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•!Must be efficient

•!Looks at every input char

•!Textbook, Chapter 2

Lexical AnalysisLexical Analysis

Source Code

Parser

Lexical Analyzer

tokengetToken()
String Table/

Symbol Table

Management
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Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...
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Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...

How to describe/specify tokens?
Formal:

Regular Expressions
Letter ( Letter | Digit )*

Informal:
“// through end of line”
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Tokens
Token Type

Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:

... if x == -12.30 then ...

How to describe/specify tokens?
Formal:

Regular Expressions
Letter ( Letter | Digit )*

Informal:
“// through end of line”

Tokens will appear as TERMINALS in the grammar.

Stmt ! while Expr do StmtList endWhile
! ID “=” Expr “;”
! ...
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Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”>  <INT,1>  <COMMA>  <INT,23>  <SEMICOLON>

No lexical error, but problems during parsing!
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Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”>  <INT,1>  <COMMA>  <INT,23>  <SEMICOLON>

No lexical error, but problems during parsing!

Errors caught by lexer:

•!EOF within a String / missing ”

•!Invalid ASCII character in file

•!String / ID exceeds maximum length

•!Numerical overflow

    etc...
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Lexical Errors
Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;

retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”>  <INT,1>  <COMMA>  <INT,23>  <SEMICOLON>

No lexical error, but problems during parsing!

Errors caught by lexer:

•!EOF within a String / missing ”

•!Invalid ASCII character in file

•!String / ID exceeds maximum length

•!Numerical overflow

    etc...

Lexer must keep going!

Always return a valid token.

Skip characters, if necessary.

May confuse the parser

The parser will detect syntax errors and get straightened out (hopefully!)
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Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient
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Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

  ... 1 2 3 4 ? ...   

Start           Convert to FLOAT or INT?
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Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

Token could overlap / span buffer boundaries.

" need 2 buffers

Code:
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...

  ... 1 2 3 4 ? ...   

Start           Convert to FLOAT or INT?
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Managing Input Buffers
Option 1: Read one char from OS at a time.

Option 2: Read N characters per system call

e.g., N = 4096

Manage input buffers in Lexer

More efficient

Often, we need to look ahead

Token could overlap / span buffer boundaries.

" need 2 buffers

Code:
if (ptr at end of buffer1) or (ptr at end of buffer2) then ...

Technique: Use “Sentinels” to reduce testing

Choose some character that occurs rarely in most inputs

 ‘\0’

  ... 1 2 3 4 ? ...   

Start           Convert to FLOAT or INT?
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Goal: Advance forward pointer to next character

...and reload buffer if necessary.

i f  ( x < 1 2 \0 3

sentinel N bytesN bytes

lexBegin forward

4 )  t h e n \0

sentinel
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Goal: Advance forward pointer to next character

...and reload buffer if necessary.

Code :
forward++;

if *forward == ‘\0’ then

  if forward at end of buffer #1 then

    Read next N bytes into buffer #2;

    forward = address of first char of buffer #2;

  elseIf forward at end of buffer #2 then

    Read next N bytes into buffer #1;

    forward = address of first char of buffer #1;

  else

    // do nothing; a real \0 occurs in the input

  endIf

endIf

i f  ( x < 1 2 \0 3

sentinel N bytesN bytes

lexBegin forward

One fast test

   ...which usually fails

4 )  t h e n \0

sentinel
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“Alphabet” (#)

A set of symbols (“characters”)

     Examples: # = { a, b, c, d }

# = ASCII character set
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“Alphabet” (#)

A set of symbols (“characters”)

     Examples: # = { a, b, c, d }

# = ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc        Length of s = |s|
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“Alphabet” (#)

A set of symbols (“characters”)

     Examples: # = { a, b, c, d }

# = ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc        Length of s = |s|

“Empty String” ($, “epsilon”)

It is a string

|$| = 0
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“Alphabet” (#)

A set of symbols (“characters”)

     Examples: # = { a, b, c, d }

# = ASCII character set

“String” (or “Sentence”)
Sequence of symbols

Finite in length

Example: abbadc        Length of s = |s|

“Empty String” ($, “epsilon”)

It is a string

|$| = 0

“Language”
A set of strings

    Examples: L1 = { a, baa, bccb }

L2 = { }

L3 = { $ }

L4 = { $, ab, abab, ababab, abababab,... }

L5 = { s | s can be interpreted as an English sentence

                        making a true statement about mathematics}

Each string is finite in length,

    but the set may have an infinite

        number of elements.
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“Prefix”  ...of string s

          s = hello         Prefixes: he

hello

$
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“Prefix”  ...of string s

          s = hello         Prefixes: he

hello

$

“Suffix”  ...of string s

          s = hello           Suffixes: llo

$

hello
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“Prefix”  ...of string s

          s = hello         Prefixes: he

hello

$

“Suffix”  ...of string s

          s = hello           Suffixes: llo

$

hello

“Substring”  ...of string s

 Remove a prefix and a suffix

          s = hello       Substrings: ell

hello

$
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“Prefix”  ...of string s

          s = hello         Prefixes: he

hello

$

“Suffix”  ...of string s

          s = hello           Suffixes: llo

$

hello

“Substring”  ...of string s

 Remove a prefix and a suffix

          s = hello       Substrings: ell

hello

$

“Proper”  prefix / suffix / substring ... of s

          % s   and   % $
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“Prefix”  ...of string s

          s = hello         Prefixes: he

hello

$

“Suffix”  ...of string s

          s = hello           Suffixes: llo

$

hello

“Substring”  ...of string s

 Remove a prefix and a suffix

          s = hello       Substrings: ell

hello

$

“Proper”  prefix / suffix / substring ... of s

          % s   and   % $

“Subsequence”  ...of string s,

     s = compilers Subsequences: opilr

cors

compilers

$
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“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

Other notations: x || y

x + y

x ++ y

x · y
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“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x  =  x$ =  x

Multiplication  &  Concatenation
Exponentiation  &  ?

Other notations: x || y

x + y

x ++ y

x · y
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“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x  =  x$ =  x

Multiplication  &  Concatenation
Exponentiation  &  ?

Define s0 = $
sN = sN-1s

Example x = ab
x0 = $
x1 = x = ab
x2 = xx = abab
x3 = xxx = ababab
...etc...

Other notations: x || y

x + y

x ++ y

x · y
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“Concatenation”
Strings: x, y
Concatenation: xy
Example:

x = abb
y = cdc
xy = abbcdc
yx = cdcabb

What is the “identity” for concatenation?
$ x  =  x$ =  x

Multiplication  &  Concatenation
Exponentiation  &  ?

Define s0 = $
sN = sN-1s

Example x = ab
x0 = $
x1 = x = ab
x2 = xx = abab
x3 = xxx = ababab
...etc...
x* = x! = abababababab...

Other notations: x || y

x + y

x ++ y

x · y

Infinite sequence of symbols!
      Technically, this is not a “string”
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“Language”
A set of strings

L = { ... }
M = { ... }

Generally, these are infinite sets.
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“Language”
A set of strings

L = { ... }
M = { ... }

“Union” of two languages
L ' M = { s | s is in L or is in M }

Example:
L = { a, ab }
M = { c, dd }
L ' M = { a, ab, c, dd }

Generally, these are infinite sets.
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“Language”
A set of strings

L = { ... }
M = { ... }

“Union” of two languages
L ' M = { s | s is in L or is in M }

Example:
L = { a, ab }
M = { c, dd }
L ' M = { a, ab, c, dd }

“Concatenation” of two languages
L M = { st | s ( L and t ( M }

Example:
L = { a, ab }
M = { c, dd }
L M = { ac, add, abc, abdd }

Generally, these are infinite sets.
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Repeated Concatenation
Let: L = { a, bc }

Example: L0  =  { $ }

L1  =  L = { a, bc }

L2  =  LL = { aa, abc, bca, bcbc }

L3  =  LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN  =  LN-1L  =  LLN-1
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Kleene Closure
Let: L = { a, bc }

Example: L0  =  { $ }

L1  =  L = { a, bc }

L2  =  LL = { aa, abc, bca, bcbc }

L3  =  LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN  =  LN-1L  =  LLN-1

The “Kleene Closure” of a language:

             
!

L*  =   '  Li   =  L0   '   L1   '   L2   '   L3   '   ...
            i = 0

Example:

L* =  {  $, a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

 !

#  ai   =  a0   '   a1   '   a2   '   ...
i = 0 

L3L2L1L0
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Positive Closure
Let: L = { a, bc }

Example: L0  =  { $ }

L1  =  L = { a, bc }

L2  =  LL = { aa, abc, bca, bcbc }

L3  =  LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN  =  LN-1L  =  LLN-1

The “Positive Closure” of a language:

             
!

L+  =   '  Li   =               L1   '   L2   '   L3   '   ...
            i = 1

Example:

L+ =  {     a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

L3L2L1

 !

#  ai   =  a0   '   a1   '   a2   '   ...
i = 0 
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Positive Closure
Let: L = { a, bc }

Example: L0  =  { $ }

L1  =  L = { a, bc }

L2  =  LL = { aa, abc, bca, bcbc }

L3  =  LLL = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc }

...etc...

LN  =  LN-1L  =  LLN-1

The “Positive Closure” of a language:

             
!

L+  =   '  Li   =               L1   '   L2   '   L3   '   ...
            i = 1

Example:

L+ =  {     a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... }

L3L2L1

 !

#  ai   =  a0   '   a1   '   a2   '   ...
i = 0 

Note that $ is not included

UNLESS it is in L to start with
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =

“The set of strings with one or more digits”

L  '  D  =
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =

“The set of strings with one or more digits”

L  '  D  =

“The set of alphanumeric characters”

 {  a, b, c, ..., z, 0, 1, 2, ..., 9 }

( L  '  D )* =
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =

“The set of strings with one or more digits”

L  '  D  =

“The set of alphanumeric characters”

 {  a, b, c, ..., z, 0, 1, 2, ..., 9 }

( L  '  D )* =

“Sequences of zero or more letters and digits”

L   ( L  '  D )*    =
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =

“The set of strings with one or more digits”

L  '  D  =

“The set of alphanumeric characters”

 {  a, b, c, ..., z, 0, 1, 2, ..., 9 }

( L  '  D )* =

“Sequences of zero or more letters and digits”

L ( ( L  '  D )* )  =
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Examples

Let: L = {  a, b, c, ..., z }

D = {  0, 1, 2, ..., 9 }

D +  =

“The set of strings with one or more digits”

L  '  D  =

“The set of alphanumeric characters”

 {  a, b, c, ..., z, 0, 1, 2, ..., 9 }

( L  '  D )* =

“Sequences of zero or more letters and digits”

L ( ( L  '  D )* )  =

“Set of strings that start with a letter, followed by zero

or more letters and and digits.”
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Regular Expressions
Assume the alphabet is given...               e.g.,   # = { a, b, c, ... z }

Example: a ( b | c ) d* e

A regular expression describes a language.

Notation:

r = regular expression

L(r) = the corresponding language

Example:

           r   =   a ( b | c ) d* e

           L(r) = { abe,

abde,

abdde,

abddde,

...,

ace,

acde,

acdde,

acddde,

...}

Meta Symbols:
   ( )

   |

   *

   $
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* =
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c =
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c  =  a (b c)  =  a b c

 (a | b) | c  =  a | (b | c)  =  a | b | c
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c  =  a (b c)  =  a b c

 (a | b) | c  =  a | (b | c)  =  a | b | c

Example:

b d | e f * | g a  =
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c  =  a (b c)  =  a b c

 (a | b) | c  =  a | (b | c)  =  a | b | c

Example:

b d | e f * | g a  =    b d  |  e (f *)   |  g a
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c  =  a (b c)  =  a b c

 (a | b) | c  =  a | (b | c)  =  a | b | c

Example:

b d | e f * | g a  =   (b d) | (e (f *))  | (g a)
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How to “Parse” Regular Expressions

* has highest precedence.

Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:

a b* = a (b*)

If you want (a b)* you must use parentheses.

a | b c = a | (b c)

If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(a b) c  =  a (b c)  =  a b c

 (a | b) | c  =  a | (b | c)  =  a | b | c

Example:

b d | e f * | g a  =  ((b d) | (e (f *))) | (g a)

Fully parenthesized
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Definition: Regular Expressions
(Over alphabet #)

•! $ is a regular expression.

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a)  =  { a }

•! If R and S are regular expressions, then R|S is a regular expression.

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a)  =  { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S)  =  L(R)  '  L(S)

•! If R and S are regular expressions, then RS is a regular expression.

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a)  =  { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S)  =  L(R)  '  L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS)  =  L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a)  =  { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S)  =  L(R)  '  L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS)  =  L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

L(R*)  =  (L(R))*

•! If R is a regular expression, then (R) is a regular expression.
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Definition: Regular Expressions
(Over alphabet #)

And, given a regular expression R, what is L(R) ?

•! $ is a regular expression.

L($)  =  { $ }

•  If a is a symbol (i.e., if a(#), then a is a regular expression.

L(a)  =  { a }

•! If R and S are regular expressions, then R|S is a regular expression.

L(R|S)  =  L(R)  '  L(S)

•! If R and S are regular expressions, then RS is a regular expression.

L(RS)  =  L(R) L(S)

•! If R is a regular expression, then R* is a regular expression.

L(R*)  =  (L(R))*

•! If R is a regular expression, then (R) is a regular expression.

L((R))  =  L(R)
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Regular Languages
Definition:  “Regular Language” (or “Regular Set”)

   ... A language that can be described by a regular expression.

•!Any finite language (i.e., finite set of strings) is a regular language.

•!Regular languages are (usually) infinite.

•!Regular languages are, in some sense, simple languages.

Regular Langauges  )  Context-Free Languages

Examples:

 a | b | cab {a, b, cab}

  b* {$, b, bb, bbb, ...}

 a | b* {a, $, b, bb, bbb, ...}

  (a | b)* {$, a, b, aa, ab, ba, bb, aaa, ...}

 “Set of all strings of a’s and b’s, including $.”
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        Notation:

Equality Equivalence
= =

==
*
+
&

Equality v. Equivalence

Are these regular expressions equal?

R   =   a a* (b | c)

S   =   a* a (c | b)

... No!

Yet, they describe the same language.

L(R) = L(S)

“Equivalence” of regular expressions

If L(R) = L(S) then we say R  *  S

“R is equivalent to S”

“Syntactic” equality versus “deeper” equality...

Algebra:

Does...   x(3+b) = 3x+bx    ?

From now on, we’ll just say R = S to mean R * S
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Algebraic Laws of Regular Expressions
Let R, S, T be regular expressions...

| is commutative

R | S  =  S | R

| is associative

R | (S | T)    =    (R | S) | T    =    R | S | T

Concatenation is associative

R (S T)    =    (R S) T    =    R S T

Concatenation distributes over |

R (S | T)  =  RS | RT

(R | S) T  =  RT | ST

$ is the identity for concatenation

$ R  =  R $  =  R

* is idempotent

(R*)*  =  R*

Relation between * and $

R*  =  (R | $)*

Preferred

Preferred
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Regular Definitions

Letter =   a | b | c | ... | z

Digit =   0 | 1 | 2 | ... | 9

ID =  Letter ( Letter | Digit )*
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Regular Definitions

Letter =   a | b | c | ... | z

Digit =   0 | 1 | 2 | ... | 9

ID =  Letter ( Letter | Digit )*

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.

    Letter ( Letter | Digit )*

=  {“Letter”, “LetterLetter”, “LetterDigit”, ... }
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Regular Definitions

Letter =   a | b | c | ... | z

Digit =   0 | 1 | 2 | ... | 9

ID =  Letter ( Letter | Digit )*

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.

    Letter ( Letter | Digit )*

=  {“Letter”, “LetterLetter”, “LetterDigit”, ... }

Each definition may only use names previously defined.

" No recursion

Regular Sets = no recursion

CFG = recursion
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Addition Notation / Shorthand

One-or-more:   +

X+ = X(X*)

Digit+  =    Digit   Digit*  =  Digits
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Addition Notation / Shorthand

One-or-more:   +

X+ = X(X*)

Digit+  =    Digit   Digit*  =  Digits

Optional (zero-or-one):   ?

X? = (X | $)

Num  =    Digit+ ( .  Digit+  )?



67

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Addition Notation / Shorthand

One-or-more:   +

X+ = X(X*)

Digit+  =    Digit   Digit*  =  Digits

Optional (zero-or-one):   ?

X? = (X | $)

Num  =    Digit+ ( .  Digit+  )?

Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.

Digit  =    [0-9]

Letter =    [a-zA-Z] =   [A-Za-z]
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Addition Notation / Shorthand

One-or-more:   +

X+ = X(X*)

Digit+  =    Digit   Digit*  =  Digits

Optional (zero-or-one):   ?

X? = (X | $)

Num  =    Digit+ ( .  Digit+  )?

Character Classes: [FirstChar-LastChar]
Assumption: The underlying alphabet is known ...and is ordered.

Digit  =    [0-9]

Letter =    [a-zA-Z] =   [A-Za-z]

Variations:

 Zero-or-more: ab*c =   a{b}c =   a{b}*c

 One-or-more: ab+c =   a{b}+c

 Optional: ab?c =   a[b]c

What does
ab...bc

mean?



69

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Many sets of strings are not regular.

...no regular expression for them!
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Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!
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Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!

Strings with repeated substrings

{ XcX  |  X is a string of a’s and b’s }

 a b b b a b c a b b b a b

CFG is not even powerful enough.
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Many sets of strings are not regular.

...no regular expression for them!

The set of all strings in which parentheses are balanced.

(()(()))

Must use a CFG!

Strings with repeated substrings

{ XcX  |  X is a string of a’s and b’s }

 a b b b a b c a b b b a b

CFG is not even powerful enough.

The Problem?

In order to recognize a string,

these languages require memory!
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Problem:  How to describe tokens?

Solution: Regular Expressions

Problem:  How to recognize tokens?

Approaches:

•  Hand-coded routines

Examples: E-Language, PCAT-Lexer

•  Finite State Automata

•  Scanner Generators (Java: JLex, C: Lex)

Scanner Generators

Input: Sequence of regular definitions

Output: A lexer (e.g., a program in Java or “C”)

Approach:

•!Read in regular expressions

•!Convert into a Finite State Automaton (FSA)

•!Optimize the FSA

•!Represent the FSA with tables / arrays

•!Generate a table-driven lexer (Combine “canned” code with tables.)
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Finite State Automata (FSAs)
(“Finite State Machines”,“Finite Automata”, “FA”)

• One start state

• Many final states

• Each state is labeled with a state name

• Directed edges, labeled with symbols

• Deterministic (DFA)

No $-edges

Each outgoing edge has different symbol

• Non-deterministic (NFA)

0 1 2
a

a

b

b

$
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Finite State Automata (FSAs)

Formalism:  < S, #, ,, S0, SF >

S = Set of states
S = {s0, s1, ..., sN}

# = Input Alphabet
# = ASCII Characters

, = Transition Function
S - # ! States (deterministic)
S - # ! Sets of States (non-deterministic)

s0 = Start State
“Initial state”
s0 ( S

SF = Set of final states
“accepting states”
SF . S

0 1 2
a

a

b

b

$
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Finite State Automata (FSAs)

Formalism:  < S, #, ,, S0, SF >

S = Set of states
S = {s0, s1, ..., sN}

# = Input Alphabet
# = ASCII Characters

, = Transition Function
S - # ! States (deterministic)
S - # ! Sets of States (non-deterministic)

s0 = Start State
“Initial state”
s0 ( S

SF = Set of final states
“accepting states”
SF . S

0 1 2
a

a

b

b

$
Example:

S  = {0, 1, 2}
#  = {a, b}
s0  = 0
SF = { 2 }
,   =

$ba

{}{1,2}{1}1

{}{}{}2

{2}{}{1}0

States

Input Symbols
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Finite State Automata (FSAs)

A string is “accepted”...
(a string is “recognized”...)

by a FSA if there is a path
    from Start to any accepting state
        where edge labels match the string.

Example:
This FSA accepts:

$

aaab
abbb

0 1 2
a

a

b

b

$
Example:

S  = {0, 1, 2}
#  = {a, b}
s0  = 0
SF = { 2 }
,   =

$ba

{}{1,2}{1}1

{}{}{}2

{2}{}{1}0

States

Input Symbols
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Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

        , =

1

2

4

a

a
b

b

3

a
a

---43

ba

432

---24

321

States

Input Symbols



79

Lexical Analysis - Part 1

© Harry H. Porter, 2005

Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

        , =

1

2

4

a

a
b

b

3

a
a

524

543

ba

432

555

321

States

Input Symbols

5

b

b

a,b“Error State”
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Deterministic Finite Automata (DFAs)
No $-moves

The transition function returns a single state

,: S - # ! S

function Move (s:State, a:Symbol) returns State

        , =

1

2

4

a

a
b

b

3

a
a

---43

ba

432

---24

321

States

Input Symbols
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Non-Deterministic Finite Automata (NFAs)
Allow $-moves

The transition function returns a set of states

,: S - # ! Powerset(S)

,: S - # ! P (S)
function Move (s:State, a:Symbol) returns set of State

        , =

1

2

4

a

a
b

b

3

$ a

a

a
{}{}{4,2}3

$ba

{1}{4}{3}2

{}{}{2}4

{}{3}{2}1

States

Input Symbols
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.

•!DFAs, NFAs, and Regular Expressions all have the same “power”.

They describe “Regular Sets” (“Regular Languages”)
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Theoretical Results

•!The set of strings recognized by an NFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an NFA.

•!The set of strings recognized by an DFA

can be described by a Regular Expression.

•!The set of strings described by a Regular Expression

can be recognized by an DFA.

•!DFAs, NFAs, and Regular Expressions all have the same “power”.

They describe “Regular Sets” (“Regular Languages”)

•!The DFA may have a lot more states than the NFA.

(May have exponentially as many states, but...)
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What is the regular expression?

0 1 2
a

a

b

b

$
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b

a
?

b
?

a

b

?

?
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a b

a

b

?

?

ab
?
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a

a

b

b
?

a

b
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What is the regular expression?

 $  | a (a|b)* b

What is an equivalent DFA?

0 1 2
a

a

b

b

$

0 1 2
a

a

b

3

b

a,b
“Error State”

a

b


