Lexical Analysis - Part 1

Lexical Analysis

| Source Code

A/

Lexical Analyzer

getToken() token

A/
y

Parser

String Table/
Symbol Table
Management

¢ Must be efficient /]\ \l/

* Looks at every input char
* Textbook, Chapter 2
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Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:
. if x == =12.30 then ...
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Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:
. if x == =12 .30 then ...

How to describel/specify tokens?
Formal:
Regular Expressions
Letter ( Letter | Digit )*
Informal:
“// through end of line”
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Tokens

Token Type
Examples: ID, NUM, IF, EQUALS, ...

Lexeme
The characters actually matched.
Example:
. if x == =12.30 then ...

How to describe/specify tokens?
Formal:
Regular Expressions
Letter ( Letter | Digit )*
Informal:
“// through end of line”

Tokens will appear as TERMINALS in the grammar.
Stmt — while Expr do StmtList endWhile

— ID “=” EXpI‘ “;”

>
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Lexical Errors

Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;
retunn 1,23;
... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT, 23>

No lexical error, but problems during parsing!

<SEMICOLON>
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Lexical Errors

Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;
retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT,23>

No lexical error, but problems during parsing!

Errors caught by lexer:
* EOF within a String / missing ”’
e Invalid ASCII character in file
e String / ID exceeds maximum length
e Numerical overflow
etc...

<SEMICOLON>
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Lexical Errors

Most errors tend to be “typos”

Not noticed by the programmer
return 1.23;
retunn 1,23;

... Still results in sequence of legal tokens
<ID,”retunn”> <INT,1> <COMMA> <INT,23>

No lexical error, but problems during parsing!

Errors caught by lexer:
* EOF within a String / missing ”
e Invalid ASCII character in file
* String / ID exceeds maximum length
¢ Numerical overflow
etc...

Lexer must keep going!
Always return a valid token.
Skip characters, if necessary.
May confuse the parser

<SEMICOLON>

The parser will detect syntax errors and get straightened out (hopefully!)
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Managing Input Buffers

Option I: Read one char from OS at a time.
Option 2: Read N characters per system call
e.g., N =4096
Manage input buffers in Lexer
More efficient
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Managing Input Buffers
Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call
e.g., N=4096
Manage input buffers in Lexer
More efficient
Often, we need to look ahead

... |1[2[3]4]?] ...

Start Convert to FLOAT or INT?
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Managing Input Buffers

Option I: Read one char from OS at a time.
Option 2: Read N characters per system call
e.g., N =4096
Manage input buffers in Lexer
More efficient
Often, we need to look ahead

... |1]2[3]4]?] ...

Start Convert to FLOAT or INT?

Token could overlap / span buffer boundaries.
=> need 2 buffers

Code:

if (ptr at end of bufferl) or (ptr at end of buffer2) then ...
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Managing Input Buffers
Option 1: Read one char from OS at a time.
Option 2: Read N characters per system call
e.g., N=4096
Manage input buffers in Lexer
More efficient
Often, we need to look ahead

... |1[2[3]4]?] ...

Start Convert to FLOAT or INT?

Token could overlap / span buffer boundaries.
=> need 2 buffers

Code:

if (ptr at end of bufferl) or (ptr at end of buffer2) then ...

Technique: Use “Sentinels” to reduce testing
Choose some character that occurs rarely in most inputs
\ \0 ’

© Harry H. Porter, 2005
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lexBegin forward
[ale] [¢[x[<faf2]vof3]afr ] [eln[eln]\of
= — == ~ =
N bytes sentinel N bytes

sentinel
Goal: Advance forward pointer to next character

...and reload buffer if necessary.

© Harry H. Porter, 2005
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lexBegin forward
[ile] [(I=[<faf2]vof3fafr] [t[n]e[n]\o]
— A _
e 0 ~— 0
ytes sentinel N bytes
) sentinel
Goal: Advance forward pointer to next character
...and reload buffer if necessary.
One fast test
Code : ...which usually fails
forward++;
if *forward == ‘\0’" then
if forward at end of buffer #1 then
Read next N bytes into buffer #2;
forward = address of first char of buffer #2;
elself forward at end of buffer #2 then
Read next N bytes into buffer #1;
forward = address of first char of buffer #1;
else
// do nothing; a real \0 occurs in the input
endIf
endIf
© Harry H. Porter, 2005 13
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“Alphabet” (Z)
A set of symbols (“characters”)
Examples: X={a, b, ¢, d}
2 = ASCII character set
[ L J
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“Alphabet” ()
A set of symbols (“characters”)
Examples: X={a, b, ¢, d}
3 = ASCII character set

[
“String” (or ‘‘Sentence’’)

Sequence of symbols
Finite in length
Example: abbadc Length of s = sl

© Harry H. Porter, 2005
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“Alphabet” (Z)
A set of symbols (“characters”)
Examples: X={a, b, ¢, d}
2 = ASCII character set

@
“String” (or ‘‘Sentence’)
Sequence of symbols
Finite in length

o Example: abbadc Length of s = Isl

“Empty String” (e, “epsilon”’)
It is a string
lel=0
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“Alphabet” ()
A set of symbols (“characters”)
Examples: X={a, b, ¢, d}

> = ASCII character set
@ L

“String” (or ‘‘Sentence’’)
Sequence of symbols
Finite in length

o Example: abbadc Length of s = sl o

“Empty String” (g, “epsilon’’)
It is a string

lel=0
[
“Language” Each string is finite in length,
A set of strings but the set may have an infinite
Examples: L,={a, baa, bccb } number of elements.
Ly={}
L3 ={¢e}

Ly={¢, ab, abab, ababab, abababab,... }
L; ={ s s can be interpreted as an English sentence
making a true statement about mathematics}

© Harry H. Porter, 2005
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“Prefix” ...of string s
S = hello Prefixes: he
hello

© Harry H. Porter, 2005
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“Prefix” ...of string s

S = hello Prefixes: he
hello
€

@
“Suffix” ...of string s

S = hello Suffixes: 1lo
€
hello

@
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“Prefix” ...of string s

S = hello Prefixes: he
hello
€

@
“Suffix” ...of string s

S = hello Suffixes: 1lo
€
hello

@
“Substring” ...of string s
Remove a prefix and a suffix

S = hello Substrings: ell
hello
€

@
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“Prefix” ...of string s

S = hello Prefixes: he
hello
€

@
“Suffix” ...of string s

S = hello Suffixes: 1lo
€
hello

@
“Substring” ...of string s
Remove a prefix and a suffix

S = hello Substrings: ell
hello
€

@
“Proper” prefix / suffix / substring ... of s
=s and =¢
@
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“Prefix” ...of string s

S = hello Prefixes: he
hello
€

@
“Suffix” ...of string s

S = hello Suffixes: 1lo
€
hello

@
“Substring” ...of string s
Remove a prefix and a suffix

S = hello Substrings: ell
hello
€

[ 4
“Proper” prefix / suffix / substring ... of s
=8 and #¢
@
“Subsequence” ...of string s,

S = compilers Subsequences: opilr
cors
compilers
€

© Harry H. Porter, 2005 22
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“Concatenation”
Strings: X, y Other notations: x|y
Concatenation: Xy X+y
Example: X+t+y
X = abb X'y
y =cdc
Xy = abbecdc
YX = cdcabb

© Harry H. Porter, 2005
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“Concatenation”
Strings: X, y Other notations: x|y
Concatenation: Xy X+y
Example: X++y
X = abb X'y
y =cdc
Xy = abbecdc
YX = cdcabb

What is the “identity” for concatenation?
EX = XE= X

Multiplication < Concatenation

Exponentiation < ?

© Harry H. Porter, 2005
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“Concatenation”
Strings: x, y Other notations: x|y
Concatenation: Xy X+y
Example: X+t+y
X = abb X'y
y =cdc
Xy = abbcdc
yX = cdcabb

What is the “identity” for concatenation?
€EX = XE= X

Multiplication < Concatenation

Exponentiation < ?

Define s%=¢
N_

Example

...etc...

© Harry H. Porter, 2005
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“Concatenation”
Strings: X, y Other notations: x|y
Concatenation: Xy X+y
Example: X++y
X = abb X'y
y =cdc
Xy = abbcdc
YX = cdcabb

What is the “identity” for concatenation?
EX = XE= X

Multiplication < Concatenation

Exponentiation < ?

Define s%=¢

N = gN-1

N

Example x = ab
xV=¢
xl=x=ab
x2 = XX = abab
x3 = XXX = ababab
..etc...
x* = Xx® = abababababab.”. .

Infinite sequence of symbols!
Technically, this is not a “string”

© Harry H. Porter, 2005
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“Language”
A /@lerally, these are infinite sets.
L={..}

M={..}

© Harry H. Porter, 2005
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“Language”
A set of strings /Eenerally, these are infinite sets.
L={..}

M={..}
@ L
“Union” of two languages
LUM={slsisinLorisinM }

Example:
L={a,ab}
M={c,dd}
LUM={a, ab,c,dd }

© Harry H. Porter, 2005
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“Language”
A /@lerally, these are infinite sets.
L={..}

M={..}
@ L ]
“Union” of two languages
LUM={slsisinLorisinM }

Example:
L={a,ab}
M={c,ad}
LUM={a, ab,c,dd}
@ L
“Concatenation” of two languages
LM={stlsELandtEM }

Example:
L={a,ab}
M={c,dad}

LM = { ac, add, abc, abdd }

© Harry H. Porter, 2005 29
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Repeated Concatenation
Let: L={a,bc}

Example:1.9 = {¢}
1 =L={abc}
L2 = LL ={ aa, abc, bea, bebe }
L3 = LLL = { aaa, aabc, abca, abcbc, becaa, beabe, bebea, bebebe }
...etc...
LN = LN, = LIN1

© Harry H. Porter, 2005 30
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Kleene Closure

Let: L={a,bc}
Example:19 = {e}
L' =L={abc}
L2 = LL ={ aa, abc, bea, bebe }

L3 = LLL = { aaa, aabc, abca, abcbe, beaa, beabe, bebea, bebebe }
...etc...
LN = LN, = LN

The “Kleene Closure” of a language:
-

w | —_—
= U= urturrui?u
i=0

Example: .
L = { &, a,bc, aa, abc, bca, bebe, aaa, aabe, abea, abebe, ... }
| — R
——— -
L0 L1 L2 L3

© Harry H. Porter, 2005
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Positive Closure

Let: L={a,bc}

Example:1.9 = {¢}

1 =L={abc}
= LL ={ aa, abc, bca, bcbe }
L3 = LLL = { aaa, aabc, abca, abcbc, becaa, beabe, bebea, bebebe }
...etc...
LN = LN, = LIN1

h
S
|

The “Positive Closure” of a language:

0]
pr= Uiz L' U2 U 13U
i=
Example:
L*= { a,bc, aa, abc, bca, bcbe, aaa, aabe, abca, abcbg, ... }
- N — 7
Ll L2 L3

© Harry H. Porter, 2005
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Positive Closure

Let: L={a,bc}

Example:19 = {e}
L' =L={abc}
L2 = LL ={ aa, abc, bea, bebe }
L3 = LLL = { aaa, aabc, abca, abcbe, beaa, beabe, bebea, bebebe }
...€tc...
LN = LN, = [N

The “Positive Closure” of a language:

Example:
Lt= { _a,bc, aa, abc, bca, bcbe, aaa, aabe, abca, abebg, ... }

Note that ¢ is not included
{ UNLESS it is in L to start with )

© Harry H. Porter, 2005
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Let:

© Harry H. Porter, 2005
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Examples
Let: L={ab,c, ..,z }
D={0,1,2,..,9 }
D* =
“The set of strings with one or more digits”
LUD=
© Harry H. Porter, 2005 35
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D* =
“The set of strings with one or more digits”

LUD=
“The set of alphanumeric characters”
{ ab,c,..,2z0,1,2,...,9 }

(LUD) =

© Harry H. Porter, 2005 36
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Let:

“The set of strings with one or more digits”

LUD=
“The set of alphanumeric characters”
{ ab,c,..,2z0,1,2,...,9 }

%
(LUD) =
“Sequences of zero or more letters and digits”

L (LUD)" =
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D* =
“The set of strings with one or more digits”

LUD=
“The set of alphanumeric characters”
{ ab,c,..,2z0,1,2,...,9 }

(LUD) =
“Sequences of zero or more letters and digits”

L((LUD)") =
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Examples
lﬁ L={a’b7c7~-9z}
D={0,1,2,..,9 }
D* =
“The set of strings with one or more digits”
LUD=

“The set of alphanumeric characters”
{ ab,c,..,2z0,1,2,...,9 }

%
(LUD) =
“Sequences of zero or more letters and digits”

L((LUD)") =
“Set of strings that start with a letter, followed by zero
or more letters and and digits.”

© Harry H. Porter, 2005 39
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Regular Expressions
Assume the alphabet is given... eg, 2={a, b, ¢, ... z}
Example: a (b | c) d* e
A regular expression describes a language.
Notation:
r = regular expression Meta Symbols:
L(r) = the corresponding language ()
I
Example: *
r=a(blc)d e ¢
L(r)={ abe,
abde,
abdde,
abddde,
ace,
acde,
acdde,
acddde,
..}
© Harry H. Porter, 2005 40
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How to ‘“‘Parse’” Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

© Harry H. Porter, 2005
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How to ‘“‘Parse’ Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
a b* =

© Harry H. Porter, 2005
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How to ‘“‘Parse’” Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab =a ()
If you want (a b) * you must use parentheses.

© Harry H. Porter, 2005
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How to ‘“‘Parse’ Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab” =a (b
If you want (a b)” you must use parentheses.
a| be=

© Harry H. Porter, 2005
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How to ‘“‘Parse’” Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab =a ()
If you want (a b)* you must use parentheses.
a| be=a| (b c)
If you want (a | b) c you must use parentheses.

© Harry H. Porter, 2005
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How to ‘“‘Parse’ Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab” =a (b
If you want (a b)” you must use parentheses.
a| bec=a]| (bc)
If you want (a | b) c you must use parentheses.

Concatenation and | are associative.
(ab) ¢ = a(bbec) = abec
(| b)) le = a]| blec) = al|b]|ec

© Harry H. Porter, 2005
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How to ‘“‘Parse’” Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab =a ()
If you want (a b)* you must use parentheses.
a| be=a| (b c)
If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(ab) c = a(bec) = abec

(| b)) |le = a]| (blec) = al|b]ec
Example:

bd|ef | ga =

© Harry H. Porter, 2005
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How to ‘“‘Parse’ Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab” =a (b
If you want (a b)” you must use parentheses.
a| bec=a]| (bc)
If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(ab) ¢ = a(bbec) = abec

(@ b)) | ec = a|] (b|]ec) = al|b]|ec
Example:

bdlef | ga = bd | e(£5 |

© Harry H. Porter, 2005
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How to ‘“‘Parse’” Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab =a ()
If you want (a b)* you must use parentheses.
a| be=a| (b c)
If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(ab) ¢ = a(becec) = abec
(| b)) |le = a]| (blec) = al|b]ec
Example:
* *
bd|ef | ga = (bd) | (e (£ )) | (ga)
© Harry H. Porter, 2005 49
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How to ‘“‘Parse’ Regular Expressions

* has highest precedence.
Concatenation as middle precedence.

| has lowest precedence.

Use parentheses to override these rules.

Examples:
ab” =a (b
If you want (a b)” you must use parentheses.
a| bec=a]| (bc)
If you want (a | b) c you must use parentheses.

Concatenation and | are associative.

(ab) ¢ = a(bbec) = abec
(| b)) le = a]| blec) = al|b]|ec
Example:
* *
bd| ef l ga = ((bd) | (e (£ ))) | (ga)

\@ully parenthesizea

© Harry H. Porter, 2005 50
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Definition: Regular Expressions
(Over alphabet X)

* ¢ is a regular expression.

e If a is a symbol (i.e., if a€X), then a is a regular expression.

If R and S are regular expressions, then RS is a regular expression.

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R | S is a regular expression.

© Harry H. Porter, 2005
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is aregular expression.

* If a is a symbol (i.e., if aeX), then a is a regular expression.

If R and S are regular expressions, then RS is a regular expression.

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R| S is a regular expression.

© Harry H. Porter, 2005
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is a regular expression.

L(e) = {&}

* If a is a symbol (i.e., if a€X), then a is a regular expression.

If R and S are regular expressions, then RS is a regular expression.

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R | S is a regular expression.

© Harry H. Porter, 2005
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?
* ¢ is aregular expression.
L(e) = {¢e}

* If a is a symbol (i.e., if aeX), then a is a regular expression.

La) ={a}

If R and S are regular expressions, then RS is a regular expression.

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R| S is a regular expression.

© Harry H. Porter, 2005

54



Lexical Analysis - Part 1

Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is a regular expression.

L) = {¢e}
* If a is a symbol (i.e., if a€X), then a is a regular expression.
La) = {a}

L(R|S) = L®R) U L(s)

If R and S are regular expressions, then RS is a regular expression.

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R | S is a regular expression.

© Harry H. Porter, 2005
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is aregular expression.

L(e) = {¢}
* If a is a symbol (i.e., if aeX), then a is a regular expression.
La) = {a}

LR|S) = LR) U L(s)

If R and S are regular expressions, then RS is a regular expression.
L(RS) = L(R) L(S)

. . * . .
If R is a regular expression, then R is a regular expression.

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R| S is a regular expression.
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is a regular expression.

L) = {¢e}
* If ais a symbol (i.e., if a€X), then a is a regular expression.
La) = {a}

L(R|S) = L®R) U L(s)

If R and S are regular expressions, then RS is a regular expression.
L(®Rs) = LR) L(s)

If R is a regular expression, then R"isa regular expression.
* *
LR") = (LR)

If R is a regular expression, then (R) is a regular expression.

If R and S are regular expressions, then R | S is a regular expression.

© Harry H. Porter, 2005
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Definition: Regular Expressions
(Over alphabet X)

And, given a regular expression R, what is L(R) ?

* ¢ is aregular expression.

L(e) = {¢}
* If a is a symbol (i.e., if aeX), then a is a regular expression.
La) = {a}

LR|S) = LR) U L(s)

If R and S are regular expressions, then RS is a regular expression.
L(RS) = L(R) L(S)

If R is a regular expression, then R isa regular expression.
* *
LR = (LR)

If R is a regular expression, then (R) is a regular expression.
L((R)) = L(R)

If R and S are regular expressions, then R| S is a regular expression.

© Harry H. Porter, 2005
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Regular Languages

Definition: “Regular Language” (or “Regular Set”)
... A language that can be described by a regular expression.

* Any finite language (i.e., finite set of strings) is a regular language.
* Regular languages are (usually) infinite.
* Regular languages are, in some sense, simple languages.

Regular Langauges (C Context-Free Languages

Examples:
a | b | cab {a, b, cab}
b* {¢, b, bb, bbb, ...}
a | b* {a, €, b, bb, bbb, ...}
(a | by* {¢, a, b, aa, ab, ba, bb, aaa, ...}
“Set of all strings of a’s and b’s, including €.”
© Harry H. Porter, 2005 59
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Equality v. Equivalence

Are these regular expressions equal?
R = aa* (b | ¢)
S = a* a (¢ | b)

... No!
, Notation:
Yet, they describe the same language.
L(R) =L(S) Equality Equivalence
“Equivalence” of regular expressions -~
If L(R) =L(S) then we say R = S =
“R is equivalent to S” <

“Syntactic” equality versus “deeper” equality...
Algebra:
Does... x(3+b) =3x+bx ?

From now on, we’ll just say R =S to mean R = S
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Algebraic Laws of Regular Expressions

LetR, S, T be regular expressions...

| is associative
RISIT) = RISIT = RISIT

Concatenation is associative
R(ST) = (RS)T = RST

Concatenation distributes over |
R(SIT) = RSIRT
(RI1S)T = RTIST Preferred

€ is the identity for concatenation
eR=Re=R

* is idempotent
(R*)* = R¥*

Relation between * and ¢
R* = (Rlg)*

| is commutative Preferred
RIS = SIR
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Regular Definitions
Letter = a| b | c| | z
Digit =01 1]2] ...19
ID = Letter ( Letter | Digit )*

© Harry H. Porter, 2005

62



Lexical Analysis - Part 1

Regular Definitions
Letter = al|lblc]|] ... | z
Digit =0l 1|2 ...129
ID = Letter ( Letter | Digit )*

Letter ( Letter | Digit )*
= {“Letter”, “LetterLetter”, “LetterDigit”,

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.
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Regular Definitions
Letter = al|blc]|] ... | z
Digit =01 1]2] ...19
ID = Letter ( Letter | Digit )*

Letter ( Letter | Digit )*
= {“Letter”, “LetterLetter”, “LetterDigit”,

Each definition may only use names previously defined.
=> No recursion
Regular Sets = no recursion
CFG = recursion

Names (e.g., Letter) are underlined to distinguish from a sequence of symbols.
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Addition Notation / Shorthand

One-or-more: +

xt = X (X¥)
Digitt = Digit Digit* = Digits

© Harry H. Porter, 2005

Lexical Analysis - Part 1

65

Addition Notation / Shorthand

One-or-more: ¥

Xt = X (X*)
Digit* = Digit Digit* = Digits

Optional (zero-or-one): ?
X? = (Xlg)
Num = Digit* ( . Digit* )?
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Addition Notation / Shorthand

One-()r-more: +
xt = X (X¥)
Digit* = Digit Digit*

= Digits

Optional (zero-or-one):
X? = (Xlg)
Num = Digitt (. Digit* )?

?

Character Classes: [FirstChar—LastChar]

Assumption: The underlying alphabet is known ...and is ordered.
Digit =

[0-9]
Letter= [a-zA-2] = [A-Za-z]
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Addition Notation / Shorthand

One-or-more: ¥
Xt = X (X*)
Digit* = Digit Digit* = Digits

Optional (zero-or-one):

X? = (Xlg)
Num =

?

Digit* ( . Digit* )?

Character Classes: [FirstChar—LastChar]

Assumption: The underlying alphabet is known ...and is ordered.
Digit = [0-9]
Letter= [a-zA-2] = [A-Za-z]

Variations:

What does
ab...bc
Zero-or-more:

mean?

ab*c = a{b}c = a{b}’c
abtc = a{b}tc

One-or-more: o ©
ab?c = al[b]c

Optional:
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Many sets of strings are not regular.
...no regular expression for them!
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Many sets of strings are not regular.
...no regular expression for them!

(0OC0))
Must use a CFG!

The set of all strings in which parentheses are balanced.
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Many sets of strings are not regular.
...no regular expression for them!

(0 C0))
Must use a CFG!

Strings with repeated substrings
{XcX | Xisastringofa’sandb’s }
abbbabcabbbab

— ——

CFG is not even powerful enough.

The set of all strings in which parentheses are balanced.
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Many sets of strings are not regular.
...no regular expression for them!

(0OC0))
Must use a CFG!

Strings with repeated substrings

{XeX | Xisastringofa’sandb’s }
abbbabcabbbab
—

CFG is not even powerful enough.

The Problem?
In order to recognize a string,
these languages require memory!

The set of all strings in which parentheses are balanced.
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Problem: How to describe tokens?
Solution: Regular Expressions

Problem: How to recognize tokens?
Approaches:
¢ Hand-coded routines
Examples: E-Language, PCAT-Lexer
* Finite State Automata
e Scanner Generators (Java: JLex, C: Lex)

Scanner Generators

Input: Sequence of regular definitions

Output: A lexer (e.g., a program in Java or “C”)

Approach:
* Read in regular expressions
* Convert into a Finite State Automaton (FSA)
* Optimize the FSA
* Represent the FSA with tables / arrays
* Generate a table-driven lexer (Combine “canned” code with tables.)
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Finite State Automata (FSAs)

(“Finite State Machines”,*Finite Automata’, “FA”)

¢ One start state
* Many final states
¢ Each state is labeled with a state name

* Directed edges, labeled with symbols

¢ Deterministic (DFA)
No g-edges
Each outgoing edge has different symbol
* Non-deterministic (NFA)
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Finite State Automata (FSAs)

Formalism: <, X, 9, Sy, Sp >

S = Set of states
S = {So, Sl, cory SN}

2 = Input Alphabet
2 = ASCII Characters

0 = Transition Function
S x ¥ — States (deterministic)
S x X — Sets of States (non-deterministic)

Sp = Start State
“Initial state”
soES

Sy = Set of final states
“accepting states”
SpC€S
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Finite State Automata (FSAs)

Formalism: <SS, X, 9, Sy, Sp >

S = Set of states
S= {SO’ Sl, veey SN}

Z = Input Alphabet
2 = ASCII Characters

0 = Transition Function
S x £ — States (deterministic)

S x 2 — Sets of States (non-deterministic) | Example: ¢
S ={0,1,2}
sp = Start State 2 ={a,b}
“Initial state” s9 =0
S0&S Se=1{2}  Iuput Symbols
0 = AL
Sg = Set of final states “a b e
“accepting states” 01{1 |0 {2}
SpCS States< 1 | (1} a2 | o
218 O O
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Finite State Automata (FSAs)

A string is “accepted”...

(a string is “recognized”...)

by a FSA if there is a path
from Start to any accepting state
where edge labels match the string.

Example:
This FSA accepts:

€

aaab Example:

abbb S ={0, 1,2}
2 ={a,b}
Sp=12} Input Symbols
0 = A

o{ |0 {2}

States< 1 [y .2 | O

214 { {
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Deterministic Finite Automata (DFAs)

No e-moves
The transition function returns a single state
3:SxX—S

function Move (s:State, a:Symbol) returns State

6 Input Symbols
- a b
112 3
States { % |3 4
314
412
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Deterministic Finite Automata (DFAs)

No e-moves
The transition function returns a single state
0SxX—S

function Move (s:State, a:Symbol) returns State

6 Input Symbols
- a b
112 3
States 213 4
314 5
412 5
515 5
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Deterministic Finite Automata (DFAs)

No e-moves
The transition function returns a single state
3:SxX—S

function Move (s:State, a:Symbol) returns State

6 Input Symbols
- a b
112 3
States { % |3 4
314
412
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Non-Deterministic Finite Automata (NFAs)
Allow g-moves
The transition function returns a set of states
0: S x £ — Powerset(S)
:SxZT—=P(S)

function Move (s:State, a:Symbol) returns set of State

Input Symbols

6 = a b M
142} {3} {
States 2143} {4} {1}
3142 | O O

4142} & {
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Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.
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Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an NFA.
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Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an NFA.

* The set of strings recognized by an DFA
can be described by a Regular Expression.
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Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an NFA.

* The set of strings recognized by an DFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an DFA.

© Harry H. Porter, 2005

Lexical Analysis - Part 1

Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an NFA.

* The set of strings recognized by an DFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an DFA.

* DFAs, NFAs, and Regular Expressions all have the same “power”.
They describe “Regular Sets” (“Regular Languages”)
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Theoretical Results

* The set of strings recognized by an NFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an NFA.

* The set of strings recognized by an DFA
can be described by a Regular Expression.

* The set of strings described by a Regular Expression
can be recognized by an DFA.

* DFAs, NFAs, and Regular Expressions all have the same “power”.
They describe “Regular Sets” (“Regular Languages”)

* The DFA may have a lot more states than the NFA.
(May have exponentially as many states, but...)
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What is the regular expression?
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What is the regular expression?
e | a (alb)* b

What is an equivalent DFA?
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Lexical Analysis - Part 1
What is the regular expression?
€ | a (alb)*b
What is an equivalent DFA?
—02Q@
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What is the regular expression?
e | a (alb)* b

What is an equivalent DFA?
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What is the regular expression?
€ | a (alb)*b

What is an equivalent DFA?
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What is the regular expression?
e | a (alb)* b

What is an equivalent DFA?
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What is the regular expression?
€ | a (alb)*b

What is an equivalent DFA?
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