
1

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

DAG-Based Optimization
of IR Code in a Basic Block

Look at one Basic Block at a time

<x,v,w> := f(x,b,z)

Construct a DAG from the IR.

Generate code from the DAG.
Generate IR Code

Generate Target Code

x zb

+

*

-*

6

+

Flow

Directed Acyclic Graph (DAG)

2

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Leaves
Represent initial values on entry to the block

•!Variables

•!Constants

Interior Nodes
Labelled by operators

Also:

Each interior node may have an attached list of variable names

3

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example

•!Go through IR instructions.
•!For each operation

construct a new node.
•!Label each node.
•!Re-use existing nodes,

when possible.

Source Code:
 repeat

 prod := prod + A[i] * B[i];

 i := i + 1;

 until i > 20;

IR:
 t1 := 4 * i

 t2 := A[t1]

 t3 := 4 * i

 t4 := B[t4]

 t5 := t2 * t4

 t6 := prod + t5

 prod := t6

 t7 := i + 1

 i := t7

 if i <= 20 goto BB9

Assume each array
element is 4 bytes

4
1

i0

*

!

+

[]

A0

20

[]

B0

*

+

prod0

prod,t6

t5

t4t2

t1,t3 t7,i

4

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Mappings
Functions:

•!Domain
•!Range

Supply an element from the domain...

The function returns an element from the range.

5

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Mappings
Functions:

•!Domain
•!Range

Supply an element from the domain...

The function returns an element from the range.

Definition: A “Mapping”
A data structure that implements a function.
Can be updated.

6

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Mappings
Functions:

•!Domain
•!Range

Supply an element from the domain...

The function returns an element from the range.

Definition: A “Mapping”
A data structure that implements a function.
Can be updated.

Examples:

A mapping from Strings to Integers. (e.g., a phone book)

A mapping from Variables to VarDecls (e.g., a symbol table)

7

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Mappings
Functions:

•!Domain
•!Range

Supply an element from the domain...

The function returns an element from the range.

Definition: A “Mapping”
A data structure that implements a function.
Can be updated.

Examples:

A mapping from Strings to Integers. (e.g., a phone book)

A mapping from Variables to VarDecls (e.g., a symbol table)

Basic Operations:
Lookup (key) " value

AddEntry (key, value)

DeleteEntry (key)

...etc...

8

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Visual Representations

“Porter” 725-4039

“Brown” 725-1234

“Tolmach” 725-3434

“Fant” 725-7654

“Antoy” 725-4050

“Mocas” 725-8899

key value

9

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Visual Representations

“Porter” 725-4039

“Brown” 725-1234

“Tolmach” 725-3434

“Fant” 725-7654

“Antoy” 725-4050

“Mocas” 725-8899

key value

key value

“Porter”

“Brown”

“Tolmach”

725-4039

725-1234

725-3434

•
•
•

•
•
•

10

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Visual Representations

“Porter” 725-4039

“Brown” 725-1234

“Tolmach” 725-3434

“Fant” 725-7654

“Antoy” 725-4050

“Mocas” 725-8899

key value

Type

“x”

“y”

“z”
•
•
•

key value

“Porter”

“Brown”

“Tolmach”

725-4039

725-1234

725-3434

•
•
•

•
•
•

Int 20 1

Real 24 2

Bool 32 2

Offset

Lex-lev
KEY

VALUE

11

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Implementation
A Mapping from small Integers to ...

Use an Array

12

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Implementation
A Mapping from small Integers to ...

Use an Array

If the key is something more complex...

Can still use an array.

•
•
•

1

2

3

4

5

 id: “x”

 type: Int

offset: 20

lexLev: 1

Key

Value

13

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Implementation
A Mapping from small Integers to ...

Use an Array

If the key is something more complex...

Can still use an array.

More complex implementation ideas:

•!Objects, Pointers

•!Linked Lists

•!Arrays

•!Binary Trees

•!Hash Tables

•
•
•

1

2

3

4

5

 id: “x”

 type: Int

offset: 20

lexLev: 1

Key

Value

Basic Operations:
Lookup (key) " value
AddEntry (key, value)
DeleteEntry (key)
...etc...

14

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Building the DAG
Need a mapping

Call it “CurrentNode”

FROM: Variable Names

TO: Nodes in the DAG

CurrentNode (x) points to the node currently labelled with “x”.

•
•
•

“z”

“x”

“t2”

t1,x

t2

15

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Building the DAG
Need a mapping

Call it “CurrentNode”

FROM: Variable Names

TO: Nodes in the DAG

CurrentNode (x) points to the node currently labelled with “x”.

•
•
•

“z”

“x”

“t2”

t1

t2,x

16

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Algorithm to Construct the DAG
Go through the Basic Block (in order)

For each IR in the block...

Add to the growing DAG...
Assume we have a binary IR instruction, such as

x := y # z
If CurrentNode(y) is undefined...

Create a leaf named “y0”.

Set CurrentNode(y) to point to it.

If CurrentNode(z) is undefined...

<same>

Look for a node labelled “#”
with left child = CurrentNode(y)

and right child = CurrentNode(z)

 (If none found, then create one.)

Call this node N.

Delete x from the list of ID’s attached

to CurrentNode(x).

Add x to the list of ID’s attached to N.

Set CurrentNode(x) to point to N.

17

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Algorithm to Construct the DAG

If we have a unary operation, such as
x := -y

If CurrentNode(y) is undefined...

Create a leaf named “y0”.

Set CurrentNode(y) to point to it.

Look for a node labelled “-”

with child = CurrentNode(y)

 (If none found, then create one.)

Call this node N.

Delete x from the list of ID’s attached

to CurrentNode(x).

Add x to the list of ID’s attached to N.

Set CurrentNode(x) to point to N.

18

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Algorithm to Construct the DAG

If we have a copy operation
x := y

If CurrentNode(y) is undefined...

Create a leaf named “y0”.

Set CurrentNode(y) to point to it.

Let N = CurrentNode(y)

Delete x from the list of ID’s attached

to CurrentNode(x).

Add x to the list of ID’s attached to N.

Set CurrentNode(x) to point to N.

19

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example
IR Code:
x := x * 3

y := y + x

x := y - z

y := x

IR Code:

•
•
•

“x”

x0 3

20

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example
IR Code:
x := x * 3

y := y + x

x := y - z

y := x

IR Code:

•
•
•

“x” *

x0 3

x

21

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example
IR Code:
x := x * 3

y := y + x

x := y - z

y := x

IR Code:

•
•
•

“x”

“y”

*

x0 3

x

+

y0

y

22

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example
IR Code:
x := x * 3

y := y + x

x := y - z

y := x

IR Code:

•
•
•

“x”

“y”

“z”

*

x0 3

x

+

y0

y

-

z0

x

23

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example
IR Code:
x := x * 3

y := y + x

x := y - z

y := x

IR Code:

•
•
•

“x”

“y”

“z”

*

x0 3

x,y

+

y0

-

z0y

x

24

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Topological Sort
An ordering of the nodes of the DAG.

 Each node must be listed after all its children.

Idea:
Find a topological order of nodes.
Evaluate a node after all its children have been evaluated.

...and before it is needed by its parents!

Summary:
•!Build DAG
•!Find topological order
•!Regenerate IR instructions.

B

C

A

...B...A...C...

25

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

To Regenerate the IR Code
Look at each node, in topological order...

Some of the labels have been removed from the list.

- t1,x,t3,y,z,t7,w

* +a t2,b

a := ...
b := ...

26

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

To Regenerate the IR Code
Look at each node, in topological order...

Some of the labels have been removed from the list.

Of the remaining labels

see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.

(If no LIVE variables, create a temp variable.)

- t1,x,t3,y,z,t7,w

* +a t2,b

a := ...
b := ...

27

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

To Regenerate the IR Code
Look at each node, in topological order...

Some of the labels have been removed from the list.

Of the remaining labels

see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.

(If no LIVE variables, create a temp variable.)

- t1,x,t3,y,z,t7,w

* +a t2,b

a := ...
b := ...

28

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

To Regenerate the IR Code
Look at each node, in topological order...

Some of the labels have been removed from the list.

Of the remaining labels

see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.

(If no LIVE variables, create a temp variable.)

Generate an IR instruction for the operation.

- t1,x,t3,y,z,t7,w

* +a t2,b

a := ...
b := ...

y := a - b

29

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

To Regenerate the IR Code
Look at each node, in topological order...

Some of the labels have been removed from the list.

Of the remaining labels

see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.

(If no LIVE variables, create a temp variable.)

Generate an IR instruction for the operation.

Generate copies for any additional LIVE variables.

- t1,x,t3,y,z,t7,w

* +a t2,b

a := ...
b := ...

y := a - b

z := y

w := y

30

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Example

4
1

i0

*

!

+

[]

A0

20

[]

B0

*

+

prod0

prod,t6

t5

t4t2

t1,t3 t7,i

Before:
 t1 := 4 * i

 t2 := A[t1]

 t3 := 4 * i

 t4 := B[t4]

 t5 := t2 * t4

 t6 := prod + t5

 prod := t6

 t7 := i + 1

 i := t7

 if i <= 20 goto BB9

Now:
 t1 := 4 * i

 t2 := A[t1]

 t4 := B[t1]

 t5 := t2 * t4

 prod := prod + t5

 i := i + 1

 if i <= 20 goto BB9

Assume all “t” variables
Are DEAD after this BB

31

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Problems
Assignments to Arrays

x := A[i]

A[j] := 43

z := A[i]
A i

[] x,z Will “x” and “z” be set
to the same value?
Possibly not!!!

32

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Problems
Assignments to Arrays

x := A[i]

A[j] := 43

z := A[i]

The Optimized Code:

x := A[i]

z := x

A[j] := 43

A i

[] x,z Will “x” and “z” be set
to the same value?
Possibly not!!!

33

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Problems
Assignments to Arrays

x := A[i]

A[j] := 43

z := A[i]

The Optimized Code:

x := A[i]

z := x

A[j] := 43

Indirect Assignments (through pointers)
x := *p

*q := z

z := *p

A i

[] x,z Will “x” and “z” be set
to the same value?
Possibly not!!!

p

$ x,z

34

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Problems
Assignments to Arrays

x := A[i]

A[j] := 43

z := A[i]

The Optimized Code:

x := A[i]

z := x

A[j] := 43

Indirect Assignments (through pointers)
x := *p

*q := z

z := *p

“Equivalenced” Names
x := y + i

w := 43

z := y + i

A i

[] x,z Will “x” and “z” be set
to the same value?
Possibly not!!!

y i

+ x,z What of “w” is another
Name for “y”???

p

$ x,z

35

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Solution #1
Put things like

A[..] := ...

*p := ...

call ...

into their own blocks.

Solution #2
When building the DAG...

We try to re-use nodes

Look for a node labelled “+” with operands “x” and “y”...

If found, use that node.

Else, create a new node.

Array Accesses -- always do the fetch from the array

Pointer Indirection -- always do the fetch from memory

Also, we need to impose some order constraints.

36

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions
x := A[i]

A[j] := y

z := A[i]

[]

A i

x

37

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions
x := A[i]

A[j] := y

z := A[i]

[]

[]:=

A

j

i

yx

38

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions
x := A[i]

A[j] := y

z := A[i]

[] []

[]:=

z

A

j

i

yx

Create a new node;
Do not re-use
existing node

39

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions
x := A[i]

A[j] := y

z := A[i]

Must follow

Must follow

[] []

[]:=

z

A

j

i

yx

40

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions
x := A[i]

A[j] := y

z := A[i]

Add special edges the DAG to show the order restrictions.

Must follow

Must follow

[] []

[]:=

z

A

j

i

yx

41

CS-322 Optimization, Part 2

© Harry H. Porter, 2006

Order Restrictions

...[...] := ...

... := ...[...]

*p := ...

... x ...

call ...

... x ...

... := ...[...]

...[...] := ...

... x ...

*p := ...

... x ...

call ...

