


```
L'Hôpital's rule

If g_{lim_{n\rightarrow c}}f(n)=lim_{n\rightarrow c}g(n)=\infty

Q The derivatives f',g' exist,

Then

\lim_{n\rightarrow c}\frac{f(n)}{g(n)}=\lim_{n\rightarrow c}\frac{f'(n)}{g'(n)}
• Example: \log n vs. n

Desgn and Analysis of Algorithms - Chapter 2
```



```
Selection sort

Algorithm SelectionSort(A[0..n 1])

//The algorithm sorts a given array by selection sort

//Input: An array A[0..n 1] of orderable elements

//Output: Array A[0..n 1] sorted in ascending order for i \leftarrow 0 to n 2 do

min \leftarrow i

for i \leftarrow i + 1 to n 1 do

if A[j] < A[min] \quad min \leftarrow j

swap A[i] and A[min]
```

```
Insertion sort

Algorithm InsertionSort(A[0..n 1])
//Sorts a given array by insertion sort
//Input: An array A[0..n 1] of n orderable elements
//Output: Array A[0..n 1] sorted in nondecreasing order for i \leftarrow 1 to n 1 do
v \leftarrow A[i]
j \leftarrow i 1
while j \geq 0 and A[j] > v do
A[j+1] \leftarrow A[j]
j \leftarrow j 1
A[j+1] \leftarrow v
```

```
for i := 1 to n-1 do

max := i;

for j := i+1 to n do

if |A|[j, i]| > |A|[max, i]| then max := j;

for k := i to n+1 do

swap A|[i, k]| with A|[max, k]|;

for j := i+1 to n do

for k := n+1 downto i do

A|[j, k]| := A|[j, k]| - A|[i, k]| * A|[j, i]| / A|[i, i]|;

Design and Analysis of Algorithms - Chapter 2
```

```
Example Recursive evaluation of n!

Definition: n! = 1*2*...*(n-1)*n

Recursive definition of n!:

Algorithm:
if n=0 then F(n) := 1
clse F(n) := F(n-1)*n
return F(n)

Recurrence for number of multiplications to compute n!:

Desgn and Analysis of Algorithms - Chapter 2

24
```



```
A general divide-and-conquer recurrence T(n) = aT(n/b) + f(n) \qquad \text{where } f(n) \in \Theta(n^k)
1. a < b^k T(n) \in \Theta(n^k)
2. a = b^k T(n) \in \Theta(n^k \lg n)
3. a > b^k T(n) \in \Theta(n^{\log_b a})

Note: the same results hold with O instead of \Theta.
```



```
Solving linear homogeneous recurrence relations with constant coefficients

2 Easy first: 1^{S_1} order LHRRCCs:
C(n) = n C(n-1) \quad C(0) = t \qquad ... \text{ Solution: } C(n) = t a^n
2 Extrapolate to 2^{nd} order
L(n) = a L(n-1) + b L(n-2) \qquad ... \text{ A solution: } L(n) = r^n
2 Characteristic equation (quadratic)

3 Solve to obtain roots r_1 and r_2—e.g.: A(n) = 3A(n-1) - 2(n-2)
3 General solution to RR: linear combination of r_1^n and r_2^n
3 Particular solution: use initial conditions—e.g.: A(0) = 1 \quad A(1) = 3
Design and Analysis of Algorithms - Chapter 2
```

