
1

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Basic Concepts: Instruction Execution
Each SPARC instruction is one word long (32-bits)

Info is encoded into each instruction.

 01001101 10101010 10111001 00101101

Instructions are stored in memory with data.

Instructions are always word aligned.

Registers

“PC” - the program counter

The “fetch-increment-execute” loop:

PC = 0

loop

 instr = MEMORY [PC]

 PC = PC + 4

 Execute instr...

 • fetch operands

 • perform computations

 • store results (includes modifying PC)

endLoop

OpCode Register Literal Data

2

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Machine Architecture Variations
Stack Architectures

Easy to compile to

Lots of memory accesses

Used mostly for interpreters

Accumulator Architectures

One general purpose register

CISC / Two-Operand Architectures

Several general-purpose registers

Two operand fields in instructions

The result overwrites one operand

RISC / Load Store / Three-operand Architectures

Lots of general-purpose registers

Instructions have 3 operand fields

Each instruction is either

Computation

Memory access

Operands for computation must be in registers

Many instructions execute in a single clock cycle

LVALUE z

PUSH x

PUSH y

ADD

ASSIGN
LOAD x

ADD y

STORE z

LOAD x,R3

ADD y,R3

STORE R3,z

LOAD x,R1

LOAD y,R2

ADD R1,R2,R3

STORE R3,z

3

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

SPARC Registers

General-Purpose Registers

32 registers

32-bits (4bytes) each

Divided into 4 sets of 8 registers

Global %g0, %g1, ... %g7

Local %l0, %l1, ... %l7

In %i0, %i1, ... %i7

Out %o0, %o1, ... %o7

Available operations:

Integer arithmetic: add, sub, mul, div, cmp

Logical: and, or, not, shift-left, shift-right

Floating-Point Registers

32 registers %f0, %f1, ... %f31

Available operations:

Floating-point arithmetic: add, sub, mul, div, cmp

Integer-to-floating conversion

Well, okay to assume 32-bits...

4

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Other Registers
Program Counter (PC)

32-bits

Integer Condition Code Register

4-bits

For integer operations

Floating-Point Condition Code Register

4-bits

For floating-point operations

“Y” Register

32-bits

Used for integer mulitply

 and divide operations

Other Registers

Lots - ignore them

 3A0F 2C33

 X 0145 0000

 0049 B543 1CBF 0000

 Y reg Normal Reg

5

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Example SPARC Instructions

sub %g2,%g7,%g5

1000 1010 0010 0000 1000 0000 0000 0111

sub %g2,7,%g5

1000 1010 0010 0000 1010 0000 0000 0111

Operand 1

(reg1) Operand 2

(reg2)

Result / Destination

(regD)

reg1 reg2regD

reg1 Literal data valueregD

6

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

13-Bit Immediate Values
The instruction includes a 13-bit signed value.

Range: -4096 .. 4095

This value is “sign-extended” to 32-bits.

Example:

 ---- ---- ---- ---- ---0 0000 0000 0111

 0000 0000 0000 0000 0000 0000 0000 0111

7

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

13-Bit Immediate Values
The instruction includes a 13-bit signed value.

Range: -4096 .. 4095

This value is “sign-extended” to 32-bits.

Example:

 ---- ---- ---- ---- ---1 1111 1111 1001

 1111 1111 1111 1111 1111 1111 1111 1001

8

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Notation

sub reg1,reg2_or_immed,regD

reg1, reg2, regD:

Any one of the 32 general-purpose integer registers (5 bits)

immed

13-bit signed integer value

Must be between -4096 and 4095

Signed-extended to 32-bits before being used

Syntax: Full “C”-like expressions

Character literals 'm'

"m"

Hex 0x6d

Decimal 109

Octal 0155

Expressions 64 + (3 * 'm')

Symbols x

All equal

Assembly-time constants,

 not runtime variables!

9

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Assembler Syntax
One instruction per line

Labels - on same line, or on line alone

label:

 sub %g3,%g5,%g7 ! Comments

 add %g7,56,%g7 !

 add %l2,34,%l2 !

Example

 ld myVal,%l2 ! myVal = myVal + 78

 add %l2,78,%l2 ! .

 st %l2,myVal ! .

The destination is always on the right.

Tab TabTab

Spaces are okay,

but not normally used

(Not quite legal SPARC)

Note the

Commenting style

10

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Instructions

Arithmetic
add
sub
smul
sdiv
umul
udiv

Logical
and
or
xor
andn
orn
xnor

Shifting
sll
srl
sra

Arithmetic
addcc
subcc
smulcc
sdivcc
umulcc
udivcc

Logical
andcc
orcc
xorcc
andncc
orncc
xnorcc

Signed

Unsigned These do not

modify the

condition code

Register.

These do

modify the

condition code

register.

Will set:

 Z=1

 if result is zero

 N=1

 if result is neg

 etc.

11

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Logical Functions
and

or

xor = x != y

andn = x and (not y)

orn = x or (not y)

xnor = x = y

x y and or xor andn orn xnor

0 0 0 0 0 0 1 1

0 1 0 1 1 0 0 0

1 0 0 1 1 1 1 0

1 1 1 1 0 0 1 1

These instructions work on all 32 bits at once:

 and %g4,%g5,%g6

%g4 0011 1100 ... 1010

%g5 1010 1101 ... 1001

%g6 0010 1100 ... 1000

12

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

To turn on bits in a word...
Use the “or” instruction and a “mask” word

or x,mask,result

Turn on bits in x wherever the mask has a 1 bit

Example: Turn on every other bit in 3A0F

0011 1010 0000 1111 3A0F

0101 0101 0101 0101 mask

0111 1111 0101 1111 result

To turn off bits in a word...
Use the “and” instruction and a mask

and x,mask,result

Turn off bits in x wherever the mask has a 0 bit

To flip (or “toggle”) bits in a word...
Use the “xor” instruction and a mask

xor x,mask,result

Change the bits in x wherever the mask has a 1 bit

13

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Shifting Instructions

sll
“Shift Left Logical” <<

sll reg1,reg2_or_immed,regD

A fast way to multiply by 2N...

 Example: Multiply by 32 (= 25)
sll x,5,result

0000 0000 0000 0011 = 3

0000 0000 0110 0000 = 64+32 = 96

srl
“Shift Right Logical” >>>

srl reg1,reg2_or_immed,regD

sra
“Shift Right Arithmetic” >>

sra reg1,reg2_or_immed,regD

A fast way to divide by 2N, rounding toward -!...
sra x,N,result

31 0

0

Number of bits 0..31

31 0

0

31 30 0

14

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Testing

cmp reg1,reg2_or_immed

Compare operand1 to operand2

Set integer condition codes accordingly

The next instruction will normally be a conditional branch

Example:
cmp %g3,73 ! if x <= 73 goto loop

ble loop ! .

Branch if the condition codes indicate

op1 " op2

15

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

How to turn high-level code into assembly code:

if (x >= 73) && (y < 98) then

 b = c + d

endIf

Step 1: Convert LOOPs and IFs into GOTOs (possibly reversing the tests):

 if x<73 then goto elseLabel

 if y>=98 then goto elseLabel

 b = c + d

elseLabel:

Step 2: Turn into assembly code.

 Keep the operand order and tests the same!

 cmp %l3,73 ! if x >= 73

 bl elseLabel ! .

 cmp %l2,98 ! . and y < 98

 bge elseLabel ! .

 add %g4,%g5,%g3 ! b = c + d

elseLabel: ! endIf

Assume:
x in %l3
y in %l2
b in %g3
c in %g4
d in %g5

NOTE: The comments

look like source code,

including indentation!

16

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Unconditional Branch (the “goto” instruction)
ba label

Conditional Branches

For Signed Values For Unsigned Values

bl label blu label

ble label bleu label

bg label bgu label

bge label bgeu label

Equality Testing

be label <same>

bne label <same>

17

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The Condition Code Register
4 bits:

N 1 = negative

Z 1 = zero

V 1 = overflow

C 1 = carry out

Set after arithmetic operations

 addcc, subcc, ...

Reflect the result

Instructions to test the bits individually

 Instruction Will branch if...

bneg label N=1

bpos label N=0

bz label Z=1

bnz label Z=0

bvs label V=1

bvc label V=0

bcs label C=1

bcc label C=0

18

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The Delay Slot

Due to pipelining...

All branch instructions take 1 extra instruction to go into effect
The instruction following the branch is executed

before the branch happens!!!

19

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The Delay Slot

Due to pipelining...

All branch instructions take 1 extra instruction to go into effect
The instruction following the branch is executed

before the branch happens!!!

Option 1: Put a “nop” instruction in the “delay slot”

cmp %l3,73

bl elseLabel

nop

20

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The Delay Slot

Due to pipelining...

All branch instructions take 1 extra instruction to go into effect
The instruction following the branch is executed

before the branch happens!!!

Option 1: Put a “nop” instruction in the “delay slot”

cmp %l3,73

bl elseLabel

nop

Option 2: Figure out how to put a real, useful instruction in the “delay slot”.

ld myVar,%l3 ! var = var - 1

sub %l3,1,%l3 ! .

st %l3,myVar ! .

cmp %l3,73 ! if var < 73

bl elseLabel ! . goto elseLabel

nop ! .

Very tricky to do

correctly!

21

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The Delay Slot

Due to pipelining...

All branch instructions take 1 extra instruction to go into effect
The instruction following the branch is executed

before the branch happens!!!

Option 1: Put a “nop” instruction in the “delay slot”

cmp %l3,73

bl elseLabel

nop

Option 2: Figure out how to put a real, useful instruction in the “delay slot”.

ld myVar,%l3 ! var = var - 1

sub %l3,1,%l3 ! .

cmp %l3,73 ! if var < 73

bl elseLabel ! . goto elseLabel

st %l3,myVar ! . (delay)

Very tricky to do

correctly!

22

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

•!Figuring out how to rearrange the code

to fill the delay slot is difficult & error-prone

•!Study Chapter 2 (in “Paul”) for examples.

•!Project 7:

You can practice filling the delay slots

Get the program right first!!!

•!Our Compiler

Will not make this important optimization.

•!See how smart the “C” compiler is.

23

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Optimizing Assembly Code
A typical loop:

while x1 <= 17 do

 x1 = x1 + x2;

 x3 = x3 + 1;

end

Translation into SPARC:

Assume variables in registers:

x1 # %l1

x2 # %l2

x3 # %l3

test:

 cmp %l1,17

 bg done

 nop

 add %l1,%l2,%l1

 add %l3,1,%l3

 ba test

 nop

done:

Execution Time:

N*7

24

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

“Rotating” a Loop

add

test

add

test

add

add

25

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

“Rotating” a Loop

add

test

add

test

add

add

Unnecessary

branch here

The conditional branch

Is also used to jump

Back to the loop top

An extra branch is

Inserted here, but

it is only executed once

26

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Optimizing Assembly Code
A typical loop:

while x1 <= 17 do

 x1 = x1 + x2;

 x3 = x3 + 1;

end

Translation into SPARC:

Assume variables in registers:

x1 # %l1

x2 # %l2

x3 # %l3

test:

 cmp %l1,17

 bg done

 nop

 add %l1,%l2,%l1

 add %l3,1,%l3

 ba test

 nop

done:

Execution Time:

N*7

27

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Optimizing Assembly Code
A typical loop:

while x1 <= 17 do

 x1 = x1 + x2;

 x3 = x3 + 1;

end

Translation into SPARC:

Assume variables in registers:

x1 # %l1

x2 # %l2

x3 # %l3

 ba test

 nop

loop:

 add %l1,%l2,%l1

 add %l3,1,%l3

test:

 cmp %l1,17

 ble loop

 nop

test:

 cmp %l1,17

 bg done

 nop

 add %l1,%l2,%l1

 add %l3,1,%l3

 ba test

 nop

done:

Execution Time:

N*5

28

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Optimizing Assembly Code
A typical loop:

while x1 <= 17 do

 x1 = x1 + x2;

 x3 = x3 + 1;

end

Translation into SPARC:

Assume variables in registers:

x1 # %l1

x2 # %l2

x3 # %l3

 ba test

 nop

loop:

 add %l1,%l2,%l1

 add %l3,1,%l3

test:

 cmp %l1,17

 ble loop

 nop

 ba test

 cmp %l1,17

loop:

 add %l1,%l2,%l1

 add %l3,1,%l3

 cmp %l1,17

test:

 ble loop

 nop

Execution Time:

N*5

(1 cycle saved, total)

29

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

How to fill a delay slot

 ble target
 nop
 mul ...
 ...
 div
target: add %l0,%l1,%l2
 sub ...

Copy the target instruction into the delay slot, and branch to 2nd instruction

 ble target
 add %l0,%l1,%l2
 mul ...
 ...
 div
 add %l0,%l1,%l2
target: sub ...

30

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

How to fill a delay slot

 ble target
 nop
 mul ...
 ...
 div
target: add %l0,%l1,%l2
 sub ...

Copy the target instruction into the delay slot, and branch to 2nd instruction

 ble target
 add %l0,%l1,%l2
 mul ...
 ...
 div
 add %l0,%l1,%l2
target: sub ...

Problem:
The “add” is executed even when the branch is NOT taken!

Solution:
“Annulled Branches”

31

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Annulled Branches
Assumption:

• Loops end with a conditional branch

•!The branch is back to the loop-top

• Loops execute many times

• Goal: Speed up highly repetitive loops

• The branch is taken more often than not

• Goal: Optimize the “branch-is-taken” case

Approach:

• Execute the delay instruction when branch is taken

•!Add some support for the case when branch not taken

May execute a little slower, but...

32

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Annulled Branches
One bit in conditional branch instructions

The “annul” bit

If the bit is “0” (The branch is not “annulled”)

The instruction in the delay slot is always executed.

Syntax:

bge label

If the bit is “1” (The branch is “annulled”)

Branch Taken

Instruction in delay slot is executed

Branch Not Taken

Instruction in delay slot is NOT executed

Syntax:

bge,a label

33

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Optimizing Assembly Code
A typical loop:

while x1 <= 17 do

 x1 = x1 + x2;

 x3 = x3 + 1;

end

Translation into SPARC:

Assume variables in registers:

x1 # %l1

x2 # %l2

x3 # %l3

 ba test

 cmp %l1,17

loop:

 add %l1,%l2,%l1

 add %l3,1,%l3

 cmp %l1,17

test:

 ble loop

 nop

 ba test

 cmp %l1,17

loop:

 add %l3,1,%l3

 cmp %l1,17

test:

 ble,a loop

 add %l1,%l2,%l1

Execution Time:

N*4

34

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Pseudo-Ops

.byte 35 ! 0x23

.half 35 ! 0x0023

.word 35 ! 0x00000023

The value can be specified many ways (hex, decimal, ascii, expressions,...)
.word 0x3a0f12d8

.half (123+0x0F00)<<5

.byte 'a'

A list of values may be used:
.word 25,78,0x44000000+'a’ ! fills 3 words

Floating-Point values may be placed in memory:
.single 0r12.34 ! 4-byte floating point value

.double 0r+1234e-2 ! 8-byte floating-point value

Labels will often be used:
 myVar: .word 0xffffabcd

35

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

.ascii "abcdef"

Will initialize N bytes of storage, filling it with character data.

“C” strings are terminated with 0x00.

.asciz "abcdef"

Will initialize N+1 bytes of storage, putting 0x00 after the final byte.

.skip 3500

Will skip 3500 bytes, leaving them uninitialized.

36

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The “align” Pseudo-Op
.align 2

.align 4

.align 8

Will skip as many bytes as necessary

to get onto the indicated alignment boundary.

Example:
.asciz "hello!"

.align 2

.half 0x1234

.align 4

.word 0xfedcba98

‘h’

‘e’

‘l’

‘l’

‘o’

‘!’

00

XX

12

34

XX

XX

FE

DC

BA

98

37

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Symbols
Each label is a symbolic name for an address

loop: ...

 ...

 ba loop

 nop

By default, each symbol is local to one “.s” file.

 .global symbol

Makes “symbol” available to the linker and debugger as an “external symbol”.

 .global main

main: ...

To use an externally defined symbol, nothing special is needed.
 call printf

The assembler will not compain if “printf” is not defined in this .s file.

The linker will resolve the symbol.

If not defined in any .o file # Linker error: “unknown symbol”

38

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Segments (in Unix)

.data Put most data here

 Will be placed in read-write pages

.text Put code and constant data here

 Will be read-only pages

.bss Put uninitialized data here

 Read-write pages will be allocated

39

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Unix Commands
gcc myProg.s -c

Looks at the .s extension

Calls assembler

-c means produce a “.o” file

gcc myProg.o ...plus other .o files... -o myProg

Looks at the .o extensions

Calls the linker

“-o xxx” means produce an executable with name “xxx”

myProg

Loads the program into memory and executes it.

gcc -S samplePgm.c

To see what the “C” compiler produces.

Creates “samplePgm.s”

40

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Integer Multiplication and Division
No multiply or divide instructions in early versions of SPARC

Place operand 1 in %o0

Place operand 2 in %o1

Call a subroutine

Find the result in %o0

Example:

ld x,%o0 ! z = x * y

ld y,%o1 ! .

call .mul ! .

nop ! .

st %o0,z ! .

Available subroutines:

.mul

.umul

.div

.udiv

.rem

.urem

%o0 $ %o1 # %o0

%o0 ÷ %o1 # %o0

Signed and Unsigned Versions

41

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Loading / Storing / Moving
ld address,regD

st reg1,address

mov reg1,regD

These each move one word (32 bits).

“reg” and “regD” may be any integer register.

Address

[reg]

[reg+offset]

[reg+reg]

Examples

ld [%i4],%i6

Data always moves to the left

xxxx

0000

0004

0008

000c

0010

0014

0018

001c

0020

0024

0028

002c

0030

0034

%i4

%i4 = 0010

42

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Loading / Storing / Moving
ld address,regD

st reg1,address

mov reg1,regD

These each move one word (32 bits).

“reg” and “regD” may be any integer register.

Address

[reg]

[reg+offset]

[reg+reg]

Examples

ld [%i4],%i6

ld [%i4+24],%i6

Data always moves to the left

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

0000

0004

0008

000c

0010

0014

0018

001c

0020

0024

0028

002c

0030

0034

%i4

%i4 = 0010
A constant 13-bit value

+24

(+0x18)

43

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Loading / Storing / Moving
ld address,regD

st reg1,address

mov reg1,regD

These each move one word (32 bits).

“reg” and “regD” may be any integer register.

Address

[reg]

[reg+offset]

[reg+reg]

Examples

ld [%i4],%i6

ld [%i4+24],%i6

ld [%i4+%i5],%i6

Data always moves to the left

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

0000

0004

0008

000c

0010

0014

0018

001c

0020

0024

0028

002c

0030

0034

%i4

%i4 = 0010

%i5 = 0018

+24

(+0x18)

44

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

%g0
Special register: %g0

Reading from it?

Always zero

Writing to it?

Data is discarded

45

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Synthetic Instructions

mov reg_or_immed,regD

or %g0,reg_or_immed,regD

not reg1,regD

xnor reg1,%g0,regD

cmp reg1,reg2_or_immed

subcc reg1,reg2_or_immed,%g0

Programmer codes this

Assembler produces this

46

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

---- ---- ---- ---- ---1 0000 0101 0111

1111 1111 1111 1111 1111 0000 0101 0111

Loading Immediate Data into a Register
Option 1:

mov reg_or_immed,regD

The immediate value will be encoded in 13 bits.

... And sign-extended to to 32-bits when used.

The range:

-4096 .. 4095

47

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The “sethi” Instruction

 sethi immed_22,regD

A 22-bit value included in instruction

Loaded into the high-order (most significant) 22 bits of regD

The low-order 10 bits are cleared (to zero)

Built-in macros in the assembler

 %hi(X)

Returns the high-order 22 bits of X

 %lo(X)

Returns the low-order 10 bits of X

Option 2:

 sethi %hi(value),regD

 or regD,%lo(value),regD

48

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The “set” Synthetic Instruction
Option 3:

 set value,regD

Any 32-bit value

Expands into two instructions

 sethi %hi(value),regD

 or regD,%lo(value),regD

Example:

set myVar,%l4

ld [%l4],%l5

49

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The “set” Synthetic Instruction
Option 3:

 set value,regD

Any 32-bit value

Expands into two instructions

 sethi %hi(value),regD

 or regD,%lo(value),regD

The Delay Slot

 cmp ...

 ble loopLabel

 add ...

 sub ...

Do not put “set” in the delay slot.

Actually, for some values, “set” will expand to only one instruction.

Still, do not put “set” in the delay slot.

The “delay slot”

Example:

set myVar,%l4

ld [%l4],%l5

50

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Mask, with selected bits set to 1

Synthetic Instructions

tst reg

clr regD

btst reg_or_immed ,reg

bset reg_or_immed ,regD

bclr reg_or_immed ,regD

btog reg_or_immed ,regD

mov reg_or_immed,regD

not reg1,regD

cmp reg1,reg2_or_immed

nop

orcc reg,%g0,%g0

or %g0,%g0,regD

andcc reg,reg_or_immed,%g0

or regD,reg_or_immed,regD

andn regD,reg_or_immed,regD

xor regD,reg_or_immed,regD

or %g0,reg_or_immed,regD

xnor reg1,%g0,regD

subcc reg1,reg2_or_immed,%g0

sethi 0,%g0

Shorthand What Gets Assembled

51

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Registers
 Four groups of 8 registers each

Global %g__

Local %l__

In %i__

Out %o__

Local %l0, %l1, %l2, ... %l7

Used by this routine any way it wants

Will be saved automatically during subroutine calls

Global %g0, %g1, %g2, ... %g7

 %g0 is special (= zero), can not be modified

Used for “global” data, visible to all routines

Not saved during subroutine calls

In %i0, %i1, %i2, ... %i7

Out %o0, %o1, %o2, ... %o7

Used in passing parameters to/from subroutines.

The “Calling Conventions”

Efficient parameter passing

52

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

SPARC Calling Conventions
Consider calling a subroutine

The “caller” calls the “callee”.

From the perspective of the current routine...

“In” Registers

Arguments to this routine are found in

%i0, %i1, %i2, ... %i5

arg1 arg2 arg3 ... arg6

Fewer than 6 arguments? Use only as many as needed.

Additional arguments? Must be passed on the stack.

This routine will put the “returned value” into %i0 before returning (if any)

%i6

Has a special name: %fp (the “frame pointer”)

%i7

Has a special use

Holds a pointer to the “call” instruction which called this routine

Will be used by the “return” instruction

53

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

SPARC Calling Conventions
“Out” Registers

Used to pass arguments to routines we will call.

Just before the “call”, arguments to the subroutine are put into

%o0, %o1, %o2, ... %o5

arg1 arg2 arg3 ... arg6

Fewer than 6 arguments? Use only as many as needed.

Additional arguments? Must be passed on the stack.

If the callee returns a value...

This routine will find it in %o0

%o6

Has a special name: %sp (the “stack pointer”)

%o7

Has a special use

When a “call” instruction is executed...

the address of the “call” instruction will be placed in %o7

54

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Stack Manipulation

%o0

%o1

%o2

%o3

%o4

%o5

%sp

%o7

%i0

%i1

%i2

%i3

%i4

%i5

%fp

%i7

Args

Result

Caller Callee

Return Addr

55

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Subroutine Calling Stack
Local variables for each routine...

kept in the stack frame

(Also called “activation record”)

The stack of frames is located in main memory

Frame for “main” routine

Frame for routine “A”

Frame for routine “B”

56

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Subroutine Calling Stack
Local variables for each routine...

kept in the stack frame

(Also called “activation record”)

The stack of frames is located in main memory

Frame for “main” routine

Frame for routine “A”

Frame for routine “B”

Frame for routine “C”

57

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

The SPARC Idea
Goal:

Fast subroutine calling

Keep the calling stack in registers

But each frame has a different size...

Idea:

Cache part of the frame in registers

Create a stack of frames in the CPU

Avoid main memory most of the time!!!

58

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Routine “A”

Routine “B”

“main” routine

Stack in Main Memory

59

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Routine “A”

Routine “B”

“main” routine Registers for “main”

Registers for “A”

Registers for “B”

Stack in Main Memory Stack in CPU

Each has 16

registers (32-bits each)

60

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

Routine “A”

Routine “B”

Routine“C”

“main” routine Registers for “main”

Registers for “A”

Registers for “B”

Registers for “C”

Stack in Main Memory Stack in CPU

Each has 16

registers (32-bits each)

61

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

In

Out

Local Registers for “A”
A’s frame

Global

Registers

62

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

In

Out

Local

A’s frame

B’s frame
Registers for “B”

Global

Registers

63

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

In

Out

Local

A’s frame

B’s frame

C’s frame

Registers for “C”

Global

Registers

64

CS-322 SPARC-Part 2

© Harry H. Porter, 2006

•!Lots of on-chip registers

•!Each routine gets a new set of 16 registers

Access to stack (i.e., to main memory) is reduced

• Arguments can be passed in registers

(Most of the time)

•!Return addresses are stored in registers (on-chip)

•!Relevant instructions

call

ret

save

restore

...

 call foo

...

foo:

 save ...

 ...

 restore ...

 ret

Typical Usage

These instructions

manipulate the

register stack

