involve the use of certain packet sizes for certain message
classes – particularly node and file lookup messages used
in p2p protocols as used in the Kademlia distributed hash
table protocol[12]. We focused on popular P2P applica-
tions like Emule, Azureus, Limewire, Joost and Skype,
as well as with another notorious p2p application called
”stormworm” (libpcap traces were provided by security
parties elsewhere for our experiment).



Table 1: UDP port report examples
IP ww guess sent recv unreach L3D L4D patterns ports truth
1 20114684 scan 24301 17757 827 208 527 b [3811,etc] p2p
2 12773740 ipscan 6598 12 1936 600 2 s [1026,1027] scan
3 49420 p2p 1555 1215 31 1637 1295 b [1533,6881,etc] p2p
4 3321 p2p 2430 891 1 703 279 d [53,etc] dns
5 48 ? 24 24 0 10 1 d [53,etc], client

Experimentally we focused here on our UDP tuple
sent packet histogram SIZEINFO and on our computed
SA.RA send and receive packet size attributes. Again the
SIZEINFOfield is a a histogram of sent packet sizes in
terms of the layer 7 byte payload counts (40, 90, 200,
500, 1000, 1500). TheSA/RAfield is a running average
for layer 7 payload size of UDP packets sent by the host
(SA), and UDP packets received by the host (RA). We in-
stalled these applications in our lab, ran them, gathered
data from UDP port reports and then analyzed the data.

Our analytical technique for the most part boils down
to graphing the data within the various packet size bins
and within the SA and RA attributes themselves. Note
this makes seven attributes in all, five from the SIZE-
INFO sub-tuple, and then the SA/RA attributes. Within
each attribute we then attempted to extract a lower or
upper bound that for the most part had all of the data
samples in it. This is really only a manual technique for
threshold selection within each of the seven possible at-
tributes. We then produced an if statement based on the
thresholds and added it to a set of if statements making
up a application guess decision tree based mostly on only
these attributes. This application decision tree is pro-
grammed as an additional ”sub-guess” in our guesstima-
tor algorithm. Barring skype, we only run this algorithm
when the main guesstimator guesses that the application
is a p2p app, thus it is fair to mostly view the application
guesstimator as a sub-tree in the guesstimator’s decision
tree.

In table 2 we show our test application set along with
the protocols we tested. Note that some applications like
Limewire actually offer both the old Gnutella protocol
and at this point Bittorrent as well. In table 3 we show
the threshold values that we use for various applications.
Note that some values may overlap. As a result we al-
lowed our algorithm to produce more than one guess if
it seemed appropriate (even though this may make no
sense). Put another way, we did not make the guesses
mutually exclusive. Note that thesize 0 label corre-
sponds to our smallest size bin. We found that the largest
size bin was not useful at all hence we actually only used
six of the seven size attributes. In general we have never
seen a host use full-size MTU UDP packets, although it
is always possible. It is fair to say that full-size packets

are rare.

Note that barring stormworm, our testing was done
only with lab-based applications – thus we were testing
known applications (on Windows Vista). At this time we
have not done testing based on examining packet traces
found ”in the wild”. However for the most part we found
unique patterns when all useful size attributes were taken
into consideration. Of all the applications we tested we
found that in general our mechanism was only partially
successful with skype and in general seemed to work
well with the other applications.

Another problem area was discovered when we de-
ployed the algorithm in our real network. We have ob-
served that there are sometimes false positives caused
by the stormworm guess. Our pattern matching shows
that sometimes single 30-second samples may produce a
stormworm guess as a side effect of a host running a p2p
protocol (like Bittorrent or Gnutella). We know this is a
false positive because the host in question is shown to be
running a p2p protocol via L7 pattern matching. Also
a real stormworm infected machine would exhibit the
stormworm pattern over many consecutive samples over
long periods. (And of course might attempt to send volu-
minous amounts of spam on TCP port 25). The p2p ma-
chines only produce a few samples worth of the storm-
worm guess and were never observed to connect on TCP
port 25. As with our previous Bittorrent scanner, once
again we see that p2p applications can cause annoying
false positives.

We do not claim our results are conclusive in any
sense, merely suggestive. There is an inherent test prob-
lem with applications which is that although we may run
lab tests that seem to identify a particular application, we
by no means feel confident about claiming that we know
all particular p2p applications in use in our network (a
university network). Other applications may have simi-
lar results. We also do not feel confident that we know
all modes of operation for a given application includ-
ing network-behavior or even application configuration.
Skype in particular is very complex in the area of net-
work behavior and we observed that sometimes it does
not act as a peer to peer protocol when using UDP. Or
worse, it may decide to use TCP and not use UDP at all.
As a result, this work could easily be flawed in ways we



Table 2: P2P applications and Protocols
Application Name Protocols
eDonkey eMule
Bittorrent Bittorrent
Azureus Bittorrent
Utorrent Bittorrent
Limewire Gnutella/Bittorrent
Joost Joost
Skype Skype

Table 3: Threshold Table of P2P applications and Protocols
Application-Protocol size 0 size 1 size 2 size 3 sa ra
Emule- emule KAD and Servers30 to 100 0 to 15 1 to 40 0 to 10 25 to 70 30 to 85
Emule- emule KAD only 30 to 90 0 to 55 0 to 30 0 to 5 40 to 70 0 to 85

Emule- emule Servers only
30 to 90 10 to 30 0 to 10 0 10 to 30 10 to 30

80 to 100 70 to 90 80 to 100 80 to 100
Bittorrent Azureus 0 to 60 20 to 97 0 to 18 1 to 20 50 to 90 60 to 136
Bittorrent utorrent 0 to 3 10 to 90 0 to 40 10 to 100 80 to 200 41 to 200
Bittorrent Bittorrent 0 1 to 94 1 to 30 10 to 80 94 to 190 60 to 160

Gnutella Limewire
0 to 30 20 to 80 0 to 50 0 to 50 41 to 100 70 to 190

130 to 150
Joost 30 to 80 1 to 40 0 to 35 0 to 50 20 to 135 180 to 210

Stormworm
99 0 0 0 20 to 27 0 to 10

60 to 240

do not understand. It is also reasonable to suggest that
our work could be improved upon by having more size
bins and using more complex data mining techniques.
We could also in future work apply it to the DNS proto-
col as it might help identity it sans L7 techniques. In the
final analysis, we believe packet size to be a potentially
useful attribute for UDP data. There there is no guaran-
tee that size buckets can stand alone without the help of
other attributes. More work is needed.

5 Related Work and Conclusions

There are in general two approaches for detecting P2P
applications: 1. based on L7 signatures or 2. based
on statistical attribute behavior. The signature-based ap-
proach relies on payload contents which can be easily
changed or can be hidden by encryption or randomiza-
tion. The other approach is based on statistical study
of network behaviors such as application communica-
tion patterns. Constantinou and Mavrommatis classify
P2P traffic based on connection direction and number of
peers in connected group [7] . Karagiannis et al., identify
P2P traffic from connection patterns and the concurrent
use of UDP and TCP [10]. In later work, Karagiannis et
al., introduce BLINC [11] a general classification mech-
anism that classifies hosts based on the protocol usage

and connection. Our p2p counts are based on BLINC’s
work and we also strongly agree with them in the basic
tenet that flows can be soley focused on IP host addresses
plus related statistics. Collins et al., [5] distinguish Bit-
torrent flows from FTP, HTTP and SMTP flows between
pair of hosts. They study packet size, volume of pack-
ets, failed connections and bandwidth usage. Our packet
size work is closest to their work. We study connection
patterns in UDP traffic of peers and our metric for appli-
cation identification is based on packet sizes. Genevieve
Bartlett et al., proposed two new metrics including ratio
of incoming-to-outgoing connections and privileged-to-
non-privileged ports [1]. Binkley, et al. have presented a
somewhat similar effort for TCP that gives a TCP work
weight[2, 4]. Of course our work here is entirely UDP-
based.

In this paper we present a UDP host-centric tuple
with basic and derived attributes including packet counts,
unique L3 and L4 destination counts, a size histogram,
and a destination port signature. Packet counts are used
to derive theUDP work weightwhich gives us a com-
bined estimate of network noise and network usage per
host. We sort by this metric to produce a top talker 30-
second report UDP report. We then introduce theUDP
guesstimatoralgorithm which primarily attempts to clas-
sify hosts into noisy security threats or p2p users based



purely on a handful of L3 and L4 attributes derived from
the UDP tuple. We also use our size attributes to make
an attempt at guessing UDP applications, which although
no doubt flawed, appears to be potentially useful.

References

[1] Genevieve Bartlett, John Heidemann and Christos
Papadopoulos. Inherent Behaviors for On-line
Detection of Peer-to-Peer File Sharing.In
Proceedings of 10th IEEE Global Internet
Symposium (GI ’07) in conjunction with IEEE
INFOCOM 2007,Anchorage, AK, USA, May
2007.

[2] J. Binkley, J. McHugh, and C. Gates, Locality,
Network Control, and Anomaly Detection.
Portland State University Technical Report 04-04,
http://web.cecs.pdx.edu/˜jrb/
ourmon2.ps , January 2005.

[3] J. Binkley, and B. Massey, Ourmon and Network
Monitoring Performance.Proceedings of the
Spring 2005 USENIX Conference, Freenix track,
Anaheim, April 2005.

[4] J. Binkley, and S. Singh, An Algorithm for
Anomaly-based Botnet Detection,In Proceedings
of Usenix Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI ’06), San
Jose, CA, July 2006.

[5] M.Collins and M.Reiter. Finding Peer-To-Peer File
Sharing Using Coarse Network Behaviors.In
Proceedings of European Symposium On Research
In Computer Security,Hamburg, Germany,
September 2006.

[6] E. Cooke, F. Jahanian, and D. McPherson, The
Zombie Roundup: Understanding, Detecting and
Disrupting Botnets.In Proceedings of Usenix
Workshop on Steps to Reducing Unwanted Traffic
on the Internet (SRUTI ’05), Cambridge, MA, July
2005.

[7] F.Constantinou and P.Mavrommatis. Identifying
Known and Unknown Peer-To-Peer Traffic.In
IEEE International Symposium on Network
Computing and Applications (NCA), pages
93-102, Cambridge, MA, USA, July 2006.

[8] The Honeynet Project and Research Alliance.
Know Your Enemy, Tracking Botnets.
http://honeynet.org/papers/bots ,
March 2005.

[9] Joost P2P Video - Wikipedia entryhttp:
//en.wikipedia.org/wiki/Joost ,
October 2008.

[10] T. Karagiannis, A. Broido, M. Faloutsos, and KC
Claffy. Transport Layer Identification of P2P
Traffic. In Proceedings of the ACM SIGCOMM
Workshop on Internet Measurement (IMC),pages
121-134, Taormina, Sicily, Italy, October 2004.

[11] T. Karagiannis, A. Broido, M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark.In
Proceedings of the ACM SIGCOMM Conference,
pages 229-240, Philadelphia, PA, USA, August
2005.

[12] P. Maymounkov and D. Mazieres. Kademlia: A
Peer-to-peer Information System Based on the
XOR Metric. In Proceedings of IPTPS02,
Cambridge, USA, Mar. 2002.

[13] Ourmon web page on Sourceforge.
http://ourmon.sourceforge.net ,
October 2008.

[14] P. Porras, H. Saidi, and V. Yegneswaran. A
Multi-perspective Analysis of the Storm
(Peacomm) Worm SRI Technical Report 10-01.
http:
//www.cyber-ta.org/pubs/StormWorm ,
October 2008.

[15] Skype - Internet Telephonyhttp:
//en.wikipedia.org/wiki/Skype ,
October 2008.


