Design and Analysis of Algorithms Chapter 2

Analysis of Algorithms Theoretical analysis of time efficiency

Issues: Time efficiency is analyzed by determining the number of
Correctness repetitions ot the basic operation as a function of input size
Time efficiency
Space efficiency
Optimality

Busic operation: the operation that contributes most
towards the running time of the algorithm.
Approaches: putiize
Theoretical analysis

Empirical analysis T(n) ~ capC(n)

running time Gaaien e Number of times

for basic operation basic operation is
executed
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Input size and hasic operation examples I Empirical analysis of time efficiency

. _ . Select a specific (typical) sample of inputs
Problem Input size measure. | Basic operation

Searchi for key in list of 72

items Number of items in list 7z | Key comparison

Use physical unit of time (e.g., milliseconds),

Multiply two matrices of | . . . Floating point
DLy tw Dimensions of matrices H0g PO (0)13
floating point numbers multiplication

Floating point Count actual number of basic operations

Compute a” e
multiplication

Visiting a vertex or Analyze the empirical data

Graph problem #vertices and/or edges -
traversing an edge
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Best-case, auerage-case, worst-case Example: Sequential search
I I
L ) AR 8
For some algorithms efficiency depends on type of input: Problem: Given a list of 7 elements and' a search key I, find

an element equal to K if any.

Worst case:  W(#) — maximum over: inputs of:size 7 Algorithm: Scan the list and compare its/successive
elements with K until either a matching element is found
(successful search) of the list is exhausted (unsuccessful

Best case: B(n) — minimum over inputs|of size 7 )

Worst case
Average case: A(n)— “average” over inputs of size n
Number: of times the basic operation will be executed on typical input
Best case
NOT the average of worst and best case
Expected number of basic operations repetitions considered as a
random variable under some assumption about the probability Average case
distribution of all possible inputs of size n
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Types offormulas for hasicioperation count Order.ofigrowth

(143

Y
Most important: Order of growth within a constant multiple
as n—o0

Exact formula
e.g., C(n) = n(n-1)/2

Example:
How much faster will algorithm run on computer that is twice as fast?

Formula indicating order of growth with specific
multiplicative constant

e.g., C(n)~ 0.5 n?
How much longer does it take to solve problem of double input siz

Formula indicating order of growth with unknown

multiplicative constant Jez buble 2.1

e.g., C(n) = cn?
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Table 24

Asymptotic growth rate

A way of comparing functions that ignores constant factors
and small input sizes

n | logsn  n nlog,n  w 77 20 nl
10 [ 33 10 33100 W07 1° 107 3.6-10°
02| 66  10° 66107 10f 105 1.310°° 9510%7 O(g())= class of functions f{n) that grow no fuster than g(r)

100 | 10 10® noa0t 10f 1°
04| 13 104 13a10% 108 102
108 17 108 L7108 1gl0 pp 0 (g(n)): class of functions f(#) that grow at same rate as g(n)
09| 20 105 20107 1012 10

QO(z(n)): class of functions f(n) that grow at least as fast as g(n),

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

see figures 2.1, 2.2, 2.3
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doesn't
matter

Figure 2.1 Big-ch notation: #{(n} € Olg{n))
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L'Hopital’s rule

If
liny, . ) = L, ., (1) = o
The derivatives f°, g* exist,
Then:
Jim SO g, (@)

o (1) n—n & (1)

» Example: logrn vs. n
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Basic Asymptotic Efficiency classes T

rra

1 constant

log n logarithmic

n linear

nlogn nlogn

n? quadratic

3

n cubic

2" exponential

nl factorial
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Estahlishing rate of growth: Method1-—using Iin;i;s’

0 order of growth of 7(1) ___ order of growth of g(1)

]imn‘m T(n)/g(n) - ¢>0 order of growth of 7(1) ___ order of growth of g(r)

order of growth of 7(n) ___ order of growth of g(r)

Examples:
* 10n

* n(n+1)/2 . n?

*log, n X log,n
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Establishiny rate of growth: Method2— using lleﬁllililyl 1y

) is O(g(n)) if oxder of growth of f(n) < order of growth
of g(n) (within constant multiple)

There exist positive constant ¢ and non-negative integer 7,
such that

fin) <lc g(n) for every n=n,
Examples:
1072 is O(212)

511420 is O (1077)
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Time efficiency of nonrecursivealgorithms T

Y om
Steps in mathematical analysis of nonrecursive algorithms:

Decide on parameter » indicating input size.

Identity algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up summation for C(n) reflecting algorithm’s loop structure

Simplify summation using standard formulas (see Appendix A)
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Examples:
Matrix multiplication
Selection sort
Insertion sort

Miystery Algorithm
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Selection sort

Algorithm SelectionSort{Al0.n 1]}

//The algorithmn sorts a given array by selection sort
//Input: An array Afl.n 1] of orderable elements
//Output: Array Al0.mn 1] sorted in ascending order

fori+—0ton 2do
min i
fori—1i+lton ldo
if Alj] < Almin] min — j
swap Afz] and A[min]
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Mystery.algorithm

fori:=1ton-1do

max =13

for j := i+ 1 ton do

it [Allj, 21> |A[ max;, ¢ ]| then max :

for ks :=i ton +1 do
swap Al i, k| with A[ max, k |;
forj :=i+ 1 ton do
for k :=n+ 1 downto i do
Al k1 :=Alj, k1 -AlL k] *
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Algorithm MatrizMultiplication{A[0.n  1,0.n 1], Bjl.n 1,0.n 1)
J/Multiplies two square matrices of order n by the definition-based algorithm
J/Input: Two n-by-n matrices A and B
J/Output: Matrix C AR
fori—f0ton 1ldo
for j—0ton ldo
Cli, 3] — 0.0
for k+—0ton ldo
Cli, j] + Clt, 4] + A[s, &] = B[k, 5]

return O
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Insertion sort

Algorithm InsertionSort(A[0.n 1]}
//Sorts a given array by insertion sort
//Input: An array A[0.n 1] of n orderable elements
//Output: Array A[0.n 1] sorted in nondecreasing order
fort+—1lton ldo
v+ Ali]
F+t 1
while j > 0 and A[j] > v do
A+ 1] — A[]
i—i 1
A +1] —w
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Example Recursive evaluationof 77!
Definition: 7 ! = 1*2%... *(n-1)*n
Recursive definition of n!:

Algorithm:
if n=0 then F(n) := 1
else F(n) := F(n-1) * n
return F(n)

Recurrence for number of multiplications to compute 7!:
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Time efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:
Decide on parameter n indicating input size
Identity algorithm’s basic operation
Determine worst, average, and best case for input of size n

Set up a recurrence relation and initial condition(s) for C(n)-the
number of times the basic operation will be executed for an input of size
n (alternatively count recursive calls).

Solve the recurrence to obtain a closed form or estimate the order: of
magnitude of the solution (see Appendix B)
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A general divitie-and-contuerrecurrence

1(n) = ad(n/b) =+ f () where f (1) € O(n)
1(n) € O(n")

T(n) € O(rFign)

1(n) € O(n%22)

a < b¥
a = b¥

ll>bk

Note: the same results hold with O instead of ©.
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Solving linearhomogeneous reclrrence
relation’s with constant coefficients

Easy first: 1% order LHRRCCs:
Cn)=a Cn-1) CO0)=1
Extrapolate to 29 order
L(n) = a L(n-1) + b L(n-2),

... Solution: C(m) =t a’
... A solution?: L(n) =r"
Characteristic equation (quadratic)

Solve to obtain roots r; and r,—e¢.g.: A(n) = 3A(n-1) - 2(n-2)
General solution to RR: linear: combination of r,” and' r,”

Particular solution: use initial conditions—e.g.:A(0)=1 A@)=3

Design and Analysis of Algorithms - Chapter 2 29

Chapter 2

Important recurrence types:

One (constant) operation reduces problem size by one.
T(n) = T(n-1)+ ¢ T(1)=d
Solution: T(n) = (n-1)c+d. linear

A pass through input reduces problem size by one.
T(n) = T(n-1) + cn T(1)=d
Solution: T(n) = [n(n+1)/2—1] c+d. quadratic

One (constant) operation reduces problem size by half.
T(n) = T(n/2) +c T(1)=d
Solution: T(n) = clgn+d logarithmic.

A pass through input reduces problem size by half.
T(n) = 20 (n/2) + cn T(l)=d
Solution: T(n) = cnlgn+dn nlogn
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Fibonacci numbers

The Fibonacci sequence:
0,1,1,2,3,5,8,13,21, ...

Fibonacci recurrence:
E(n) = E(n-1) + E(n-2)
F(0)= 0
F(1)=1

2nd order: linear' homogeneous
recurrencerelation
with constant coefficients

Another'example:

A(m)=3A®n-1)-2(n-2) A(0)=1 A®1)=3
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Computing Fihonaccinumbers

Definition based recursive algorithm
Nonrecursive brute-force algorithm
Explicit formula algorithm

Logarithmic algorithm based on formula:

F(n-1)  F(n) 01 "

F(n) FE(n+l) . 11

¢ for n>1, assuming an efficient way of computing matrix powers.
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