
1

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Due: Tuesday, November 29

Final: Monday, December 5, 10:15-12:05

Modify Checker.java

Catch all remaining errors

Fill in more fields in AST

PDF Files:

Assignment

List of all Error Messages

Project 6:

Semantic Checking (Part 2)

2

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Need to insert “implicit coercions”

x := 1.2 + (i * 5);

 !
x := 1.2 + intToReal(i * 5);

3

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Need to insert “implicit coercions”

x := 1.2 + (i * 5);

 !
x := 1.2 + intToReal(i * 5);

New Class: IntToReal IntToReal
expr

BinaryOp
PLUSop

expr1

expr2

RealConst
 1.2

BinaryOp
STARop

expr1

expr2

p

4

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Need to insert “implicit coercions”

x := 1.2 + (i * 5);

 !
x := 1.2 + intToReal(i * 5);

New Class: IntToReal IntToReal
expr

BinaryOp
PLUSop

expr1

expr2

RealConst
 1.2

BinaryOp
STARop

expr1

expr2

IntToReal
expr

“insertCoercion(p)”

will create this node

and return a ptr to it.

p

5

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

The “mode” field
What code to generate for:

BinaryOp
PLUSop

expr1

expr2

iadd r2,r3,r5

fadd f3,f4,f5
?

6

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

The “mode” field
What code to generate for:

The “mode” field added to...

BinaryOp

UnaryOp

ReadArg

Argument

BinaryOp
PLUSop

expr1

expr2

mode

iadd r2,r3,r5

fadd f3,f4,f5
?

Possible Values:
 1 = INTEGER_MODE

 2 = REAL_MODE

 3 = STRING_MODE

 4 = BOOLEAN_MODE

Add Java Constants...
 static final int

 INTEGER_MODE = 1;

 REAL_MODE = 2;

 STRING_MODE = 3;

 BOOLEAN_MODE = 4;

2

7

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

The “mode” field
What code to generate for:

The “mode” field added to...

BinaryOp

UnaryOp

ReadArg

Argument

BOOLEAN_MODE and STRING_MODE will

only be used for Arguments of WriteStmts.

write (a,b,c,d);

All values will be 32-bit binary values...

How shall we print each value?

iadd r2,r3,r5

fadd f3,f4,f5
?

Possible Values:
 1 = INTEGER_MODE

 2 = REAL_MODE

 3 = STRING_MODE

 4 = BOOLEAN_MODE

Add Java Constants...
 static final int

 INTEGER_MODE = 1;

 REAL_MODE = 2;

 STRING_MODE = 3;

 BOOLEAN_MODE = 4;

BinaryOp
PLUSop

expr1

expr2

mode 2

8

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Type Checking
Goal:

Check to make sure that the types are “correct”
x := y;

Need to check whether the type of x is equal to the type of y.

For the purposes of type checking...

we will need only the name of the type
TypeName

Modify the “check” methods to return a TypeName

checkExpr

checkBinaryOp

...

checkValueOf

checkLValue

...

checkIfStmt

checkTypeDecl

...

Modify methods concerned with expressions
 and L-Values to return the type of
 the expression / L-Value.

Do not modify other methods

9

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Is TypeOf (a) = TypeOf (b) ?

Is TypeOf (a) = TypeOf (c) ?

Type Equivalence
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

var a: T1;

 b: T1;

 c: T2;

10

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Is TypeOf (a) = TypeOf (b) ?

Is TypeOf (a) = TypeOf (c) ?

Type Equivalence
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

var a: T1;

 b: T1;

 c: T2;

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T1

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T2

11

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Type Equivalence
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

var a: T1;

 b: T1;

 c: T2;

Name Equivalence

TypeOf (a) = TypeOf (b)

TypeOf (a) " TypeOf (c)

Structural Equivalence

TypeOf (a) = TypeOf (b)

TypeOf (a) = TypeOf (c)

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T1

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T2

12

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Type Equivalence
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

var a: T1;

 b: T1;

 c: T2;

Name Equivalence

TypeOf (a) = TypeOf (b)

TypeOf (a) " TypeOf (c)

Structural Equivalence

TypeOf (a) = TypeOf (b)

TypeOf (a) = TypeOf (c)

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T1

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T2

PCAT

13

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Many Languages have “Type Aliasing”
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

 T3 is T2;

 T4 is T3;

var a: T1;

 b: T1;

 c: T2;

 d: T4;

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T1

T3 T4

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T2

Is TypeOf (d) = TypeOf (c) ?

Is TypeOf (d) = TypeOf (a) ?

14

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Many Languages have “Type Aliasing”
type T1 is record

 f: integer;

 g: real;

 end;

 T2 is record

 f: integer;

 g: real;

 end;

 T3 is T2;

 T4 is T3;

var a: T1;

 b: T1;

 c: T2;

 d: T4;

Name Equivalence

TypeOf (d) = TypeOf (c)

TypeOf (d) " TypeOf (a)

Structural Equivalence

TypeOf (d) = TypeOf (c)

TypeOf (d) = TypeOf (a)

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T1

T3 T4

RecordType

FieldDecl
“f”

FieldDecl
“g”
null

T2

15

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

How to Deal with “Type Aliasing”
program is

 type T1 is T2;

 T2 is T3;

 T3 is array of record...;

 var x: T1 ...;

 begin ... end; T1

T2

T3

What is the “real” type of x?

ArrayType
elementType

RecordType

T2

T3

16

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

How to Deal with “Type Aliasing”
program is

 type T1 is T2;

 T2 is T3;

 T3 is array of record...;

 var x: T1 ...;

 begin ... end; T1

T2

T3

ArrayType
elementType

T2

T3

Note the distinction between
 •!Names of Types
 •!Underlying “concrete” Types
Types are represented by trees
 array of record
 f: array of int;
 g: array of real;
 end

array

record

array array

What is the “real” type of x?

RecordType

17

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

How to Deal with “Type Aliasing”
program is

 type T1 is T2;

 T2 is T3;

 T3 is array of record...;

 var x: T1 ...;

 begin ... end; T1

T2

T3

ArrayType
elementType

T2

T3

Note the distinction between
 •!Names of Types
 •!Underlying “concrete” Types
Types are represented by trees
 array of record
 f: array of int;
 g: array of real;
 end

array

record

array array

What is the “real” type of x?

RecordType

18

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Concrete Types
program is

 type T1 is T2;

 T2 is T3;

 T3 is array of record...;

 var x: T1 ...;

 begin ... end;

TypeDecl
“T1”id

defn

TypeName
“T2”id

myDef

TypeDecl
“T2”id

defn

TypeName
“T3”id

myDef

TypeDecl
“T3”id

defn

What is the “real” type of x?

RecordType

ArrayType
elementType

19

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Concrete Types
program is

 type T1 is T2;

 T2 is T3;

 T3 is array of record...;

 var x: T1 ...;

 begin ... end;

TypeDecl
“T1”id

defn

concreteType

TypeName
“T2”id

myDef

TypeDecl
“T2”id

defn

concreteType

TypeName
“T3”id

myDef

TypeDecl
“T3”id

defn

concreteType

What is the “real” type of x?

RecordType

ArrayType
elementType

20

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Finding the Underlying, Concrete Type
Goal:

Move through the definitions...

 until we find a true, concrete type.

If we see another name, keep going.

array

record

array array

Start here

21

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Finding the Underlying, Concrete Type
Goal:

Move through the definitions...

 until we find a true, concrete type.

If we see another name, keep going.

array

record

array array

Then here

22

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Finding the Underlying, Concrete Type
Goal:

Move through the definitions...

 until we find a true, concrete type.

If we see another name, keep going.

array

record

array array

Found it

23

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Problem: Cyclic Type Errors
type T1 is T2;

 T2 is T3;

 T3 is T1;

We don’t want to get caught in a cycle

... going around in circles forever!

24

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

25

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

26

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

27

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

28

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

29

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

30

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

31

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

32

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

33

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Cyclic Type Error
type T1 is T2;

 T2 is T3;

 T3 is T1;

Languages that allow type aliasing must detect this error.

Algorithm to find cycles in a graph:

1

2

3

5

4

Pointer “p1” moves through the graph.

Pointer“p2” moves through the graph.

“p2 only moves every other time

Either:

“p1” reaches a concrete type

“p1” reaches “p2”

Finds the cycle in 2N steps.

34

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Checking Type Equality

Example:

program is

 var x: integer;

 procedure foo (...) is

 var y: integer;

 begin

 ...

 x := y;

 ...

 end;

 begin

 ...

 end;

When the types are

integer

real

boolean

Then it is okay to

 just compare the name IDs.

When the types are

integer

real

boolean

Then it is okay to

 just compare the name IDs.

35

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Checking Type Equality

Example:

program is

 type T1 is array of integer;

 var x: T1;

 procedure foo (...) is

 type T1 is array of boolean;

 var y: T1;

 begin

 ...

 x := y;

 ...

 end;

 begin

 ...

 end;

Is this assignment legal?

 Must check whether

 TypeOf(x) = TypeOf(y)

Can’t just look at name of type!

 When a type has a definition,

 Must see if it is the same.

36

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

typeEquals
We often need to compare two types for equality.

Useful Routine: typeEquals (Ast.TypeName t1, t2) returns boolean

This method is passed two types .

Returns TRUE iff t1 and t2 are equal.

If either type name has a definition,

then we must compare definitions

 “Name Equality”: Compare pointers (TypeName.myDef)

 “Structural Equality”: Walk and compare the type trees

If both are undefined, then compare IDs.

Previous type errors during checking?

If either argument is NULL, just return TRUE

Example: procedure foo (x: ...Error...) is begin ... end;

...

foo (7);

if !(typeEquals (__,__)) then

 semanticError (“Type of argument is wrong”);

We want “Name Equality”

37

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Checking Assignment
x := y;

 Check expr and get its type. Call it “fromType.”

 Check l-value and get its type. Call it “toType.”

Useful Routine: assignOK (Ast.TypeName toType, fromType)
returns boolean

This method is passed two types .

Returns TRUE iff it is legal to assign from type “fromType”

to type “toType”.

When is this assignment legal?

TX = TY (Types are equal; use typeEquals)

TX=Real, TY= Integer (We’ll also need a coercion)

TX=NULL or TY= NULL (Due to previous errors)

TX=ArrayType and TY=NilType

TX=RecordType and TY=NilType
Need to use

getCompoundType

here

38

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

getCompoundType

Useful Routine: getCompoundType (TypeName t) returns CompoundType

This method is passed the name of a type. If it has a definition, then

 return a pointer to the ArrayType or RecordType.

TypeName.myDef

If the type has no definition, then return NULL

“integer”, “real”, “boolean”, or an undefined name

Errors? (the parameter may be NULL)

Return NULL

No error message

Example:

if (getCompoundType(t)) instanceof ArrayType)

39

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Adding the “intToReal” Coercion
Example:

r := i*j;

 “fromType” ... integer?

 “toType” ... real?

Useful Routine: needCoercion (TypeName toType, fromType)
 returns boolean

This method is passed two types.

It returns TRUE iff an integer-to-real coercion must be inserted.

This occurs when...

TFROM.id = “integer”

TTO.id = “real”

40

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Adding the “intToReal” Coercion

Useful Routine: insertCoercion (Ast.Expr t) returns Ast.IntToReal

Passed: Returns:

BinaryOp
STARop

expr1

expr2

IntToReal
expr

Some Expression

41

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Example Code

 void checkAssignStmt (Ast.AssignStmt t) {

 toType = checkLValue (t.lValue);

 fromType = checkExpr (t.expr);

 if (assignOK (toType, fromType)) then

 if (needCoercion (toType, fromType)) then

 t.expr = insertCoercion (t.expr);

 endIf

 else

 semanticError (t.expr, "In assignment, type of

 LHS is not compatible with type of RHS");

 endIf

 }

42

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

New Field: myLoop
To generate code for EXIT statement

Will generate a branch to ... where?

Need to know which loop we are exiting from.

WhileStmt

 “Lab16”

stmt

topLabel

bottomLabel “Lab17”

ForStmt
stmts

ExitStmt
myLoop

These fields

 added later

for ...

 ...

 while condition do

 ...

 exit;

 ...

 end;

 ...

end;

43

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

WhileStmt

 “Lab16”

stmt

topLabel

bottomLabel “Lab17”

ForStmt
stmts

ExitStmt
myLoop

These fields

 added later

New Field: myLoop

Later, we’ll generate this code:

Lab16:

xxx

xxx...goto Lab17...

xxx

xxx

xxx

xxx

goto Lab17

xxx

xxx

xxx

goto Lab16

Lab17:

for ...

 ...

 while condition do

 ...

 exit;

 ...

 end;

 ...

end;

Code for

condition

Code for

statements

Code for

 EXIT

Code for top of WHILE

Code for bottom

 of WHILE

44

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

TypeName
“boolean”id

myDef

Is the expression requried?

 Must check!

Is the expression

 “assignment compatible”

 with the return type?

If the procedure is void,

 check for expr == NULL.

New Field: myProc

To generate code for the RETURN statement,

need info about the procedure we are returning from .

procedure foo (...): boolean is ...

 ...

 begin

 ...

 return [expression] ;

 ...

 end;

ProcDecl
“foo”id

formals
retType

body
next

ReturnStmt
expr

myProc

45

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Pass “currentLoop” and “currentProc” down through the check routines.

checkIfStmt (t, currentLoop, currentProc)

checkReturnStmt (t, _, currentProc)

t.myProc = currentProc;

if currentProc == NULL ... Error

checkExitStmt (t, currentLoop, _)

t.myLoop = currentLoop;

if currentLoop == NULL ... Error

checkWhileStmt (t, _, currentProc)

...

checkStmts (t.stmts, t, currentProc)

...

Pointer to innermost LoopStmt,

 WhileStmt, or ForStmt that

 encloses this statement.

(NULL, if none)

Pointer to innermost ProcDecl

 that encloses this statement.

(NULL, if none)

Come methods will not

 need currentLoop and/or

 currentProc.

For those methods,

 no need to pass it down.

46

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

New Field “myFieldDecl”
type MyRec is record

 f: integer;

 g: real;

 end;

var r: MyRec := nil;

...

r := MyRec { g := 1.2; f := 5 };

RecordConstructor
“MyRec”id

fieldInits
myDef

FieldInit

“g”
next

id
expr

myFieldDecl

FieldInit
null
“f”

TypeDecl
“MyRec”id

compoundType

47

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

New Field “myFieldDecl”
type MyRec is record

 f: integer;

 g: real;

 end;

var r: MyRec := nil;

...

r := MyRec { g := 1.2; f := 5 };

RecordConstructor
“MyRec”id

fieldInits
myDef

FieldInit

“g”
next

id
expr

myFieldDecl

FieldInit
null
“f”

FieldDecl
“f”id

typeName
next

offset

FieldDecl
“g”

null

RecordType
fieldDecls

TypeDecl
“MyRec”id

compoundType

48

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

New Field “myFieldDecl”
type MyRec is record

 f: integer;

 g: real;

 end;

var r: MyRec := nil;

...

r := MyRec { g := 1.2; f := 5 };

RecordConstructor
“MyRec”id

fieldInits
myDef

FieldInit

“g”
next

id
expr

myFieldDecl

FieldInit
null
“f”

TypeDecl
“MyRec”id

compoundType

RecordType
fieldDecls

FieldDecl
“f”id

typeName
next

offset

FieldDecl
“g”

null

49

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Testing
•!OK to modify PrettyPrint.java

Add code to print out “mode” or “myProc” or “myLoop”

•!OK to modify Main.java

Comment out the call to printAst

•!OK to use your Lexer and Parser

•!We’ll use the “standard” files in testing.

Make sure you test with standard files before submitting!

50

Project 6 - Semantic Checking Part 2

© Harry H. Porter, 2005

Testing
•!PCAT Source programs without errors...

All output must agree exactly.

•!PCAT Source program with errors...
arrayOK.pcat

arrayErr.pcat

Error messages (stderr) must agree exactly.

AST (stdout) will be ignored.
run

runErr

•!Recommended Approach:

Get checker working with your own tests

THEN run my test suite.

If you pass them all... High confidence of program correctness!

Danger:
 Writing code just to handle

 known example cases!

