
CS-322 Compiler Design

Page 1

Homework 3
Due Date: Thursday, February 9, 2006, 2:00

Your Name:____________________________
Your Email:____________________________

Question 1 One option for a compiler is to go straight from the AST to the target code
(e.g., assembly code). A more common approach is to use 2 steps, first going from AST
to an intermediate code and then going from intermediate code to target code. Give 3
reasons why this second approach is a good idea.

__
__
__
Question 2 In class, we used a syntax-directed approach to translations. What 2
attributes are used for the non-terminal E?

Question 3 How many operations can each 3-address instruction perform? ______
How many operands may appear in any single 3-address instruction (maximum,

including the result)? ______
Question 4 Assume we are compiling a source language that has 3 sizes of floating
point numbers (single, double, and quad) and 3 sizes of integers (byte, halfword, and
word). How many “add” instructions would our intermediate language likely have?

Question 5 In the SPARC architecture, a “ba” instruction takes 4 bytes; thus a “goto”
instruction in the IR language will ultimately consume 4 bytes of memory. How many

bytes in the executable will our “label” instruction consume? _______

CS-322 Compiler Design

Page 2

Question 6 Is our PCAT compiler using Quadruples, Triples, or Indirect Triples to

represent the IR instruction sequence? ___________
Question 7 In the syntax-directed translations discussed in class, what does the
synthesized attribute “E.code” contain?

__
__
Question 8 In the syntax-directed translations discussed in class, what does the
synthesized attribute “E.place” contain?

__
__
Question 9 Consider this grammar rule:

E0 → E1 + E2
When computing E0.code and E0.place, can we assume E1.code and E1.place are already

computed and available? ______
Question 10 Consider this grammar rule:

S0 → if E then S1 end ;
Here is how we will translate this (ignoring trueLabel, falseLabel and short circuit
behavior):

< code for E >
if E.place = 0 then goto Label_A
< code for S1 >

Label_A:
Show how we would translate this rule:

S0 → if E then S1 else S2 end ;

__
__
__
__
__
__
__

CS-322 Compiler Design

Page 3

__
Question 11 Here is a grammar rule for a “do-until” statement:

S0 → do S1 until E end ;
The idea is that we will always execute the body S1 at least once. We will test after each
execution and we will terminate once the condition becomes true. Show how we would
translate this rule.

__
__
__
__
__
__
__
Question 12 Is “static” associated with compile-time or run-time?

Is “dynamic” associated with compile-time or run-time? _____________
Question 13 Consider a program that contains one routine named “foo”. Perhaps “foo”
is recursive. At one instant at run-time, foo will be “alive” or “running” either zero,
once, or many times. We call each of these invocations of foo a ...what?

Question 18 What happens to the activation stack at runtime when a routine is invoked

(i.e., push or pop)? _______
What happens when a routine returns? _______
Where are the local variables for a routine found? ______________
Question 19 Define “environment” and “state.”

__
__
__
__

CS-322 Compiler Design

Page 4

Question 20 In UNIX, is data in the “.text” segment read/write or read-only?

What about the “.data” segment? ____________
Question 21 In C and C++, when objects / structs are allocated, they are placed in the
heap. Later, the program may free storage that was previously allocated. Will objects /

structs ever by compacted by the garbage collector in C / C++? ____
Question 22 Name 3 languages that use automatic garbage collection.

__
Question 23 In an automatic garbage collector, objects may be “compacted.” Describe
object compaction?

__
__
__
Question 24 In the activation record stack, each frame contains 2 pointers: the static link
and the dynamic link. Which link is used to point to the routine’s caller?

Question 25 Routines may contain local variables. When we compile a routine, we will
have to “lay out” the activation record. What must we assign to each local variable?

Question 26 In our implementation of PCAT on the SPARC, how many bytes will be

allocated to each variable? ________
Will all variables occupy the same amount of space? ________
Question 27 In other compilers, where different types of data may have different sizes
and where alignment restrictions must be followed, what will we have to insert between

the variables? ________________

