CS-322 SPARC-Part 3

The Calling Sequence

Typical code to call a subroutine:

<...move arguments into %00,%0l1, ..., %o5>
%07 = call foo

$07+4 ——> nop // Return to here
%07+8 ——=> add %00,43,%14

(result is in 9000)

The “call” instruction:
¢ Save address of the “call” instruction in %o7.
¢ Move address of “foo” into PC.

* Execute the instruction in the delay slot.
¢ Execute first instruction in “foo”.

The ‘“‘ret” instruction:
e Add 8 to %o7.
* Move result into PC.

* Execute the instruction after the delay slot.

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

Memory Usage In Unix

0000 0000 ; <— Lowest address
Misc.

. } 8K of constants
(environment)

- (e.g., command line args, wd, userid, etc.)
0000 2000/ Program 2

% and Data 7
/77

L2 22227

Unused Space / Heap Area

%06 = $sp —>

[The |
L Stack —

FFFF FFFF

<— Highest address

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

The In-Memory Stack

The stack grows “downward”
From high memory, towards low memory

The Stack Top Pointer (%sp) points to the lowest used byte.
i.e., the item on the “top” of the stack.

The Stack Top Pointer (%sp) must be double-word aligned

i.e., last 3 bits must be = 000 To ensure proper alignment:
& OxFFFFFFF8

To grow the stack
add %sp,-93&-8,%sp

The minimum frame size:
64 bytes = 16 regs * 4 bytes
If on-chip registers run out...
The OS will save registers in this area.
The programmer / compiler must leave at least this much space.
Programmer / compiler may allocate additional bytes in frame

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

The *‘save” Instruction
Grow the in-memory stack
Grow the on-chip register stack
(allocate a new register window)

Typical beginning of a routine:
foo: save %sp,-64,%sp

New register

From old window

reg window
Minimum

. . . frame size
Adjust register window

“out” registers become “in” registers
“new set of “local” registers
%sp becomes $£p

#SPxgw = $SPoLp - 04
%fp points to beginning of previous frame

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

A’s frame N

Local<

A Y4

>Registers for “A”

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

Out <

\
<

B’s frame Local <

out
A’s frame ut<

Local<

~
7

AY 4

oyl |w(Nof o] <oyl |wih

L Lt L L Lo Ll L

fp

> Registers for “B”

J

>Registers for “A”

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

% sp and %fp

Stack Frame
= “Activation Record”

The newly called routine (B)...
Will use %sp as a pointer to its newly allocated frame
Will use %fp to access the frame of its caller (A)
where it may find additional arguments

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

Returning From a Routine

restore

Go back to old register window
The in-memory stack shrinks automatically
(since we go back to old value of %sp)

May also function as an “add” instruction
restore regl,reg2 or_immed, regD
(Not often used.)
NOTE: operands from old window; result to new window

ret -- The return instruction
retl -- A variation used (to be discussed later)

The “ret” instruction is synthetic:
jmpl %i7,8,%g0
<delay slot>

The typical return sequence:

ret Jt “restore” in the delay slot!
restore

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

Addressing Memory
1d myVar, $g2
Not a legal SPARC instruction
(Used on previous slides, for simplicity)
Why?
Addresses are 32-bits in length.
Instructions are 32-bits in length.
Not enough room to put an address into a single instruction.
To move data into a register...

Must be -4096..+4095
Option #1:

mov reg or_ immed,regD
Synthetic: expanded to:

or %g0,reg_or_ immed, regD
Examples:

mov 123,%05

mov %03,%12 ;
Expanded to “sethla
Option #2:
set 32_immed, regD
© Harry H. Porter, 2006 9

CS-322 SPARC-Part 3

The “‘sethi”’ Instruction

sethi 22 immed, regD

Instruction includes 22 bits of immediate (literal) data.
Moves 22-bits into high-order 22 bits of regD
Moves zeros into low-order 10 bits of regD

Instruction Encoding
(approximately)

)
| 0000 0000 0000 0000 0000 0000 00O0O OOOOI
H_H_l¥ —_—— —
op-code regD 22-bits of data

Example: Move 0x1234ABCD into %g5
sethi 0x48D2A,%g5
or %g5,0x000003CD, $g5

0 4 8 D 2 A
00 0100 1000 1101 0010 1010

N\

0001 0010 0011 0100 1010 1011 1100 1101
1 2 3 4 A B Cc D

© Harry H. Porter, 2006 1 0

CS-322 SPARC-Part 3

Built-In Macros

%$hi (x)
Defined as
x >> 10
%$lo (x)
Defined as
x & Ox3ff

Within any instruction...
can use complex expressions

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

11

The “‘set” Synthetic Instruction

set value, regD

Expands to...

o If -4096 < value < +4095
or %g0,value,regD

* If least significant 10 bits of value are zero
sethi %hi(value) ,h regD

e Otherwise
sethi %hi(value) ,h regD
or regD, %1lo(value) ,regD

Note:
“set” may expand into 2 instructions
Do not use “set” in a delay slot!

© Harry H. Porter, 2006

12

CS-322 SPARC-Part 3

Accessing Memory

Goal: increment a word in memory

myVar: .word 123
Brackets indicate

Memory accesses

set myVar, %12

1d [$12],%13
add $13,1,%13
st %13, [%12]

To move a word from /to memory... Offset must be

13-bits

1d [regl] ,regD i.e., within
1d [regl+reg2],regD -4096 .. +4095
1d [regl+offset] ,regD
st regS, [regl]
st regS, [regl+reg2]
st regS, [regl+offset]

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

13

Load / Store Instructions
To move a byte
1dsb -- signed (i.e., sign extend to 32-bits)
1ldub -- unsigned (i.e, zero-fill the high-order 3 bytes)
stb
Iw be halfword alig@
To move a halfword
1ldsh -- signed (i.e., sign extend to 32-bits)
1lduh -- unsigned (i.e., zero-fill the high-order 2 bytes)
sth
To move a word @St be word alig@
1d
st
@e doubleword ali,@
To move a doubleword
ldd] < Specify an even numbered register.
std J’v Will move to / from the register pair
on -> MSW
Yon+1 -->LSW

© Harry H. Porter, 2006

14

CS-322 SPARC-Part 3

Subroutine Linkage

To Call
call foo
<delay slot>
31 30 29 0
| 0 |1 | 30-bit displacement

All instructions must be word aligned
(1) Multiply 30-bit displacement by 4 (i.e., “sll 2”)
(2) AddtoPC

Range is -231 .. +(231)-1

32-bit architecture
Can call to any address
64-bit architecture
(1) Multiply 30 bit displacement by 4
(2) Sign-extend to 64-bits
(3) AddtoPC

Any register:
Register contains addr of routine.
Call to address stored in that reg.

Also: call %15

<delay slot>
© Harry H. Porter, 2006 1 5

CS-322 SPARC-Part 3

Subroutine Linkage
Call saves the return address in %o7
Saves address of the call instruction itself
The return should be to %07+8

The amount of additional storage,
beyond the minimum,
to put into the activation record.

The routine will look like this:
foo:save %sp, (-64-XXX)&-8,%sp
g J

ret ii

restore

new reg window

old reg window

The stack must be doubleword aligned.
&-8 = &OxXFFFFFFF8

will round down to a multiple of 8

© Harry H. Porter, 2006 1 6

CS-322 SPARC-Part 3

Save and Restore

The ‘“save” instruction:
Allocate new “local” and “out” registers
Renames “out” registers to become new “in” registers
%06 = %sp = %i6 = %fp

In-Memory Stack
grows downward

%07 (ret addr) = %i7 (ret addr) (toward address 0)
The “restore” instruction:
Goes back to the old register window
[We get the old stack to back for free!]
Before A A After A A
Save Save $sp—»p
} Current
Tsp—> sfp—» Frame
} Current Previous
Frame ﬁ Frame
Sfp—»
}Previous
Frame
/ 1/
77 77
722, Vv
stack stack
© Harry H. Porter, 2006 1 7

CS-322 SPARC-Part 3

Activation Records

(Also called “Frames™)

Need Space For...
* 64 bytes
(16 x 32-bit registers)
* Additional arguments
* Local variables
* Temporary (compiler generated) variables
* Additional register saving
* “Structure Pointer” (4 bytes)

© Harry H. Porter, 2006 1 8

CS-322 SPARC-Part 3

Caller’s View:

Argument Passing

Put argument values in %00 ... %05
The subroutine may change the “out” registers during execution
Assume “out” registers are trashed.

Find the result value (if any) in %00.

Assume caller will execute “save” and “return”
Assume “in” and “local” registers are saved / unchanged

Assume the subroutine will trash the condition codes

caller callee
argl %00 %10 €— result returned here
arg2 %ol %il
arg3 %02 %12
arg4 %03 %$i3
arg5 %04 %i4
argé6 %05 %i5
%06 %$i6 <— top of stack before the call
%07 %17 <€— addr of the “call” instruction

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

19

A Typical Stack Frame

During the executwn of routine “foo”...

The Standard “C”
Calling Conventions

Stack frame

for “foo”

Optional alignment

bytes inserted here

N
Ssp—P \
Regtster Save Area
(64 bytes)
$sp+64—P Structure Pointer (4 bytes)
%$sp+68—p
Place to save regs %i0-%i5
4 bytes)
$sp+92-p
Additional ar gs to any
: routines that “foo” calls
: Local and temporary
storage for “foo”
S £p—p|
Stack frame for the
routine that called “foo”
oo Instruction at the beginning of “foo”:

<—worc_1—> save %sp,-(64+4+24+argSize+localSize) &-8,%sp

© Harry H. Porter, 2006

20

CS-322 SPARC-Part 3

Within “foo”’

To access “foo”’s arguments:
arg’/ $fp+92
arg8 $£fp+96
arg9 %fp+100
argl0 %fp+104

To access “foo’’s local storage:
Var1l %$fp-4
Var2 %fp-8
Var3 %fp-12
Var4 %fp-16

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

21

Returning Results

If the returned value is one word or less...
* Callee puts it in %i0
* Caller retrieves it from %00

If the returned value is larger... A “record” whose size
could be 1000 bytes
struct S { ... } e

struct S foo() {

struct S temp = ...; Returning 1000

.o bytes of data here
return temp; N—

}

main () {
struct S x;

x= foo();

}

The caller must provide storage for the returned value.
The caller passes a pointer to this space to “foo” in the...

“Structure Pointer”

© Harry H. Porter, 2006

22

CS-322 SPARC-Part 3

* Caller will allocate space
... and pass a pointer to it to “foo”

¢ Caller will place the structure size (i.e., the # of bytes to be returned)
INLINE, after the “call” instruction and its delay slot.

In the caller:
add $fp,x, %00 Get ptr to x (a local variable)
call foo
st %00, [$sp+64] ... and store it in the frame
.word 1000
<...next instruction...>

In “foo”:

foo: save %sp,-64,%sp Allocate frame (e.g., min. size)
1d [$i7+8], %0l Test the size
cmp %01,1000
bne return / error
1d [$fp+64],%00 Load ptr to “x” into %00
st ..., [%0040] Move return value into “x”
st ..., [%00+4]
st ..., [%004+996]
return: jmpl %i7+12,%g0 Return, jumping over delay

restore . instruction and size

| Recall that ret = jmpl $i7+8,%g0 [__

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

23

Integer Multiply Instructions
Multiplying two 32-bit numbers... 64-bit result

Decimal: Binary | Hex:
999,999 FFFF FFFF
x 999,999 x FFFF FFFF
999,998,000,001 FFFF FFFE 0000 0001 < Unsigned
0000 0000 0000 0001 < Signed

SPARC (two versions)
%y register -- 32-bits
umul regl,reg2 or immed, regD
smul regl,reg2 or_ immed,regD

Resulting 64 bits into %y || regD
S Least Significant Bytes

To read from %y: Most Significant Bytes
rd %y, regD

To move data into %y:
wr reg_or_immed, %y

© Harry H. Porter, 2006

24

CS-322 SPARC-Part 3

Division
For division, the 64-bit dividend is in 8y || regl

udiv regl,reg2 or_ immed, regD
sdiv regl,reg2 or_ immed, regD

Result is 32-bits long.
Result in “regD”

Non-integer quotients?
Result rounded toward zero.

Dividing by zero?
Will cause the “divide-by-zero” exception.

Overflow?
The result will be the largest representable integer.

© Harry H. Porter, 2006 2 5

CS-322 SPARC-Part 3

Example SPARC Program

! myHello.s
! Harry Porter - 12/23/97

! This program demonstrates the basics of assembling and running a SPARC
! assembly language program. It prints out a message when run.

.data ! Data will go into 'data’ segment
str: .asciz "Hello world!!!\n" ! A string argument to printf

.text ! Code will go into 'text' segment

.global main ! Make this symbol externally known
main: save $sp,-(64+4+24)&-8,%sp ! Set up a new activation record

set str, %00 ! Move argl (ptr to str) into %00

call printf ! Call printf

nop .

ret ! Return to caller after

restore ! . restoring the stack

© Harry H. Porter, 2006 26

CS-322 SPARC-Part 3

To assemble and run Hello:

myProg.c

gcc -g -c myHello.s
gcc -g myHello.o -o myHello

“C” Compiler

myHello

To see what the “C” compiler produces:
gcc -S goodbye.c

v

myProg.s

more goodbye.s

Assembler (‘‘as’)

yyy.o
XXX.O0

v

myProg.o

Linker (‘1d”)

v

a.out / myProg

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

27

Trapping to the O.S.

The “Trap Always” Instruction:

The “service request’ is in %R

mov 6,%gl 3 read

ta 0 4 write

<no delay slot> 5 open
Changes CPU to “System” mode g gii::

and jumps into the O.S. kernel 0 exit (?)
O.S. will return to “User” program 1 exit (?)

after executing the request.

Args passed in %00, %$ol, %02, ...

Condition Codes will be set to reflect the overall status: C=0 okay

C=1 problems

Unix Kernel Routines:

int read (int £d, char * buf,
int write (int £d, char * buf,
int
int creat (char * name,
void close (int £d)

int n)
int n)
open (char * name, int flags, int perms)
int perms) — fileDesc

— #bytes
— #bytes
— fileDesc

© Harry H. Porter, 2006

28

CS-322 SPARC-Part 3

Leaf Routines
A “Leaf Routine” does not call any other routine.

Don’t need a new set of regs.
No new “register window”
Avoid the overhead of “save” and “restore”

Args will be in $00, %01, %02, .., %05
Result should be placed in $00

Must not modify %i0, %il, %i2, .., %i7
%10, %11, %12, .., %17

To return: /ﬁls is a synthetic instruction:
retl Jjmpl %07,8,%g0
<delay slot> Add 8 to $07 and jump to that address
Store current address in $gO0 (i.e., discard it)

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

29

Floating Point Data Sizes

Single Precision word 32-bits (4 bytes)
Double Precision doubleword 64-bits (8 bytes)
Quad Precision quadword 128-bits (16 bytes)

Floating-Point Register File
Total: 64 words of storage

Organization:
32 single precision regs %£f0,%£f1,%£2, ... %$£31
32 double precision regs %$£0,%£2,%£f4, ... %£62
16 quad precision regs %£f0,%f4,%£f8, ... %£f60

These registers overlap!

© Harry H. Porter, 2006

30

CS-322 SPARC-Part 3

64 Floating-Point Registers
£0 £32
f1 £33
£2 £34
£3 £35
f4 £36
£5 £37
fe £38
£7 £39
£8 £40
5 Each reg £41

£10 is 32-bits £42
f11 f43
f12 fa4
f13 £45
f14 f46
£15 £47
fle6 £48
£17 £49
f18 £50
f19 £51
£20 £52
£21 £53
£f22 £54
£23 £55
f24 £56
£25 £57
£26 £58
£27 £59
£28 f60
£29 f6l
£30 f62
£31 £63
© Harry H. Porter, 2006

CS-322 SPARC-Part 3

31

32 Single Precision Registers (%f0, %f1, ... %£31)

£0 [l %10 £32

f1 £33 \

£f2 £34

£3 £35

f4 £36

£5 £37

fé £38

£7 £39

£8 f40

£9, f41
£f10 f42

f11 £43

£12 %13 £44 No
£13 (4 £45 .

£14 £46 Slng{e
£15 £ Precision
£17 £49 Storage
f18 £50

f19 £51 IIere
£20 £52

£21 £53

£22 £54

£23 £55

f24 £56

£25 £57

f26 £58

£27 £59

£28 £f60

£29 fel

£30 £62 j

£31 777777 %131 £63

© Harry H. Porter, 2006 : ;2

CS-322 SPARC-Part 3

32 Double Precision Registers (%f£0, %f2, ... %£62)

0 732
£1 t %10 £33
£2 £34
£3 £35
2 £36
£5 £37
£6 £38
£7 £39
8 £40
£9 £41
£10 £42
£11 £43
£12 £14
£13 £45
£14 £46
£15 £47
£16 £48
£17 £49
£18 Y/ /772774 £50
10272 { %t18 £51
£20 £52
£21 £53
£22 £54
£23 £55
£24 £56
£25 £57
£26 £58
£27 £59
£28 £60
£29 £61 %662
£30 £62
£31 £63 i of6

CS-322 SPARC-Part 3

© Harry H. Porter, 2006 3 3

16 Quad Precision Registers (%10, %14, ... %160)

f0 £32

fl £33

£2 W/ I %10 £34

3V /L £35

f4 £36

£5 £37

fé £38

£7 £39

£8 £40

£9 f41l
£10 £42

£11 £43

£12 f44

£13 £45

f14 f46

£15 £47

fleé £48

£17 £49

£18 £50

£19 £51

£20 '///////////// £52

£f21 £53

£22F, %f2’0 f£54

£23 £55

f24 £56

£25 £57

£26 £58

£27 £59

£28 f60 /////////////
£29 f61l /
£30 £62 %160
£31 £63

© Harry H. Porter, 2006 3 4

CS-322 SPARC-Part 3

Loading and Storing Floating Registers

Example:
1df [$14],%£3
§ \Destination floating-point register
Addresses use integer registers
Instructions:
1df [address] , freg
1ddf [address] , freg
ldgf [address] , freg p i ed
Stf freg, [address] roper alignment require

stdf freg, [address]

stgf freg, [address]
If the assembler sees
Where address is: a floating point register...

[reg] [$i3] You may use: In place of:
[regt+reg] [$1i3+%14] 14 1ldf
[reg+offset] [%i3+x] 1dd 1ddf

st stf

std stdf

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

335

Fixed-Point Numbers

Decimal

123.456

A7TANNS,

w102 101 100 101 102

. 100 10 1 110 1100 Y1000 ...

[
Binary
101.0101

AN

20 1 2 53
1 1 1 1

What is this number? 4+ 1+, + 1/, = 55/,,=53125

© Harry H. Porter, 2006

36

CS-322 SPARC-Part 3

“Every binary fraction can be represented exactly with a decimal fraction.”
1001.01, =9.25¢,

(And the decimal representation will use no more decimal digits
to the right of ““.” than the binary number has bits.)

“Some decimal fractions cannot be represented exactly using binary fractions.”
0.319=0.0100110011001100110011...,
=0.010011,

(of finite length)

CS-322 SPARC-Part 3

© Harry H. Porter, 2006 3 7

Floating Point Numbers

Decimal
123.456
= 1.2345 x 102
6.0225 x 1023

Limited precision: Rounded to the nearest 1019

The leading digit will always be 1,2,3, ..., 9 (never 0).
o —Q

Binary

101.0101
= 1.010101 x 22
1.328125 x 4 = 5.3125

Note: The leading bit will always be “1” (never “0”).
No need to store the first bit!

© Harry H. Porter, 2006 3 8

CS-322 SPARC-Part 3
Single Precision Floating Point

Number Representation
31 32 23 22

0
\ - ™ —
~—

8 bit exponent 23 bit fraction

Sign bit O=pos, I=neg Range: -126..127 |

N = D%8" x Lfraction x 26XP

The exponent is an 8 bit number interpreted as follows...

0000 0000 “sub-normal”
0000 0001 -126
Single-Precision

0111 1110 -1 Smallest non-zero num_b3eg:
0111 1111 0 1.17549435 x 10
1000 0000 1 Largest number: 138

3.40282347 x 10
1111 1110 127 About 9 digits of accuracy!
1111 1111 “not a number”

© Harry H. Porter, 2006 3 9

CS-322 SPARC-Part 3

NaN: Not-A-Number

When
exp=1111 1111
a special meaning arises

OxFFFF FFFF
(= -1 as a signed number)
Not A Number
“NaN”
Will cause an exception when used.

0x7FF0 0000
Positive Infinity, +o0
“+inf”
O0xFFFO 0000
Negative Infinity, —oo
‘6_ inf9’
Divide 1/0 = +o0
Divide -1/, = -o
You can compare other numbers to +% and -o.

© Harry H. Porter, 2006 40

CS-322 SPARC-Part 3

Double Precision Floating Point

Number Representation
63 62 52I 51 (I)

11 bit exponent 52 bit fraction

Sign bit O=pos, I=neg Range: -1022..1023'

N = D%8" x Lfraction x 26XP

Double-Precision
Smallest non-zero number:
2.225,073,858,507,201,4 x 107308
Largest number:
1.797,693,134,862,315,7 x 10*308
About 17 digits of accuracy!

CS-322 SPARC-Part 3

© Harry H. Porter, 2006 4 1

Quad Precision Floating Point

Number Representation
127 126 112 111 0

\- o s

15 bit;;cponent 112 bit fraction

Sign bit O=pos, I=neg

N = (-1)%18" x Lfraction x 26XP

© Harry H. Porter, 2006 42

CS-322 SPARC-Part 3

Floating-Point Computation

Example:
fadds $fl,%£f2,%£3

;s Operands ..
Precision P Destination

Arithmetic Instructions:

fadds)
fsubs
fmuls
fdivs)

faddd)
fsubd
fmuld
fdivd)

faddqg Y

fsubq
fmulg > Quad Precision

v Single Precision Both operands and result must
be in floating-point registers
(no literal data).

> Double Precision

fdivq |

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

43

Misc. Floating-Point Instructions

Example:
fmovs $£2,%£7

Move Between Registers: Source Destination/Result
fmovs
fmovd
fmovqg

Negation:
fnegs
fnegd)
fnegq All take 2 registers

Absolute Value: source — destination

fabss Example
fabsd fnegd $£4,%£6
fabsqg
Square Root:
fsqgrts
fsqrtd
fsqrtqg J

© Harry H. Porter, 2006

44

CS-322 SPARC-Part 3

Comparing

Compare two floating-point numbers:

fcmps fregl, freg2
fempd fregl,freg2
fempg fregl,freg2

Floating-Point Condition Codes

cars

setto 1iff fregl = freg2
setto 1iff fregl < freg2
setto 1iff fregl > freg2
setto 1iff fregl and freg2 cannot be ordered (e.g., NaN)

Note: These bits are different
Integer Condition Codes

Zero

carry

negative

overflow

<ZAON

from the integer condition codes

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

45

Branching

Compare two floating-point numbers:

Example:
fble label
Test the floating-point conditions

...and branch to “label” if the condition is true.

fbl <
fble =<
fbg >
fbge =
fbe =
fbne =
fbu unordered

fbo ordered
(Other combinations)

Delay Slot:

Annul Bit
Just like the integer branch

Just like all other branch instructions (i.e., next instruction is executed first)

instructions:

If the annul bit is set (fble, a label)
and if the condition is false (i.e., branch not taken)
then do not execute instruction in the delay slot!

© Harry H. Porter, 2006

46

CS-322 SPARC-Part 3

SPARC-V8

SPARC-V9
No restriction

Older Version of the architecture...

The branch may not immediately follow the compare instruction
You need an intervening instruction (e.g., nop)

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

47

The Instructions:

int
single
double
quad

Source

Example: fstoi

Conversions

Both operands must be in a floating-point register.

$fl1,%f2

N~

Conversion between integer and floating-point representation

s,d,q ori Destination/Result
Destination
int single double quad
- fitos fitod fitogq
fstoi - fstod fstoqg
fdtoi fdtos - fdtog
fgtoi fgtos fgtod -

© Harry H. Porter, 2006

43

CS-322 SPARC-Part 3

gdb
A debugger for C, Assembly, etc.

Command line
%gdb a.out
* Loads the program in main memory
* Does not begin execution
* Accepts gdb commands

%gdb a.out core
e [oads the core file

back into main memory
* You can see the state of things

at the time of the fault.

help [command]
Displays help info.
help run

run [args]
r [args]
Begin execution at program’s beginning.
Optionally supply command line arguments
May abbreviate any command
r < testl.pcat > testl.out

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

49

£

b *addr
Set a breakpoint.
b iscan
b *&iscan+44

info break
ib
Show all breakpoints.

continue
c

Continue / resume execution after reaching a breakpoint.

© Harry H. Porter, 2006

S0

CS-322 SPARC-Part 3

print value

p $g6

p/x $g6
p/d $g6
p/t $g6
p/f $g6
p/c $g6
p/i $g6

p/x iscan

p/x $pc

p/x 123*5

Print Command

Display data values

Registers use $ instead of %.
Default: print value in decimal

<— Prints value in hex

< decimal

< binary

<— floating point

< character

< Interpret data as a SPARC instruction and print it

Print out the value of a symbol
Print the address of the instruction labeled “iscan”

Show where execution is currently stopped (i.e., value of “program counter’)

Perform computation and print result in hex

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

51

X addr

x/i main

<cr>

x/x myVar

x/x 0x20844

Examine and Set

Examine memory contents

Disassemble and display first instruction

Hit enter to repeat last instruciton, stepping through memory
Display the value of “myVar” in hex

Display the contents of memory at address 00020844, o

set $g4=0x1234abcd
Move a data value into a register

set myVar=0x4321
Move a data value into memory

© Harry H. Porter, 2006

S2

CS-322 SPARC-Part 3

More Commands

disass
Disassemble and print the current routine

ni
“Next Instruction”: Execute a single SPARC instruction
(Steps over calls; i.e., execute the entire routine then stop)
ni 13 Execute 13 instructions and stop

si
Single-steps the CPU

Execute a single SPARC instruction
“Step Into”: Steps through subroutines too (ugh...)

info all-registers
iall
Display the contents of all registers.

display

q
Quit gdb

Like “examine” command, except done whenever a breakpoint it encountered.

© Harry H. Porter, 2006

CS-322 SPARC-Part 3

S3

Commands Related To High-Level Languages

call foo(3,5,7)
Invoke a routine with the given arguments.
Will print the returned value.

print myVar
Print a variable.

step
Single-steps a single source code line.

next
Single-steps a single source code line.
(Steps over calls)

where
Print the calling stack.

bt
“Backtrace”
Print the calling stack (slightly different info)

Print using the format that is appropriate for its source-code type.

© Harry H. Porter, 2006

54

CS-322 SPARC-Part 3

Unix Usage

gcc -g myProg.s / myProg.c
Causes symbol info to be added to .o files (and a.out)
... 50 gdb can learn about symbolic names and values

gdb a.out

The .gdbinit file
Automatically read and executed upon gdb start-up.
Contains gdb commands.

Example
break *&main < Seta breakpoint

display/i $pc < Display current instruction when b.p. hit
r <— Start execution (and stop immediately)
disass <— Disassemble and display the main routine

© Harry H. Porter, 2006 5 5

CS-322 SPARC-Part 3

Example
myFloat.s

Harry Porter - 1/13/00

This program demonstrates floating point computation.
It also demonstrates the preferred style of commenting.

This program performs this function:

main () {
double x = 12.34;
double y = 10;
printf ("Result = %g\n", x + y);

}
Frame layout:
$fp-24 ==>y (a floating double)
$fp-16 ==> x (a floating double)
$fp-8 ==> temp (a floating double)

(Size of local storage = 3*8 = 24 bytes)

© Harry H. Porter, 2006 5 6

CS-322 SPARC-Part 3

Frame Layout

64 Register Save Area
4 Structure Pointer
24 %i0 - %i5

0 Additional arguments to routines “myFloat” calls (none)
;1 Alignment Tofp-24 “y”

8 Z %fp_l 6 ((x))

8 temp %fp-8 “temp”

120 bytes

© Harry H. Porter, 2006

S7

CS-322 SPARC-Part 3 ﬁ%fp-z 4

%fp-16 “x”
Y%fp-8 “‘temp”
.text
strArg: .asciz "Result = %g\n" ! String constant
.align 8
xConst: .double 0r+1234.0e-2 ! Constant = 12.34
yConst: .double O0r+1.00El ! Constant = 10.00
.global main ! Begin main function
main: save %$sp,-120, %sp !
sethi %$hi (xConst) , %00 ! Initialize x (%fp-16)
1ldd [$00+%1lo (xConst)],%02 ! from stored
std %02, [$fp-16] ! constant “xConst”
sethi %hi (yConst) , %00 ! Initialize y (%fp-24)
1dd [$00+%1lo (yConst)], %02 from stored
std %02, [$fp-24] constant “yConst”

© Harry H. Porter, 2006

S8

CS-322 SPARC-Part 3

ﬁ%fp_24 (‘y))

1ldd
ldd
faddd
std

1ldd
mov
mov
set
call
nop

ret
restore

[$fp-16],%£2
[$fp-24],%f4

$£f2,%£4,%£f6
$£f6, [$fp-8]
[$fp-8],%02
%$02,%01
%$03,%02
strArg, %00
printf

%fp-16 L
Y%fp-8 ‘‘temp”

Add x+y, storing result in
temp var (%fp-8)

Load value of temp
into %ol and %02

Load addr of strArg into %00
Call printf

Return from "main"

© Harry H. Porter, 2006

S9

