CS 591: Introduction to Computer Security

Midterm Grading Comments

James Hook

Grading Guide:

- Q1: Availability, Integrity, Confidentiality
- 2 points each definition
- 1 point each illustration of violation
- 1 point for attempting problem
- Q2: Policy and Mechanism
- 3 points each definition
-2 points each example

Grading Guide:

- Q3: Chinese Wall
- 3 points for motivating scenario
- 3 points for mechanisms (COI, simple security rule, *-rule)
- 2 points how to model with Bell LaPadula
- 2 points shortcomings of using Bell LaPadula
- Q4: Digital signature
- 3 points: agreement adjudicated by trusted third party
- 2 points: property: non-repudiation
- 2 points: property compromised by bogus (non-repudiation)
- 3 points: justification of forgery attack

Grading Guide:

- Q5: Access controls
- 2 points each AC control mode
- 3 points which plays with which (1 per pair)
- 1 point for attempting problem
- Q6: DG/UX confidentiality \& integrity
-4 points: range of levels (MAC tuples)
- 3 points: why confidentiality; what protected
- 3 points: why integrity; what protected

Grading Guide:

- Q7: Denning Information Flow
- 5 points: a flow exploiting exceptions
- 5 points: discussion of how to control
- Looked for evidence of how to control within the model of Denning and Denning, e.g. assigning labels and constraints to exception handlers
- Q8: Nonces
- 5 points: Nonces prevent replay
- 5 points: Give a replay attack of simplified protocol

Grading Guide:

- Q9: Block/Stream
- 2 points each definition (block/stream)
- 2 points each classification
- Q10: Crypto facts
- 2 points each
- Diffie-Hellman allowed either DH algorithm for key negotiation (intended answer) or general contribution of public key encryption framework [consulted text; this was stressed DH contribution]

11/10/05 11:15

Distribution:

- 100
- 949292
- 878785848483838383818180
- 78757471
- 65646464636060
- 595957565450
- 48
- 2828

$$
\text { Average = } 70.4
$$

11/10/05 11:15

