
Fun with Crypto –
keys and protocols

some Bishop, some Jim, some RA

February 07 introsec crypto2-2

Keys and protocols

 Keys, notation, session keys
 certs and digital signatures

 Key infrastructure, storage

 protocols – how we use keys
 Needham-Schroder/Kerberos

 stream/block ciphers

 crypto protocol examples, PEM (dead),
IPSEC

February 07 introsec crypto2-3

can
you
export
this
t-shirt?

February 07 introsec crypto2-4

Basic Notation

 X → Y : { Z || W } kX,Y

 X sends Y the message produced by concatenating Z
and W enciphered by key kX,Y, which is shared by
users X and Y:

 A → T : { Z } kA || { W } kA,T

 A sends T a message consisting of the concatenation
of Z enciphered using kA, A’s key, and W enciphered
using kA,T, the key shared by A and T

 r1, r2 nonces (nonrepeating random numbers)

 e – encipher, d - decipher

February 07 introsec crypto2-5

Cryptographic Key Infrastructure

 Goal: bind identity to key
 Classical: not possible as all keys are shared

 Use protocols to agree on a shared key

 Public key: bind identity to public key
 Crucial as people will use key to communicate

with principal whose identity is bound to key
 Erroneous binding means no secrecy between

principals
 Assume principal identified by an acceptable

name

February 07 introsec crypto2-6

Certificates – public key/name

 a cert is a signed public key

 Create token (message) containing
 Identity of principal (here, Alice)

 Corresponding public key

 Timestamp (when issued)

 Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)

CA = { eA || Alice || T } dC

February 07 introsec crypto2-7

Use

 Bob gets Alice’s certificate SOMEHOW
 If he knows Cathy’s public key, he can decipher the

certificate
 When was certificate issued?
 Is the principal Alice?

 Now Bob has Alice’s public key
 Problem: Bob needs Cathy’s public key to validate

certificate
 Problem pushed “up” a level
 Problem is real though
 Solution space: some distributed protocol tree to get

CERTs OR a CERT (a message or file on a computer)
has needed CERTS provided with it (a CERT chain)

February 07 introsec crypto2-8

Certificate Signature Chains

 Create certificate
 Generate hash of certificate

 sign hash with issuer’s private key

 Validate signature
 Obtain issuer’s public key

 Decipher enciphered hash

 Recompute hash from certificate and compare

 Problem: getting issuer’s public key

February 07 introsec crypto2-9

X.509 certificate format

 Some certificate components in X.509v3:
 Version

 Serial number

 Signature algorithm identifier: hash algorithm

 Issuer’s name; uniquely identifies issuer

 Interval of validity

 Subject’s name; uniquely identifies subject

 Subject’s public key

 Signature: enciphered hash

February 07 introsec crypto2-10

Issuers

 Certification Authority (CA): entity that issues
certificates
 Multiple issuers pose validation problem

 Alice’s CA is Cathy; Bob’s CA is Don; how can
Alice validate Bob’s certificate?

 Have Cathy and Don cross-certify
 Each issues certificate for the other

 Have a hierarchical cert. authority
 Cathy and Don have Eduard as a CA

February 07 introsec crypto2-11

CA tree

 Alice has CA1

 Bob has CA2

 CA1 and CA2 have CA3

 Alice gets CERT from Bob,

 must validate Bob with CA2 (no trust)

 then validate CA2 with CA3 (hierarchical trust
relationship)

February 07 introsec crypto2-12

Signing with PGP

 Single certificate may have multiple signatures
associated with it

 Notion of “trust” embedded in each signature
 Range from “untrusted” to “ultimate trust”

 Signer defines meaning of trust level (no standards!)

 with a hierarchy eventually you come to a CA that
must trust itself …
 Called “self-signing”

 PGP has notion of “web of trust”, no CA hierarchy

February 07 introsec crypto2-13

PGP Web of trust - Validating
Certificates
 Alice needs to validate Bob’s

OpenPGP cert

 Does not know Fred,
Giselle, or Ellen

 Alice gets Giselle’s cert

 Knows Henry slightly,
but his signature is at
“casual” level of trust

 Alice gets Ellen’s cert

 Knows Jack, so uses
his cert to validate
Ellen’s, then hers to
validate Bob’s Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown

February 07 introsec crypto2-14

Storing Keys

 Multi-user or networked systems: attackers may
defeat access control mechanisms
 Encipher file containing key – consider these problems

 Attacker can monitor keystrokes to decipher files

 Key will be resident in memory that attacker may
be able to read (o.s. swap also possible)

 Use physical devices like “smart card”

 Key never enters system

 Card can be stolen, so have 2 devices combine
bits to make single key

 attacks against smart keys exist

February 07 introsec crypto2-15

Key Revocation – timeout or CRL

 Certificates may be invalidated before expiration
 Usually due to compromised key
 May be due to change in circumstance (e.g., someone

leaving company)

 Problems
 Entity revoking certificate authorized to do so
 Revocation information circulates to everyone fast

enough
 Network delays, infrastructure problems may

delay information
 there is very little real experience with cert.

revocation other than timestamp timeout

February 07 introsec crypto2-16

Digital Signature

 Construct that authenticated origin, contents of
message in a manner provable to a disinterested
third party (“judge”)

 Sender cannot deny having sent message (service is
“nonrepudiation”)
 Limited to technical proofs

 Inability to deny one’s cryptographic key was
used to sign

 One could claim the cryptographic key was stolen or
compromised

 Legal proofs, etc., probably required; not dealt
with here

 Alice’s box with cert was hacker by Malach,
Malach made bank transactions …

February 07 introsec crypto2-17

Common Error

 Classical: Alice, Bob share key k
 Alice sends m || { m } k to Bob

This is a digital signature?

WRONGWRONG

This is not a digital signature
 Why? Third party cannot determine whether

Alice or Bob generated message

February 07 introsec crypto2-18

conventional wisdom with public key
crypto
 we sign with our private key, they verify with

their public key

 obviously they can’t have our private key

 they encrypt with our public key, send us M,

 we decrypt with our private key

 RSA fits this model

 if they encrypted with our private key, and we
decrypted with our public key
 the world would be a tad cockeyed

February 07 introsec crypto2-19

RSA Digital Signatures

 Use private key to encipher message
 Protocol for use is critical

 Key points:
 Never sign random documents, and when

signing, always sign hash and never
document

 Mathematical properties can be turned against
signer

 Sign message first, then encipher
 Changing public keys causes forgery

February 07 introsec crypto2-20

session keys, and key exchange
protocols (KMP)
 typically it is not a good idea to use the same key

over and over again

 an adversary has better odds of cracking Ki with a
greater number of messages

 therefore we may choose to generate “session-keys”
based on previous shared secrets – and discard
them at some point

 based on too much time or too many messages

 protocols exist for generating keys and setting them
up between both sides (Alice and Bob)

 goal is typically generation of encryption or MD keys

February 07 introsec crypto2-21

simple session key – courtesy of
public-key crypto
 Alice wants to send a message m to Bob

 Assume public key encryption
 Alice generates a random cryptographic key ks and

uses it to encipher m
 To be used for this message only
 Called a session key

 She enciphers ks with Bob;s public key kB

 kB enciphers all session keys Alice uses to
communicate with Bob

 Called an interchange key
 Alice sends { m } ks { ks } kB

February 07 introsec crypto2-22

Benefits

 Limits amount of traffic enciphered with single key
 Standard practice, to decrease the amount of traffic an

attacker can obtain

 Prevents some attacks
 Example: Alice will send Bob message that is either

“BUY” or “SELL”. Eve computes possible ciphertexts {
“BUY” } kB and { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at
once

February 07 introsec crypto2-23

Key Exchange Algorithms

 Goal: Alice, Bob get shared key
 Key cannot be sent in clear

 Attacker can listen in

 Key can be sent enciphered, or derived from
exchanged data plus data not known to an
eavesdropper (DH)

 Alice, Bob may trust third party (Kerberos)

 All cryptosystems, protocols publicly known

 secrets in keys

 Anything transmitted is assumed available to
attacker

February 07 introsec crypto2-24

Simple Symmetric-key exchange
Protocol, Cathy is trusted 3rd party

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

February 07 introsec crypto2-25

Problems

 How does Bob know he is talking to Alice?
 Replay attack: Eve records message from

Alice to Bob, later replays it; Bob may think
he’s talking to Alice, but he isn’t

 Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

 Protocols must provide authentication and
defense against replay

February 07 introsec crypto2-26

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

February 07 introsec crypto2-27

Kerberos

 Authentication system
 Based on Needham-Schroeder with Denning-Sacco

modification

 Central server plays role of trusted third party (“Cathy”)

 Ticket
 session-key with timestamp

 Authenticator (DNS like)
 Identifies sender

February 07 introsec crypto2-28

Idea

 User u authenticates to Kerberos server
 Obtains ticket Tu,TGS for ticket granting service (TGS)

 TGS is Kerberos form of single sign-on

 User u wants to use service s:
 User sends authenticator Au, ticket Tu,TGS to TGS

asking for ticket for service

 TGS sends ticket Tu,s to user

 User sends Au, Tu,s to server as request to use s

 Details follow

February 07 introsec crypto2-29

Ticket

 Credential saying issuer has identified ticket
requester, note 3-way binding below

 Example ticket issued to user u for service s
Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:

 session key: ku,s for user and service

 time: is interval for which ticket valid

 identity: u’s address may be IP address or something
else

February 07 introsec crypto2-30

Authenticator

 Credential containing identity of sender of ticket
 Used to confirm sender is entity to which ticket was

issued

 Example: authenticator user u generates for service s
Au,s = { u || generation time || kt } ku,s

where:
 kt is alternate session key
 Generation time is when authenticator generated

 Note: more fields, not relevant here

February 07 introsec crypto2-31

Protocol

user Cathyuser || TGS

user Cathy{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s

February 07 introsec crypto2-32

Analysis

 First two steps get user ticket to use TGS
 User u can obtain session key only if u knows

key shared with Cathy

 Next four steps show how u gets and uses
ticket for service s
 Service s validates request by checking

sender (using Au,s) is same as entity ticket
issued to

 Step 6 optional; used when u requests
confirmation

February 07 introsec crypto2-33

Problems

 Relies on synchronized clocks
 If not synchronized and old tickets,

authenticators not cached, replay is possible

 Bellovin poked homes in K4 in famous paper
 so now we have K5

 which uses ASN.1 (ouch ouch ouch)

February 07 introsec crypto2-34

Public Key Key Exchange

 Here interchange keys known
 eA, eB Alice and Bob’s public keys known to all

 dA, dB Alice and Bob’s private keys known only to
owner

 Simple protocol
 ks is desired session key

Alice Bob
{ ks } eB

February 07 introsec crypto2-35

Problem and Solution

 Vulnerable to forgery or replay
 Because eB known to anyone, Bob has no assurance

that Alice sent message

 Simple fix uses Alice’s private key
 ks is desired session key

Alice Bob
{ { ks } dA } eB

February 07 introsec crypto2-36

Notes

 Can include message enciphered with ks

 Assumes Bob has Alice’s public key, and vice versa
 If not, each must get it from public server

 If keys not bound to identity of owner, attacker Eve can
launch a man-in-the-middle attack (next slide; Cathy is
public server providing public keys)

 Solution to this (binding identity to keys)
discussed later as public key infrastructure (PKI)

February 07 introsec crypto2-37

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

February 07 introsec crypto2-38

Key Mgmt - Key Points

 Key management critical to effective use of
cryptosystems
 Different levels of keys (session vs. interchange)

 Keys need infrastructure to identify holders, allow
revoking
 Key escrowing complicates infrastructure

 Ultimately we still may need manual dissemination of
something; e.g., root self-signed certificates

 Digital signatures provide integrity of origin and
content
Much easier with public key cryptosystems than with

classical cryptosystems

February 07 introsec crypto2-39

common problems with ciphers

 Using cipher requires knowledge of
environment, and threats in the environment,
in which cipher will be used
 Is the set of possible messages small?

 Do the messages exhibit regularities that
remain after encipherment?

 Can an active wiretapper rearrange or change
parts of the message?

February 07 introsec crypto2-40

Attack #1: Precomputation

 Set of possible messages M small

 Public key cipher f used

 Idea: precompute set of possible ciphertexts
f(M), build table (m, f(m))

 When ciphertext f(m) appears, use table to
find m

 Also called forward searches

February 07 introsec crypto2-41

message entropy space may be small

 Digitized sound
 Seems like far too many possible plaintexts

 Initial calculations suggest 232 such plaintexts

 Analysis of redundancy in human speech
reduced this to about 100,000 (≈ 217)

 This is small enough to worry about
precomputation attacks

February 07 introsec crypto2-42

Misordered Blocks

 Alice sends Bob message
 Message is LIVE (11 08 21 04)
 Enciphered message is 44 57 21 16

 Eve intercepts it, rearranges blocks
 Now enciphered message is 16 21 57 44

 Bob gets enciphered message, deciphers it
 He sees EVIL

February 07 introsec crypto2-43

Notes

 Digitally signing each block won’t stop this
attack

 Two approaches:
 Cryptographically hash the entire message

and sign it

 Place sequence numbers in each block of
message, so recipient can tell intended order

 Then you sign each block

February 07 introsec crypto2-44

Statistical Regularities

 If plaintext repeats, ciphertext may too

 Example using DES:
 input (in hex):

3231 3433 3635 3837 3231 3433 3635
3837

 corresponding output (in hex):

ef7c 4bb2 b4ce 6f3b ef7c 4bb2 b4ce
6f3b

 Fix: cascade blocks together (chaining)
 this is why DES-CBC is used

February 07 introsec crypto2-45

What These Mean

 Use of strong cryptosystems, well-chosen (or
random) keys not enough to be secure

 Other factors:
 Protocols directing use of cryptosystems

 Ancillary information added by protocols

 Implementation (not discussed here)

 Maintenance and operation (not discussed
here)

February 07 introsec crypto2-46

Networks and Cryptography

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Network layer

Data link layer

Physical layer

 ISO/OSI model

 Conceptually, each host has peer at each layer
 Peers communicate with peers at same layer

February 07 introsec crypto2-47

Link and End-to-End Protocols

Link Protocol

End-to-End (or E2E) Protocol

February 07 introsec crypto2-48

Encryption

 Link encryption
 Each host enciphers message so host at “next

hop” can read it

 Message can be read at intermediate hosts

 End-to-end encryption
 Host enciphers message so host at other end

of communication can read it

 Message cannot be read at intermediate hosts

February 07 introsec crypto2-49

Examples

 secure shell protocol
 end to end, therefore good

 password form does not send password in
clear (unlike traditional telnet)

 PPP Encryption Control Protocol
 Host gets message, deciphers it

 Figures out where to forward it

 Enciphers it in appropriate key and forwards it

 Link protocol – not end to end

February 07 introsec crypto2-50

Cryptographic Considerations

 Link encryption
 Each host shares key with neighbor
 should be per host pair BUT
 often per network (broadcast network in particular)
 increasing tendency to have per host or per site

certificate using SSL (yes public-key crypto)

 End-to-end
 Each host shares key with destination
 Can be set on per-host or per-host-pair basis
 Message cannot be read at intermediate nodes

February 07 introsec crypto2-51

Traffic Analysis

 Link encryption
 Can protect headers of packets

 Possible to hide source and destination
 Note: may be able to deduce this from traffic flows

 End-to-end encryption
 Cannot hide IP packet headers

 Intermediate nodes need to route packet

 Attacker can read source, destination

 Can’t hide L3 on Internet (can’t route without it)

 if application encryption, not hiding L4 TCP/UDP port
numbers either

February 07 introsec crypto2-52

Example Protocols

 Privacy-Enhanced Electronic Mail (PEM)
 Applications layer protocol

 PEM is not used in real world

 was breakthru of sorts in IETF/crypto history

 typically might use PGP/SSL at this point
 email is often tunneled in some sense

 IP Security (IPSEC)
 Network layer protocol

February 07 introsec crypto2-53

Goals of PEM

1. Confidentiality
• Only sender and recipient(s) can read message

2. Origin authentication
• Identify the sender precisely

3. Data integrity
• Any changes in message are easy to detect

4. Non-repudiation of origin
• Whenever possible …

February 07 introsec crypto2-54

Message Handling System

MTA

UA

MTA

UA

MTA

UA User
Agents
(email
client)

Message
Transfer
Agents

end to end email

email proxy
gateway

February 07 introsec crypto2-55

Design Principles

 Do not change related existing protocols
 Cannot alter SMTP

 Do not change existing software
 Need compatibility with existing software

 Make use of PEM optional
 Available if desired, but email still works without them
 Some recipients may use it, others not

 Enable communication without prearrangement
 Out-of-band authentication, key exchange problematic

February 07 introsec crypto2-56

Basic Design: Keys

 Two keys
 Interchange keys tied to sender, recipients

and is static (for some set of messages)
 Like a public/private key pair

 Must be available before messages sent

 Data exchange keys generated for each
message

 a session key, session being the message

February 07 introsec crypto2-57

Basic Design: Sending

Alice Bob
{ m } ks || { ks } kB

Confidentiality
• m message
• ks data exchange key
• kB Bob’s interchange key

February 07 introsec crypto2-58

Basic Design: Integrity

Alice Bob
m { h(m) } kA

Integrity and authentication:
• m message
• h(m) hash of message m —Message Integrity Check (MIC)
• kA Alice’s interchange key

Non-repudiation: if kA is Alice’s private key, this establishes
that Alice’s private key was used to sign the message

February 07 introsec crypto2-59

Basic Design: Everything

Alice Bob
{ m } ks || { h(m) } kA || { ks } kB

Confidentiality, integrity, authentication:
• Notations as in previous slides
• If kA is private key, get non-repudiation too

February 07 introsec crypto2-60

Practical Considerations

 Limits of SMTP
 Only ASCII characters, limited length lines

 Use encoding procedure
1. Map local char representation into canonical format

– Format meets SMTP requirements
2. Compute and encipher MIC over the canonical format;

encipher message if needed
3. Map each 6 bits of result into a character; insert

newline after every 64th character
4. Add delimiters around this ASCII message

February 07 introsec crypto2-61

PEM vs. PGP

 Use different ciphers
 PGP originally used IDEA cipher
 PEM used DES in CBC mode

 Use different certificate models
 PGP uses general “web of trust”
 PEM uses hierarchical certification structure

 fatal flaw … no such beastie Inet-wide
 Handle end of line differently

 PGP remaps end of line if message tagged “text”, but
leaves them alone if message tagged “binary”

 PEM always remaps end of line

February 07 introsec crypto2-62

IPsec

 Network layer security
 Provides confidentiality, integrity,

authentication of endpoints, replay detection

 Protects all messages sent along a path

dest router
firewall

router
firewall

src
IP inside
enterprise

IP+IPsec IP

security gateways

February 07 introsec crypto2-63

IPsec Tunnel Mode

 Encapsulate IP packet (IP header and IP data)

 Use IP to send IPsec-wrapped packet

 Note: inner IP header protected

 typically end to router, or router to router

encapsulated
data body

IP
header

between
2 routers

IP ESP {previous IP packet}

February 07 introsec crypto2-64

IPsec Protocols

 Authentication Header (AH)
 integrity, authentication

 weak anti-replay

 Encapsulating Security Payload (ESP)
 Confidentiality + anti-replay

 in current version hash is also available

 one either uses AH or ESP, but not both

 IKE = Oakley (DH more or less) + ISAKMP
 ISAKMP is a metaprotocol for KMP design

February 07 introsec crypto2-65

IPsec Architecture

 Security Policy Database (SPD)
 Says how to handle messages (discard them,

add security services, forward message
unchanged)

 SPD associated with network interface

 SPD determines appropriate entry from packet
attributes

 Including source, destination, transport protocol

February 07 introsec crypto2-66

Example

 Goals
 Discard SMTP packets from host 192.168.2.9

 Forward packets from 192.168.19.7 without change

 SPD entries
src 192.168.2.9, dest 10.1.2.3 to 10.1.2.103, port 25, discard
src 192.168.19.7, dest 10.1.2.3 to 10.1.2.103, port 25, bypass
dest 10.1.2.3 to 10.1.2.103, port 25, apply IPsec

 Note: entries scanned in order
 If no match for packet, it is discarded

February 07 introsec crypto2-67

IPsec Architecture

 Security Association (SA)
 Association between peers for security

services
 Identified uniquely by dest address, security

protocol (AH or ESP), unique 32-bit number
(security parameter index, or SPI)

 Unidirectional (routing is 2 one-way problems)
 Can apply different services in either direction

 SA uses either ESP or AH; if both required, 2
SAs needed

February 07 introsec crypto2-68

SA Database (SAD)

 Entry describes SA; some fields for all packets:
 AH algorithm identifier, keys

 When SA uses AH
 ESP encipherment algorithm identifier, keys

 When SA uses confidentiality from ESP
 ESP authentication algorithm identifier, keys

 When SA uses authentication, integrity from ESP
 SA lifetime (time for deletion or max byte count)

 IPsec mode (tunnel, transport, either)

February 07 introsec crypto2-69

SAD Fields

 Antireplay (inbound only)
 When SA uses antireplay feature

 Sequence number counter (outbound only)
 Generates AH or ESP sequence number

 Sequence counter overflow field
 Stops traffic over this SA if sequence counter overflows

 Aging variables
 Used to detect time-outs

February 07 introsec crypto2-70

Which to Use: Gnu PGP, IPSEC?

 What do the security services apply to?
 If applicable to one application and application

layer mechanisms available, use that

 PGP/SSL for electronic mail
 IPSEC is VPN, can cover ALL applications,

but maybe not end to end

might be

host to IPSEC server inside enterprise

 router to router between enterprises

February 07 introsec crypto2-71

study questions

 what session-key algorithms did we talk about?
 miss any major ones?

 is crypto the problem with network protocols using it
(or the packaging)?

 people have a hard time with keys, why?
 public-key crypto

 shared secrets (in symmetric or MD algorithms)

 what does single sign-on mean?
 and do you think it will ever happen?

