Design and Analysis of Algorithms Chapter 2

Analysis of Algorithms Theoretical analysis of time efficiency

Issues: Time efficiency is analyzed by determining the number of
Correctness repetitions ot the basic operation as a function of input size
Time efficiency
Space efficiency
Optimality

Busic operation: the operation that contributes most
towards the running time of the algorithm.
Approaches: putiize
Theoretical analysis

Empirical analysis T(n) ~ capC(n)

running time Gaaien e Number of times

for basic operation basic operation is
executed

Design and Analysis of Algorithms - Chapter 2 Design and Analysis of Algorithms - Chapter 2

Input size and hasic operation examples I Empirical analysis of time efficiency

. _ . Select a specific (typical) sample of inputs
Problem Input size measure. | Basic operation

Searchi for key in list of 72

items Number of items in list 7z | Key comparison

Use physical unit of time (e.g., milliseconds),

Multiply two matrices of | . . . Floating point
DLy tw Dimensions of matrices H0g PO (0)13
floating point numbers multiplication

Floating point Count actual number of basic operations

Compute a” e
multiplication

Visiting a vertex or Analyze the empirical data

Graph problem #vertices and/or edges -
traversing an edge

Design and Analysis of Algorithms - Chapter 2 Design and Analysis of Algorithms - Chapter 2

Best-case, auerage-case, worst-case Example: Sequential search
I I
L) AR 8
For some algorithms efficiency depends on type of input: Problem: Given a list of 7 elements and' a search key I, find

an element equal to K if any.

Worst case: W(#) — maximum over: inputs of:size 7 Algorithm: Scan the list and compare its/successive
elements with K until either a matching element is found
(successful search) of the list is exhausted (unsuccessful

Best case: B(n) — minimum over inputs|of size 7)

Worst case
Average case: A(n)— “average” over inputs of size n
Number: of times the basic operation will be executed on typical input
Best case
NOT the average of worst and best case
Expected number of basic operations repetitions considered as a
random variable under some assumption about the probability Average case
distribution of all possible inputs of size n

Design and Analysis of Algorithms - Chapter 2 Design and Analysis of Algorithms - Chapter 2

Design and Analysis of Algorithms Chapter 2

Types offormulas for hasicioperation count Order.ofigrowth

(143

Y
Most important: Order of growth within a constant multiple
as n—o0

Exact formula
e.g., C(n) = n(n-1)/2

Example:
How much faster will algorithm run on computer that is twice as fast?

Formula indicating order of growth with specific
multiplicative constant

e.g., C(n)~ 0.5 n?
How much longer does it take to solve problem of double input siz

Formula indicating order of growth with unknown

multiplicative constant Jez buble 2.1

e.g., C(n) = cn?

Design and Analysis of Algorithms - Chapter 2 Design and Analysis of Algorithms - Chapter 2

Table 24

Asymptotic growth rate

A way of comparing functions that ignores constant factors
and small input sizes

n | logsn n nlog,n w 77 20 nl
10 [33 10 33100 W07 1° 107 3.6-10°
02| 66 10° 66107 10f 105 1.310°° 9510%7 O(g())= class of functions f{n) that grow no fuster than g(r)

100 | 10 10® noa0t 10f 1°
04| 13 104 13a10% 108 102
108 17 108 L7108 1gl0 pp 0 (g(n)): class of functions f(#) that grow at same rate as g(n)
09| 20 105 20107 1012 10

QO(z(n)): class of functions f(n) that grow at least as fast as g(n),

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

see figures 2.1, 2.2, 2.3

Design and Analysis of Algorithms - Chapter 2

Design and Analysis of Algorithms - Chapter 2

doesn't
matter

Figure 2.1 Big-ch notation: #{(n} € Olg{n))

Design and Analysis of Algorithms

L'Hopital’s rule

If
liny, .) = L, ., (1) = o
The derivatives f°, g* exist,
Then:
Jim SO g, (@)

o (1) n—n & (1)

» Example: logrn vs. n

Design and Analysis of Algorithms - Chapter 2

Basic Asymptotic Efficiency classes T

rra

1 constant

log n logarithmic

n linear

nlogn nlogn

n? quadratic

3

n cubic

2" exponential

nl factorial

Design and Analysis of Algorithms - Chapter 2

Chapter 2

Estahlishing rate of growth: Method1-—using Iin;i;s’

0 order of growth of 7(1) ___ order of growth of g(1)

]imn‘m T(n)/g(n) - ¢>0 order of growth of 7(1) ___ order of growth of g(r)

order of growth of 7(n) ___ order of growth of g(r)

Examples:
* 10n

* n(n+1)/2 . n?

*log, n X log,n

Design and Analysis of Algorithms - Chapter 2

Establishiny rate of growth: Method2— using lleﬁllililyl 1y

) is O(g(n)) if oxder of growth of f(n) < order of growth
of g(n) (within constant multiple)

There exist positive constant ¢ and non-negative integer 7,
such that

fin) <lc g(n) for every n=n,
Examples:
1072 is O(212)

511420 is O (1077)

Design and Analysis of Algorithms - Chapter 2

Time efficiency of nonrecursivealgorithms T

Y om
Steps in mathematical analysis of nonrecursive algorithms:

Decide on parameter » indicating input size.

Identity algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up summation for C(n) reflecting algorithm’s loop structure

Simplify summation using standard formulas (see Appendix A)

Design and Analysis of Algorithms - Chapter 2

Design and Analysis of Algorithms

Examples:
Matrix multiplication
Selection sort
Insertion sort

Miystery Algorithm

Design and Analysis of Algorithms - Chapter 2

Selection sort

Algorithm SelectionSort{Al0.n 1]}

//The algorithmn sorts a given array by selection sort
//Input: An array Afl.n 1] of orderable elements
//Output: Array Al0.mn 1] sorted in ascending order

fori+—0ton 2do
min i
fori—1i+lton ldo
if Alj] < Almin] min — j
swap Afz] and A[min]

Design and Analysis of Algorithms - Chapter 2

Mystery.algorithm

fori:=1ton-1do

max =13

for j := i+ 1 ton do

it [Allj, 21> |A[max;, ¢]| then max :

for ks :=i ton +1 do
swap Al i, k| with A[max, k |;
forj :=i+ 1 ton do
for k :=n+ 1 downto i do
Al k1 :=Alj, k1 -AlL k] *

Design and Analysis of Algorithms - Chapter 2

[21/ Al 15

Chapter 2

Algorithm MatrizMultiplication{A[0.n 1,0.n 1], Bjl.n 1,0.n 1)
J/Multiplies two square matrices of order n by the definition-based algorithm
J/Input: Two n-by-n matrices A and B
J/Output: Matrix C AR
fori—f0ton 1ldo
for j—0ton ldo
Cli, 3] — 0.0
for k+—0ton ldo
Cli, j] + Clt, 4] + A[s, &] = B[k, 5]

return O

Design and Analysis of Algorithms - Chapter 2

Insertion sort

Algorithm InsertionSort(A[0.n 1]}
//Sorts a given array by insertion sort
//Input: An array A[0.n 1] of n orderable elements
//Output: Array A[0.n 1] sorted in nondecreasing order
fort+—1lton ldo
v+ Ali]
F+t 1
while j > 0 and A[j] > v do
A+ 1] — A[]
i—i 1
A +1] —w

Design and Analysis of Algorithms - Chapter 2

Example Recursive evaluationof 77!
Definition: 7 ! = 1*2%... *(n-1)*n
Recursive definition of n!:

Algorithm:
if n=0 then F(n) := 1
else F(n) := F(n-1) * n
return F(n)

Recurrence for number of multiplications to compute 7!:

Design and Analysis of Algorithms - Chapter 2

Design and Analysis of Algorithms

Time efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:
Decide on parameter n indicating input size
Identity algorithm’s basic operation
Determine worst, average, and best case for input of size n

Set up a recurrence relation and initial condition(s) for C(n)-the
number of times the basic operation will be executed for an input of size
n (alternatively count recursive calls).

Solve the recurrence to obtain a closed form or estimate the order: of
magnitude of the solution (see Appendix B)
Design and Analysis of Algorithms - Chapter 2

A general divitie-and-contuerrecurrence

1(n) = ad(n/b) =+ f () where f (1) € O(n)
1(n) € O(n")

T(n) € O(rFign)

1(n) € O(n%22)

a < b¥
a = b¥

ll>bk

Note: the same results hold with O instead of ©.

Design and Analysis of Algorithms - Chapter 2

Solving linearhomogeneous reclrrence
relation’s with constant coefficients

Easy first: 1% order LHRRCCs:
Cn)=a Cn-1) CO0)=1
Extrapolate to 29 order
L(n) = a L(n-1) + b L(n-2),

... Solution: C(m) =t a’
... A solution?: L(n) =r"
Characteristic equation (quadratic)

Solve to obtain roots r; and r,—e¢.g.: A(n) = 3A(n-1) - 2(n-2)
General solution to RR: linear: combination of r,” and' r,”

Particular solution: use initial conditions—e.g.:A(0)=1 A@)=3

Design and Analysis of Algorithms - Chapter 2 29

Chapter 2

Important recurrence types:

One (constant) operation reduces problem size by one.
T(n) = T(n-1)+ ¢ T(1)=d
Solution: T(n) = (n-1)c+d. linear

A pass through input reduces problem size by one.
T(n) = T(n-1) + cn T(1)=d
Solution: T(n) = [n(n+1)/2—1] c+d. quadratic

One (constant) operation reduces problem size by half.
T(n) = T(n/2) +c T(1)=d
Solution: T(n) = clgn+d logarithmic.

A pass through input reduces problem size by half.
T(n) = 20 (n/2) + cn T(l)=d
Solution: T(n) = cnlgn+dn nlogn

Design and Analysis of Algorithms - Chapter 2

Fibonacci numbers

The Fibonacci sequence:
0,1,1,2,3,5,8,13,21, ...

Fibonacci recurrence:
E(n) = E(n-1) + E(n-2)
F(0)= 0
F(1)=1

2nd order: linear' homogeneous
recurrencerelation
with constant coefficients

Another'example:

A(m)=3A®n-1)-2(n-2) A(0)=1 A®1)=3

Design and Analysis of Algorithms - Chapter 2

Computing Fihonaccinumbers

Definition based recursive algorithm
Nonrecursive brute-force algorithm
Explicit formula algorithm

Logarithmic algorithm based on formula:

F(n-1) F(n) 01 "

F(n) FE(n+l) . 11

¢ for n>1, assuming an efficient way of computing matrix powers.

Design and Analysis of Algorithms - Chapter 2

