Crypto – B/B mindmeld

- history
- symmetric
- hashes/macs/1-way etc
- public key
- summary

Introduction to Computer Security ©2004 Matt Bishop

Crypto – B/B mindmeld

- history
- symmetric
- hashes/macs/1-way etc
- public key
- summary

Introduction to Computer Security ©2004 Matt Bishop

a little bibliography please

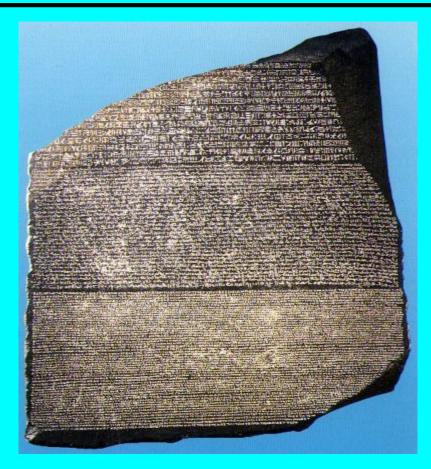
- Zimmerman Telegram Barbara Tuchman
 - how one nation state can go wrong with crypto twice in one century (this is only WWI)
- Secrets and Lies. Bruce Schneier
 - why crypto may not solve your problems
- The Codebreakers. David Kahn.
 - the book ... (WW II got added post declassification)
- Cryptography Decrypted. Mel/Baker
 - or if you are a hard case, Applied Crypto, although ...

history

- up to WW II it was alphanumeric in the west
- stream ciphers (a letter at a time)
- block ciphers (a block of letters at a time)
- WW II changed everything (computers)
- but there are still some very basic principles to cryptoanalysis that have lasted

Introduction to Computer Security ©2004 Matt Bishop

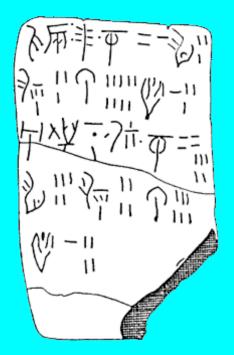
fundamental defs


- cryptography
 - sometimes secret writing wasn't meant to be secret
 - sometimes it is
 - alphabetic historically, now bits/bytes/blocks
- cryptoanalysis
 - decoding the secret writing without the keys
 - hey! chocolate for your password?

policy considerations

- think about this as we talk about what are basically mechanisms
- what threats exist in this space?
- what might policy considerations thus be for:
 - a. govt. spy agency (NSA or CIA or MI5?)
 - bond, james bond AND his laptop?
 - b. hospital
 - c. computer technology company
 - d. university

Introduction to Computer Security ©2004 Matt Bishop


Rosetta stone - solved

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

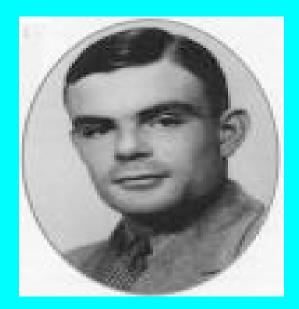
linear A – not solved

Introduction to Computer Security ©2004 Matt Bishop

oh yes – the enigma machine

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop


and its natural enemy – the bombe

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

brought to you by this man (and friends)

Hmmm... any impact on Computer Science?

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

Cryptosystem

- Quintuple (E, D, M, K, C)
 - M set of plaintexts
 - K set of keys
 - C set of ciphertexts
 - -E set of encryption functions $e: M \times K \rightarrow C$
 - D set of decryption functions $d: \mathbb{C} \times \mathbb{K} \to \mathbb{M}$

Example

- Example: Cæsar cipher
 - M = { sequences of letters }
 - $K = \{ i \mid i \text{ is an integer and } 0 \le i \le 25 \}$
 - $\mathsf{E} = \{ E_k \mid k \in \mathsf{K} \text{ and for all letters } m, \}$

$$E_k(m) = (m + k) \mod 26$$
 }

 $- \mathsf{D} = \{ D_k \mid k \in \mathsf{K} \text{ and for all letters } c, \}$

 $D_k(c) = (26 + c - k) \mod 26$ }

-C = M

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

J. Caesar – total idiot?

great Caesar's ghost ... isn't this the same as the legendary rot13? what was he thinking anyway?

Attacks

- Opponent whose goal is to break cryptosystem is the *adversary*
 - Assume adversary knows algorithm used, but not key
- Three types of attacks:
 - *ciphertext only*: adversary has only ciphertext; goal is to find plaintext, possibly key
 - *known plaintext*: adversary has ciphertext, corresponding plaintext; goal is to find key
 - *chosen plaintext*: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), *etc*.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.

Classical Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called symmetric cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*

Introduction to Computer Security ©2004 Matt Bishop

modern functional version

- M is a message
- K is the shared secret key
- we have 2 functions
 - e(K,M) -> cybermsg -> d(K,C) -> plaintext
- so the sticky wicket is what?

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

- Ciphertext is **HLOOL ELWRD**

Introduction to Computer Security ©2004 Matt Bishop

Attacking the Cipher

- Anagramming (rearrange letters in word)
 - If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition
 - Rearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Introduction to Computer Security ©2004 Matt Bishop

Example

• Arrange so the H and E are adjacent

LL

HE

OW

OR LD

• Read off across, then down, to get original plaintext

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Introduction to Computer Security ©2004 Matt Bishop

Attacking the Cipher

- Exhaustive search
 - If the key space is small enough, try all possible keys until you find the right one
 - Cæsar cipher has 26 possible keys
- Statistical analysis
 - Compare to 1-gram model of English

Statistical Attack

• Compute frequency of each letter in ciphertext:

G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1

- Apply 1-gram model of English
 - Frequency of characters (1-grams) in English is on next slide

Introduction to Computer Security ©2004 Matt Bishop

Character Frequencies

a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	0	0.080	u	0.030
c	0.030	j	0.005	p	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
e	0.130	1	0.035	r	0.065	X	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

Statistical Analysis

- f(c) frequency of character c in ciphertext
- φ(*i*) correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is *i*
 - $\begin{aligned} &-\varphi(i) = \sum_{0 \le c \le 25} f(c) p(c-i) \text{ so here,} \\ &\varphi(i) = 0.1 p(6-i) + 0.1 p(7-i) + 0.1 p(10-i) + \\ &0.3 p(14-i) + 0.2 p(17-i) + 0.1 p(20-i) + \\ &0.1 p(25-i) \end{aligned}$
 - p(x) is frequency of character x in English

Introduction to Computer Security ©2004 Matt Bishop

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	φ (<i>i</i>)	i	q (<i>i</i>)	i	q (<i>i</i>)	i	φ (<i>i</i>)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

The Result

- Most probable keys, based on φ :
 - $-i = 6, \varphi(i) = 0.0660$
 - plaintext EBIIL TLOLA
 - $-i = 10, \varphi(i) = 0.0635$
 - plaintext AXEEH PHKEW
 - $-i = 3, \varphi(i) = 0.0575$
 - plaintext HELLO WORLD
 - $-i = 14, \varphi(i) = 0.0535$
 - plaintext WTAAD LDGAS
- Only English phrase is for i = 3
 - That's the key (3 or 'D')

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

Cæsar's Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder

Introduction to Computer Security ©2004 Matt Bishop

Vigènere Cipher

- Cæsar cipher, but use a phrase
- Example
 - Message THE BOY HAS THE BALL
 - Key VIG
 - Encipher using Cæsar cipher for each letter:

keyVIGVIGVIGVIGVIGVplainTHEBOYHASTHEBALLcipherOPKWWECIYOPKWIRG

Relevant Parts of Tableau

	G	Ι	V
A	G	I	V
B	Н	J	W
E	L	Μ	Z
H	Ν	Р	С
L	R	т	G
0	U	W	J
S	Y	A	Ν
T	Z	В	0
Y	Е	Н	т

- Tableau shown has relevant rows, columns only
- Example encipherments:
 - key V, letter T: follow V column down to T row (giving "O")
 - Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

- *period*: length of key
 - In earlier example, period is 3
- *tableau*: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- *polyalphabetic*: the key has several different letters
 - Cæsar cipher is monoalphabetic

Attacking the Cipher

• Approach

- Establish period; call it *n*
- Break message into *n* parts, each part being enciphered using the same key letter
- Solve each part
 - You can leverage one part from another

Establish Period

- Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext
- Example:

key VIGVIGVIGVIGVIGV plain THEBOYHASTHEBALL

cipher <u>OPKW</u>WECIY<u>OPKW</u>IRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are *not* random

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

so at this point we have certain algorithms for symmetric encryption

- typically these algorithms do the bulk work
- as public key is too slow
- DES, 3-DES
- IDEA
- BLOWFISH
- SKIPJACK
- AES
- keys are different lengths

Introduction to Computer Security ©2004 Matt Bishop

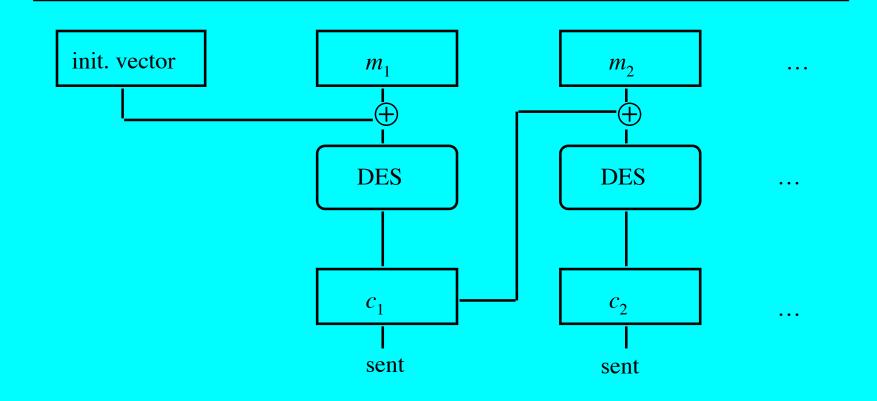
Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 64 bit key
 - outputs 64 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a round key generated from the user-supplied key

Introduction to Computer Security ©2004 Matt Bishop

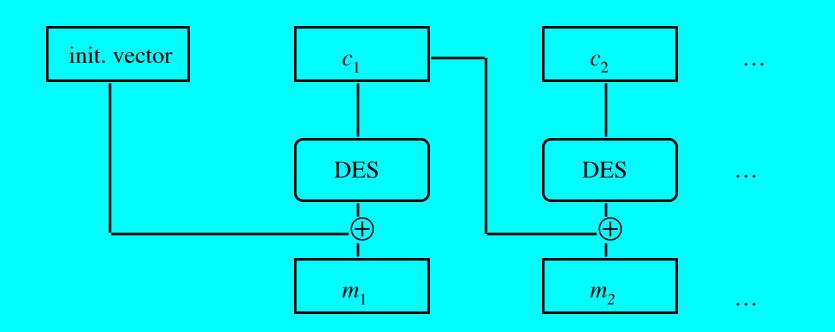
Controversy

- Considered too weak from day one
 - Diffie, Hellman said in a few years technology would allow DES to be broken in days
 - Design using 1999 technology published
 - Design decisions not public
 - S-boxes may have backdoors


DES Modes

- Electronic Code Book Mode (ECB)
 - Encipher each block independently
- Cipher Block Chaining Mode (CBC)
 - Xor each block with previous ciphertext block
 - Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt Mode (2 keys: k, k') - $c = DES_k(DES_{k'}^{-1}(DES_k(m)))$
- Encrypt-Encrypt-Encrypt Mode (3 keys: k, k', k'') - $c = DES_k(DES_{k'}(DES_{k''}(m)))$

November 1, 2004


Introduction to Computer Security ©2004 Matt Bishop

CBC Mode Encryption

Introduction to Computer Security ©2004 Matt Bishop

CBC Mode Decryption

Introduction to Computer Security ©2004 Matt Bishop

Self-Healing Property

• Initial message

- 3231343336353837 3231343336353837 3231343336353837 3231343336353837

• Received as (underlined 4c should be 4b)

- ef7c<u>4c</u>b2b4ce6f3b f6266e3a97af0e2c 746ab9a6308f4256 33e60b451b09603d
- Which decrypts to
 - efca61e19f4836f1 323133336353837 3231343336353837 3231343336353837
 - Incorrect bytes underlined
 - Plaintext "heals" after 2 blocks

Introduction to Computer Security ©2004 Matt Bishop

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
 - Designed to withstand attacks that were successful on DES

pros/cons of symm. encryption

- pros
 - faster than public key/asymmetric usually
- cons
 - key distribution is not scalable
 - more people know secret, less of a secret
 - "Ben Franklin rule"
 - export laws have been a problem
 - Moore's law may eat a few bits a year

Introduction to Computer Security ©2004 Matt Bishop

let us generalize a bit

- if you do cryptoanalysis,
- you don't know Key, you only know ciphertext (CC)
- we assume you know E and D (know alg)
- there is some set of K1 ... KN that you can guess
- any function that say reduces the odds is good
- if you get the odds down you can bruteforce solve it with a computer
- one common design flaw: reduce the entropy of the system by making keys easy for users

Introduction to Computer Security ©2004 Matt Bishop

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
 - Sender is using even parity; 6 1 bits, so character was received correctly
 - Note: could be garbled, but 2 bits would need to have been changed to preserve parity
 - Sender is using odd parity; even number of 1
 bits, so character was not received correctly

Definition

• Cryptographic checksum $h: A \rightarrow B$:

- 1. For any $x \in A$, h(x) is easy to compute
- 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
- 3. It is computationally infeasible to find two inputs x,
 - $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - Alternate form (stronger): Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

functional forms

- md(msg) -> bit string of length N (128, 160)
- md(shared secret, msg) -> bit string
 - Alice can send the bits to Bob can use the shared secret to prove what exactly?
- consider M where M = M1, M2, M3
- we can skip M2 and generate a bit string
- md(M1), md(M3) -> bit string and expect
 Bob to know the same order

Introduction to Computer Security ©2004 Matt Bishop

Collisions

- If $x \neq x'$ and h(x) = h(x'), x and x' are a *collision*
 - Pigeonhole principle: if there are *n* containers for *n*+1 objects, then at least one container will have 2 objects in it.
 - Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files

some example uses

- a MD is used as a hash
 - reduce message M of arbitrary length to N bits
- an integrity check
 - file F has an integrity check published for it
 - with public-key, we sign the integrity check
- with a shared secret we get a authentication system

note a very interesting idea lurking

- a one-way function
 - given some math function we can compute and not be able to figure out the inputs
- MD functions are not the only examples
- given x, and f(x)->z and you have z
- good luck figuring out x
- this is fundamentally important

Introduction to Computer Security ©2004 Matt Bishop

Keys

- Keyed cryptographic checksum: requires cryptographic key
 - DES in chaining mode: encipher message, use last *n* bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key

MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

Introduction to Computer Security ©2004 Matt Bishop

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- *h* keyless cryptographic checksum function that takes data in blocks of *b* bytes and outputs blocks of *l* bytes. *k'* is cryptographic key of length *b* bytes

– If short, pad with 0 bytes; if long, hash to length b

- *ipad* is 00110110 repeated *b* times
- opad is 01011100 repeated b times
- HMAC- $h(k, m) = h(k' \oplus opad \parallel h(k' \oplus ipad \parallel m))$
 - \oplus exclusive or, \parallel concatenation

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

Public Key Cryptography

- Two keys
 - Private key known only to individual
 - Public key available to anyone
 - Public key, private key inverses
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Introduction to Computer Security ©2004 Matt Bishop

there are really 5 possible functions here

- encryption, decryption
- signing and verification
 - public key certificates (later chapter)
 - interesting because public key is PUBLIC
- session-key generation
 - generate a key to use for awhile
 - avoid distribution of shared secrets

Introduction to Computer Security ©2004 Matt Bishop

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

Introduction to Computer Security ©2004 Matt Bishop

RSA

- Exponentiation cipher thus 1-way
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer *n*

Introduction to Computer Security ©2004 Matt Bishop

Security Services

• Confidentiality

- Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

Introduction to Computer Security ©2004 Matt Bishop

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Introduction to Computer Security ©2004 Matt Bishop

Diffie-Hellman

- public key but doesn't do signing/encryption
- allows 2 sides to create shared secrets
 - that can be used with MD and bulk sym. enc. to encode messages/pkts
- basis of many session key algorithms
- DH exchange however must be authenticated a priori to prevent MITM

Introduction to Computer Security ©2004 Matt Bishop

like so:

- Alice/Bob a priori agree on 2 public #s
 - p: a large prime
 - g, where g < p
- pre-compute:
 - Alice
 - S(a) = f(random)

 $- T(a) = g^{**}S(a) \mod p$ $T(b) = g^{**}S(b) \mod p$

S(b) = f(random)

Bob

• Alice sends T(a) to Bob, and Bob sends T(b) to A

DH, part 2

- post-compute of shared secret key material
 - Alice Bob
 - $S(secret) T(b) ** S(a) \mod p$

 $S(secret) = T(a) ** S(b) \mod p$

- never mind the proof:
 - S(secret) gives the same number of shared secret bits on both sides
 - can be used with MD or symmetric enc. algorithm

Introduction to Computer Security ©2004 Matt Bishop

pros/cons of public-key crypto

- usually quite slow in software
 - more likely do this:
 - create random key N for bulk encryption
 - encrypt M with N using E(M,N)
 - now encrypt N with public key crypto
- thus in networking protocols some combo of algorithms is likely
 - AES, SHA, RSA (or something)
- existence of session-key alg, or signatures a PRO!

Key Points

• Classical cryptosystems encipher and decipher using the same key

– Or one key is easily derived from the other

• Public key cryptosystems encipher and decipher using different keys

– Computationally infeasible to derive one from the other

- Cryptographic checksums provide a check on integrity
 - used for authentication, session-key generation and in point of fact are very useful

November 1, 2004

Introduction to Computer Security ©2004 Matt Bishop

policy considerations

- .so given
 - an enterprise
 - a govt. security agency
 - it's WWII: the US 101st Airborne Division in Bastogne during the Battle of the Bulge
 - a hospital worried about S/OX or HIPPA
 - a university
- what policy considerations may exist re say crypto in and of itself?

Introduction to Computer Security ©2004 Matt Bishop

and furthermore

- what can crypto do and what can it NOT do?
- what is key escrow and did you think about that in your policy considerations?
- do you allow users to bring laptops on site, and insist on encryption between your home and branch campuses?

Introduction to Computer Security ©2004 Matt Bishop