CS-322 Optimization, Part 2

DAG-Based Optimization
of IR Code in a Basic Block

Directed Acyclic Graph (DAG)

f @

Look at one Basic Block at a time
<x,v,w> := £(x,b,z)

Construct a DAG from the IR.
Generate code from the DAG.
Generate IR Code
Generate Target Code

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Leaves
Represent initial values on entry to the block
* Variables
* Constants

Interior Nodes

Labelled by operators
Also:

Each interior node may have an attached list of variable names

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Example
Source Code:
repeat y
prod := prod + A[i] * B[i];
i::=1i4+1;
until i > 20;
IR:
tl =4 * i
t2 := A[tl]
t3 =4 * i
t4 := B[t4]
ts = t2 * t4
t6 := prod + t5
prod := té6
t7 (=i + 1
i = t7
if i <= 20 goto BB9

Assume each array
element is 4 bytes

* Go through IR instructions.
* For each operation
construct a new node.
* Label each node.
* Re-use existing nodes,
when possible.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Functions:

¢ Domain
* Range

Mappings

Supply an element from the domain...

The function returns an element from the range.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

, Mappings
Functions:
* Domain
* Range

Supply an element from the domain...
The function returns an element from the range.

Definition: A ‘“Mapping”
A data structure that implements a function.
Can be updated.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Mappings

Functions:
* Domain
* Range
Supply an element from the domain...
The function returns an element from the range.

Definition: A ‘“Mapping”
A data structure that implements a function.
Can be updated.

Examples:

A mapping from Strings to Integers. (e.g., a phone book)
A mapping from Variables to VarDecls (e.g., a symbol table)

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Mappings

Functions:
* Domain
* Range
Supply an element from the domain...
The function returns an element from the range.

Definition: A ‘“Mapping”
A data structure that implements a function.
Can be updated.

Examples:
A mapping from Strings to Integers. (e.g., a phone book)

A mapping from Variables to VarDecls (e.g., a symbol table)

Basic Operations:
Lookup (key) — value
AddEntry (key, value)
DeleteEntry (key)
weeCtC...

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Visual Representations

kﬁy Vzllue
r AY 4 A Y
“Porter” 725-4039
“Brown” 725-1234
“Tolmach” | 725-3434
“Fant” 725-7654
“Antoy” 725-4050
“Mocas” 725-8899

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

L] L]
Visual Representations
key value
Ao A
AY 4 N
“Porter” 725-4039
“Brown” 725-1234
“Tolmach” | 725-3434
“Fant” 725-7654
“Antoy” 725-4050
“Mocas” 725-8899
key value 725-4039
Ao A
“pPorter” ‘\r A Y4 /
& | y725-1234
“Brown” €t—————1 9
*—_
“Tolmach” » 725-3434
[] [
[] [
[] []
© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Ld Ld
Visual Representations
VALUE
key value A
P Al N\ —A— (Offset
Type L
w " - ex-lev
=
rown - ’_L\ \L
“Tolmach” | 725-3434
“Fant” 725-7654 L) 20 {1
Ny
“Antoy” 725-4050 — Reai 2; 2
“Mocas” | 725-8899 NP, —_ N -l
[]
[
[
key value 725-4039
AL Al
“Porter” ‘\r N7 /
& | y725-1234
“Brown” ¢t—————L 4
*—
“Tolmach” —0 > 725-3434
[] []
[] []
[] []
© Harry H. Porter, 2006

10

CS-322 Optimization, Part 2

Implementation

A Mapping from small Integers to ...
Use an Array

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

11

Implementation

A Mapping from small Integers to ...
Use an Array

If the key is something more complex...
Can still use an array.

id: | “x”

Int

20

1
2 @
type:

3 offset:
4 .\‘ lexLev:
5 .

[]

[]

} Key

}Value

© Harry H. Porter, 2006

12

CS-322 Optimization, Part 2

Implementation
A Mapping from small Integers to ...
Use an Array

If the key is something more complex...
Can still use an array.

1 -
id: | “x”
2| o—
3 type:| Int
offset:| 20
4 .\‘ lexLev:| 1
| e
More complex implementation ideas:
* Objects, Pointers
* Linked Lists
o Arrays \ Basic Operations:
* Binary Trees k(c)l(:ll;*lup (k‘zi) - Vi;lll‘;
N ntry (key, value
Hash Tables DeleteEntry (k(,ay)

CS-322 Optimization, Part 2

} Key

}Value

© Harry H. Porter, 2006 ..etc... e 1 3

Building the DAG

Need a mapping
Call it ““CurrentNode”
FROM: Variable Names
TO: Nodes in the DAG

t2

w27

,

\ o

CurrentNode (x) points to the node currently labelled with “x”.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Building the DAG

Need a mapping
Call it “CurrentNode”
FROM: Variable Names
TO: Nodes in the DAG

w27

s

/

CurrentNode (x) points to the node currently labelled with “x”.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

15

Algorithm to Construct the DAG
Go through the Basic Block (in order)
For each IR in the block...
Add to the growing DAG...
Assume we have a binary IR instruction, such as
X 1=y ® z
If CurrentNode(y) is undefined...
Create a leaf named “y,”.
Set CurrentNode(y) to point to it.
If CurrentNode(z) is undefined...
<same>
Look for a node labelled “@®”
with left child = CurrentNode (y)
and right child = CurrentNode (z)
(If none found, then create one.)
Call this node N.
Delete x from the list of ID’s attached
to CurrentNode (x) .
Add x to the list of ID’'s attached to N.
Set CurrentNode (x) to point to N.

© Harry H. Porter, 2006

16

CS-322 Optimization, Part 2

Algorithm to Construct the DAG

If we have a unary operation, such as
X 1= -y

If CurrentNode(y) is undefined...
Create a leaf named “vy,”.
Set CurrentNode(y) to point to it.
Look for a node labelled “-"
with child = CurrentNode (y)
(If none found, then create one.)
Call this node N.
Delete x from the list of ID’s attached
to CurrentNode (x) .
Add x to the list of ID’'s attached to N.
Set CurrentNode (x) to point to N.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Algorithm to Construct the DAG

If we have a copy operation
X 1=y

If CurrentNode(y) is undefined...

Create a leaf named “y,”.

Set CurrentNode(y) to point to it.
Let N = CurrentNode (y)
Delete x from the list of ID’s attached

to CurrentNode (x) .

Add x to the list of ID’'s attached to N.
Set CurrentNode (x) to point to N.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Example
IR Code:
—>x = x * 3
y =y +x
X =y -z
y (= x
IR Code:
\\xII .\
© Harry H. Porter, 2006 1 9
CS-322 Optimization, Part 2
Example

IR Code:
—>x = x * 3
y =y + x
X 1=y - z
y = X
IR Code:
\\x// F

© Harry H. Porter, 2006

20

CS-322 Optimization, Part 2

Example
IR Code:
X :=x * 3
—>y =y + Xx
X 1=y - 2
y 1= X
IR Code:
57
\\yll

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

21

Example
IR Code:
X :=x * 3
y =y + x
—_— X =y - 2
y = X
IR Code:
ox" Yo

Al

© Harry H. Porter, 2006

22

CS-322 Optimization, Part 2

Example
IR Code:
X :=x * 3
y =y +x
X 1=y - 2
—>y =X
IR Code:
\\xll
\\YII
\\zII
© Harry H. Porter, 2006 23

CS-322 Optimization, Part 2

Topological Sort
An ordering of the nodes of the DAG.
Each node must be listed after all its children.

©
®» ®

Idea:
Find a topological order of nodes.
Evaluate a node after all its children have been evaluated.
...and before it is needed by its parents!

Summary:
e Build DAG

* Find topological order
* Regenerate IR instructions.

© Harry H. Porter, 2006 24

CS-322 Optimization, Part 2

To Regenerate the IR Code

Look at each node, in topological order...

a
WX t3,y,z,t7,w b
a 2,b

Some of the labels have been removed from the list.

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

25

To Regenerate the IR Code

Look at each node, in topological order...

a
WX t3,y,z,t7,w b
a 2,b

Some of the labels have been removed from the list.

Of the remaining labels

Ignore the DEAD variables; select a live variable.
(If no LIVE variables, create a temp variable.)

see which are LIVE at the end of the Basic Block.

© Harry H. Porter, 2006

26

CS-322 Optimization, Part 2

To Regenerate the IR Code

Look at each node, in topological order...

a
TR,y 24, W b
a 2,b

Some of the labels have been removed from the list.

Of the remaining labels
see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.
(If no LIVE variables, create a temp variable.)

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

27

To Regenerate the IR Code

Look at each node, in topological order...

a
ﬂ’yql\:isy’Z;t\‘Z’W b
Y

a 2,b

Some of the labels have been removed from the list.

Of the remaining labels
see which are LIVE at the end of the Basic Block.

Ignore the DEAD variables; select a live variable.
(If no LIVE variables, create a temp variable.)

Generate an IR instruction for the operation.

© Harry H. Porter, 2006

28

CS-322 Optimization, Part 2

To Regenerate the IR Code
Look at each node, in topological order...
a =
t\lp‘s{t\iﬁiazﬂaw b = ...
y :=a-b
zZ =y
a 2,b W o=y
Some of the labels have been removed from the list.
Of the remaining labels
see which are LIVE at the end of the Basic Block.
Ignore the DEAD variables; select a live variable.
(If no LIVE variables, create a temp variable.)
Generate an IR instruction for the operation.
Generate copies for any additional LIVE variables.
© Harry H. Porter, 2006 2 9
CS-322 Optimization, Part 2
Before: Example
s At A Il “¢” variabl,
£2 := A[tl ssume a variables
£3 := 4 [* 1 Are DEAD after this BB
t4 := B[t4]
t5 = t2 * t4
t6 := prod + t5
prod := té6
t7 (=i + 1
i = t7

if i <= 20 goto BB9Y

Now:
tl :
t2 .
td :
t5
prod
i:=

4 * i

Altl]

B[tl]

t2 * t4

:= prod + t5
i+1

if i <= 20 goto BB9

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

Assignments to Arrays

X = A[i]
A[j] := 43
z := A[i]

Problems

m x,z Will “x” and “z” be set
to the same value?
Possibly not!!!

o

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

31

Assignments to Arrays
x := A[i]
A[j] := 43
z := A[i]

The Optimized Code:

x := A[i]
zZ = X
A[j] := 43

Problems

m x,z Will “x” and “7” be set
to the same value?
Possibly not!!!

o

© Harry H. Porter, 2006

32

CS-322 Optimization, Part 2

Problems

AssiEnments (o Arrays (Q)x> Will “x” and " be set

to the same value?
Possibly not!!!

A[j] := 43

z := A[i]
The Optimized Code: Q
x := A[i]
Zz = X
A[j] := 43

Indirect Assignments (through pointers)
X = *p

®
a =z T
®

X,Z

© Harry H. Porter, 2006 3 3

CS-322 Optimization, Part 2

Problems
Assignments to Arrays

m x,z Will “x” and “7” be set

:[]= 1}_[113 to the same value?
= Possibly not!!!
z := A[i] @
The Optimized Code:
x := A[i]
z = X
A[j] := 43
Indirect Assignments (through pointers) Xz
X = *p @ ’
*q 1= z
z := *p

x =y + i x,z What of “w” is another

w := 43 Name for “y”’?2??
z =y + 1 E
© Harry H. Porter, 2006 3 4

CS-322 Optimization, Part 2

Solution #1
Put things like
Al.]:=...

into their own blocks.

Solution #2
When building the DAG...
We try to re-use nodes

If found, use that node.

Else, create a new node.
Array Accesses -- always do the fetch from the array
Pointer Indirection -- always do the fetch from memory
Also, we need to impose some order constraints.

Look for a node labelled ‘‘+” with operands “x’’ and ““y”...

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

35

Order Restrictions

x := A[1i]
A[j] =y
z := A[i]

© Harry H. Porter, 2006

36

CS-322 Optimization, Part 2

Order Restrictions

x := A[i]
A[j] =y
z := A[i]

© Harry H. Porter, 2006

CS-322 Optimization, Part 2

37

Order Restrictions

x := A[1i]
A[j] =y
z := A[i]

Create a new node;
Do not re-use
existing node

© Harry H. Porter, 2006

33

CS-322 Optimization, Part 2

Order Restrictions

x := A[i]
Must follow

A[j] =y
>Mustfollow

z := A[i]

© Harry H. Porter, 2006 3 9

CS-322 Optimization, Part 2

Order Restrictions

x := A[1i]
>Mustfollow
A[j] =y
>Mustfollow
z := A[i]

Add special edges the DAG to show the order restrictions.

© Harry H. Porter, 2006 40

CS-322 Optimization, Part 2

Order Restrictions

Y O T *p 1= ... call ..
v v v
o i= an[e] X ... X ...
T CX ... x
\/ v
wele] 1= L. *p 1= ... call ..

© Harry H. Porter, 2006

