
5/1/06 15:37

Information Flow Epilog

James Hook

CS 591: Introduction to
Computer Security

5/1/06 15:37

Last time:

• Information flow security
– Denning and Denning as presented in Chapter 15
– Flow Caml “nutshell” paper

• Compilation can be made aware of
confidentiality levels
– Levels must be identified
– Levels can be tracked through computational

effects: environment, state, control, exceptions,
concurrency (Not shown in Flow Caml)

5/1/06 15:37

Does it work?

• Theoretical results
– Volpano, Irvine and Smith (JCS ‘96) showed

Soundness
• “If an expression e can be given a type τ in our system,

then Simple Security says … that only variables at level τ
or lower in e will have their contents read when e is
evaluated (no read up)….
On the other hand, if a command c can be given a type
τ cmd then Confinement says … that no variable below
level τ is updated in c (no write down).”

– Using modern language theory the techniques in
Flow Caml and similar systems can be proven
sound

5/1/06 15:37

Does it work?

• In practice it is not broadly adopted
– Technical issue is the complexity of

managing policy
– I suspect there are social issues as well …

the technical issues are not show stoppers

5/1/06 15:37

Recall

• Consider an example (in no particular
language)

• Assume H is high and L is Low

H = readHighDatabase()

L = readLowUserInput()

If f(H,L)
then printLow “Success”
else printLow “Fail”

5/1/06 15:37

But!!!

• Consider an example (in no particular language)

• We do this every day!

H = readHighDatabase(“passwd”)

L = readLowUserInput()

If checkPassword(H,L)
then printLow “Success”
else printLow “Fail”

5/1/06 15:37

Password checking paradox

• Why shouldn’t we allow someone to
write the password program?

• Why should we?

5/1/06 15:37

Policy

• The password paradox is solved by
explicit policy

• Similar issues arise with crypto
algorithms
– LoCypher = encrypt (HighClear, goodKey)

• Cf.
– LoCypher = encrypt (HighClear, badKey)

5/1/06 15:37

FlowCaml and Policy

• FlowCaml solves the policy problem by
dividing the program into two parts:
– Flow caml portion (.fml), with all flows

checked
– Regular caml portion with an annotated

interface
• The downgrading of encryption or

password validation queries is not done
within the flow-checked portion

5/1/06 15:37

Policy

• Zdancewic uses other techniques,
including explicit downgrade assertions
for confidentiality

• Basic philosophy: uniform enforcement
with explicit escape mechanism
– Focus analysis on the exceptions

5/1/06 15:37

Further reading
• Dorothy E. Denning and Peter J. Denning, Certification of Programs for

Secure Information Flow,
http://www.seas.upenn.edu/~cis670/Spring2003/p504-denning.pdf

• Dennis Volpano, Geoffrey Smith, and Cynthia Irvine, A Sound Type
System for Secure Flow Analysis,
http://www.cs.fiu.edu/~smithg/papers/jcs96.pdf

• Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers, Secure Program Partitioning,
http://www.cis.upenn.edu/~stevez/papers/ZZNM02.pdf

• Andrei Sabelfeld and Andrew C. Myers, Language-based Information-
Flow Security, http://www.cs.cornell.edu/andru/papers/jsac/sm-
jsac03.pdf

• Peng Li and Steve Zdancewic, Downgrading Policies and Relaxed
Noninterference, http://www.cis.upenn.edu/~stevez/papers/LZ05a.pdf

