
1

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 1

Analysis of AlgorithmsAnalysis of Algorithms

Issues:Issues:
•• CorrectnessCorrectness
•• Time efficiencyTime efficiency
•• Space efficiencySpace efficiency
•• OptimalityOptimality

Approaches: Approaches:
•• Theoretical analysisTheoretical analysis
•• Empirical analysisEmpirical analysis

Design and Analysis of Algorithms - Chapter 2 2

Theoretical analysis of time efficiencyTheoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of Time efficiency is analyzed by determining the number of
repetitions of the repetitions of the basic operationbasic operation as a function of as a function of input sizeinput size

Basic operation:Basic operation: the operation that contributes most the operation that contributes most
towards the running time of the algorithm.towards the running time of the algorithm.

TT((nn)) ≈≈ ccopopCC((nn))
running time execution time

for basic operation
Number of times
basic operation is

executed

input size

Design and Analysis of Algorithms - Chapter 2 3

Input size and basic operation examplesInput size and basic operation examples

Basic operationBasic operationInput size measureInput size measureProblemProblem

Visiting a vertex or Visiting a vertex or
traversing an edgetraversing an edge#vertices and/or edges#vertices and/or edgesGraph problemGraph problem

Floating point Floating point
multiplicationmultiplicationnnCompute Compute aann

Floating point Floating point
multiplicationmultiplicationDimensions of matricesDimensions of matricesMultiply two matrices of Multiply two matrices of

floating point numbersfloating point numbers

Key comparisonKey comparisonNumber of items in list Number of items in list nnSearch for key in list of Search for key in list of nn
itemsitems

Design and Analysis of Algorithms - Chapter 2 4

Empirical analysis of time efficiencyEmpirical analysis of time efficiency

Select a specific (typical) sample of inputsSelect a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds) Use physical unit of time (e.g., milliseconds)

OROR

Count actual number of basic operations Count actual number of basic operations

Analyze the empirical dataAnalyze the empirical data

Design and Analysis of Algorithms - Chapter 2 5

BestBest--case, averagecase, average--case, worstcase, worst--casecase

For some algorithms efficiency depends on type of input:For some algorithms efficiency depends on type of input:

Worst case: Worst case: W(W(nn)) –– maximum over inputs of size maximum over inputs of size nn

Best case: Best case: B(B(nn)) –– minimum over inputs of size minimum over inputs of size nn

Average case: Average case: A(A(nn)) –– “average” over inputs of size “average” over inputs of size nn
•• Number of times the basic operation will be executed on typical Number of times the basic operation will be executed on typical inputinput
•• NOT the average of worst and best caseNOT the average of worst and best case
•• Expected number of basic operations repetitions considered as a Expected number of basic operations repetitions considered as a

random variable under some assumption about the probability random variable under some assumption about the probability
distribution of all possible inputs of size distribution of all possible inputs of size nn

Design and Analysis of Algorithms - Chapter 2 6

Example: Sequential searchExample: Sequential search

Problem:Problem: Given a list of Given a list of nn elements and a search key elements and a search key KK, find , find
an element equal to an element equal to KK, if any., if any.
Algorithm:Algorithm: Scan the list and compare its successive Scan the list and compare its successive
elements with elements with KK until either a matching element is found until either a matching element is found
((successful searchsuccessful search) of the list is exhausted () of the list is exhausted (unsuccessful unsuccessful
searchsearch))
Worst caseWorst case

Best caseBest case

Average caseAverage case

2

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 7

Types of formulas for basic operation countTypes of formulas for basic operation count

Exact formulaExact formula
e.g., e.g., C(C(nn) =) = nn((nn--1)/21)/2

Formula indicating order of growth with specific Formula indicating order of growth with specific
multiplicative constantmultiplicative constant

e.g., e.g., C(C(nn)) ≈≈ 0.5 0.5 nn22

Formula indicating order of growth with unknown Formula indicating order of growth with unknown
multiplicative constantmultiplicative constant

e.g., e.g., C(C(nn)) ≈≈ cncn22

Design and Analysis of Algorithms - Chapter 2 8

Order of growth Order of growth

Most important: Order of growth within a constant multiple Most important: Order of growth within a constant multiple
as as nn→∞→∞

Example:Example:
•• How much faster will algorithm run on computer that is twice as How much faster will algorithm run on computer that is twice as fast?fast?

•• How much longer does it take to solve problem of double input siHow much longer does it take to solve problem of double input size?ze?

See table 2.1 See table 2.1

Design and Analysis of Algorithms - Chapter 2 9

Table 2.1Table 2.1

Design and Analysis of Algorithms - Chapter 2 10

Asymptotic growth rateAsymptotic growth rate

A way of comparing functions that ignores constant factors A way of comparing functions that ignores constant factors
and small input sizesand small input sizes

O(O(gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow no fasterno faster than than gg((nn))

ΘΘ ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at same rateat same rate as as gg((nn))

ΩΩ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at least as fastat least as fast as as gg((nn))

see figures 2.1, 2.2, 2.3see figures 2.1, 2.2, 2.3

Design and Analysis of Algorithms - Chapter 2 11

BigBig--ohoh

Design and Analysis of Algorithms - Chapter 2 12

BigBig--omegaomega

3

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 13

BigBig--thetatheta

Design and Analysis of Algorithms - Chapter 2 14

Establishing rate of growth: Method 1 Establishing rate of growth: Method 1 –– using limitsusing limits

limlimnn→∞→∞ TT((nn)/)/gg((nn) =) =

0 order of growth of TT((nn)) ___ order of growth of gg((nn))

c>0 order of growth of TT((nn)) ___ order of growth of gg((nn))

∞ order of growth of TT((nn)) ___ order of growth of gg((nn))

Examples:Examples:
• 10n vs. 2n2

• n(n+1)/2 vs. n2

• logb n vs. logc n

Design and Analysis of Algorithms - Chapter 2 15

L’Hôpital’sL’Hôpital’s rulerule

IfIf
limlimnn→∞→∞ ff((nn) =) = limlimnn→∞→∞ gg((nn) =) = ∞∞

The derivatives The derivatives ff´́, , gg´́ exist,exist,

ThenThen

ff((nn))
gg((nn))

limlim
nn→∞→∞

=
f f ´(´(nn))
g g ´(´(nn))

limlim
nn→∞→∞

•• Example: Example: loglognn vs. vs. nn

Design and Analysis of Algorithms - Chapter 2 16

Establishing rate of growth: Method 2 Establishing rate of growth: Method 2 –– using definitionusing definition

ff((nn) is) is O(O(gg((nn)) if order of growth of)) if order of growth of ff((nn)) ≤≤ order of growth order of growth
of of gg((nn) (within constant multiple)) (within constant multiple)
There exist positive constant There exist positive constant cc and nonand non--negative integer negative integer nn00
such thatsuch that

ff((nn)) ≤≤ c c gg((nn) for every) for every nn ≥≥ nn0 0

Examples:Examples:
1010nn is O(2is O(2nn22))

55nn+20 is O(10+20 is O(10nn))

Design and Analysis of Algorithms - Chapter 2 17

Basic Asymptotic Efficiency classesBasic Asymptotic Efficiency classes

factorialfactorialn!n!

exponentialexponential22nn

cubiccubicnn33

quadraticquadraticnn22

n n log log nnn n log log nn

linearlinearnn

logarithmiclogarithmiclog log nn

constantconstant11

Design and Analysis of Algorithms - Chapter 2 18

Time efficiency of Time efficiency of nonrecursivenonrecursive algorithmsalgorithms

Steps in mathematical analysis of Steps in mathematical analysis of nonrecursivenonrecursive algorithms:algorithms:

Decide on parameter Decide on parameter nn indicating indicating input sizeinput size

Identify algorithm’s Identify algorithm’s basic operationbasic operation

Determine Determine worstworst, , averageaverage, and , and bestbest case for input of size case for input of size nn

Set up summation for Set up summation for C(nC(n)) reflecting algorithm’s loop structurereflecting algorithm’s loop structure

Simplify summation using standard formulas (see Appendix A)Simplify summation using standard formulas (see Appendix A)

4

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 19

Examples:Examples:

Matrix multiplication Matrix multiplication

Selection sortSelection sort

Insertion sortInsertion sort

Mystery AlgorithmMystery Algorithm

Design and Analysis of Algorithms - Chapter 2 20

Matrix Matrix multipliacationmultipliacation

Design and Analysis of Algorithms - Chapter 2 21

Selection sortSelection sort

Design and Analysis of Algorithms - Chapter 2 22

Insertion sortInsertion sort

Design and Analysis of Algorithms - Chapter 2 23

Mystery algorithmMystery algorithm

for for i i := 1 to := 1 to n n -- 1 do1 do
max max := := i i ;;
for for j j := := i i + 1 to + 1 to nn dodo

if |A[if |A[j, ij, i]| > |A[]| > |A[max, imax, i]| then]| then maxmax := := j j ;;
for for k k := := i i to to n n + 1 do+ 1 do

swap A[swap A[i, ki, k] with A[] with A[max, kmax, k];];
for for j j := := i i + 1 to + 1 to nn dodo

for for k k := := n n + 1 + 1 downtodownto ii dodo
A[A[j, k j, k] := A[] := A[j, kj, k]] -- A[A[i, k i, k] * A[] * A[j, ij, i] / A[] / A[i, ii, i] ;] ;

Design and Analysis of Algorithms - Chapter 2 24

Example Recursive evaluation of Example Recursive evaluation of nn !!

Definition:Definition: n n ! = 1*2! = 1*2*…*(n*…*(n--1)*1)*nn

Recursive definition of Recursive definition of nn!:!:

Algorithm:Algorithm:
if if nn=0 then =0 then FF((nn) := 1) := 1

else else FF((nn) :=) := FF((nn--1) * 1) * nn
return return FF((nn))

Recurrence for number of multiplications to compute Recurrence for number of multiplications to compute nn!:!:

5

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 25

Time efficiency of recursive algorithmsTime efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:Steps in mathematical analysis of recursive algorithms:

Decide on parameter Decide on parameter nn indicating indicating input sizeinput size

Identify algorithm’s Identify algorithm’s basic operationbasic operation

Determine Determine worstworst, , averageaverage, and , and bestbest case for input of size case for input of size nn

Set up a recurrence relation and initial Set up a recurrence relation and initial condition(scondition(s) for) for CC((nn))--the the
number of times the basic operation will be executed for an inpunumber of times the basic operation will be executed for an input of size t of size
n n (alternatively count recursive calls). (alternatively count recursive calls).

Solve the recurrence to obtain a closed form or estimate the ordSolve the recurrence to obtain a closed form or estimate the order of er of
magnitude of the solution (see Appendix B)magnitude of the solution (see Appendix B)

Design and Analysis of Algorithms - Chapter 2 26

Important recurrence types:Important recurrence types:

One (constant) operation reduces problem size by one.One (constant) operation reduces problem size by one.
T(T(nn) = T() = T(nn--1) + 1) + cc T(1) = T(1) = dd
Solution: Solution: T(T(nn) = () = (nn--1)1)cc + + d d linearlinear

A pass through input reduces problem size by one.A pass through input reduces problem size by one.
T(T(nn) = T() = T(nn--1) + 1) + cncn T(1) = T(1) = dd
Solution: Solution: T(T(nn) = [) = [nn((n+n+1)/2 1)/2 –– 1] 1] c c + + d d quadraticquadratic

One (constant) operation reduces problem size by half. One (constant) operation reduces problem size by half.
T(T(nn) = T() = T(nn/2) + /2) + cc T(1) = T(1) = dd
Solution: Solution: T(T(nn) =) = cc lglg n n + + d d logarithmiclogarithmic

A pass through input reduces problem size by half.A pass through input reduces problem size by half.
T(T(nn) = 2T() = 2T(nn/2) + /2) + cncn T(1) = T(1) = dd
Solution: Solution: T(T(nn) =) = cncn lglg n n + + d n d n n n loglog nn

Design and Analysis of Algorithms - Chapter 2 27

A general divideA general divide--andand--conquer recurrenceconquer recurrence

TT((nn) =) = aTaT((n/bn/b) +) + f f ((nn)) where where f f ((nn)) ∈∈ ΘΘ((nnkk))

1.1. a < a < bbkk TT((nn)) ∈∈ ΘΘ((nnkk))
2.2. a = a = bbkk TT((nn)) ∈∈ ΘΘ((nnkk lglg n n))
3.3. a > a > bbkk TT((nn)) ∈∈ ΘΘ((nnloglog b b aa))

Note:Note: the same results hold with O instead of the same results hold with O instead of ΘΘ..

Design and Analysis of Algorithms - Chapter 2 28

Fibonacci numbersFibonacci numbers

The Fibonacci sequence:The Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, … 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Fibonacci recurrence:Fibonacci recurrence:
F(F(nn) = F() = F(nn--1) + F(1) + F(nn--2) 2)
F(0) = 0 F(0) = 0
F(1) = 1F(1) = 1

Another example:Another example:
A(A(nn) = 3A() = 3A(nn--1) 1) -- 2(2(nn--2) A(0) = 1 A(1) = 32) A(0) = 1 A(1) = 3

2nd 2nd order linear homogeneous order linear homogeneous
recurrence relation recurrence relation

with constant coefficientswith constant coefficients

Design and Analysis of Algorithms - Chapter 2 29

Solving linear homogeneous recurrence Solving linear homogeneous recurrence
relations with constant coefficientsrelations with constant coefficients

Easy first: 1Easy first: 1stst order order LHRRCCsLHRRCCs::
CC((nn) =) = a a CC((nn --1) 1) CC(0) = (0) = tt … Solution: … Solution: CC((nn) =) = t at ann

Extrapolate to 2Extrapolate to 2ndnd orderorder
LL((nn) =) = aa LL((nn--1) + 1) + bb LL((nn--2) … A solution?: 2) … A solution?: LL((nn) =) = r r nn

Characteristic equation (quadratic)Characteristic equation (quadratic)

Solve to obtain roots Solve to obtain roots rr11 and and rr22——e.g.:e.g.: A(A(nn) = 3A() = 3A(nn--1) 1) -- 2(2(nn--2)2)

General solution to RR: linear combination of General solution to RR: linear combination of rr11
nn and and rr22

nn

Particular solution: use initial conditionsParticular solution: use initial conditions——e.g.:e.g.:A(0) = 1 A(1) = 3A(0) = 1 A(1) = 3

Design and Analysis of Algorithms - Chapter 2 30

Computing Fibonacci numbersComputing Fibonacci numbers

1.1. Definition based recursive algorithmDefinition based recursive algorithm

2.2. NonrecursiveNonrecursive brutebrute--force algorithmforce algorithm

3.3. Explicit formula algorithmExplicit formula algorithm

4.4. Logarithmic algorithm based on formula:Logarithmic algorithm based on formula:

FF((nn--1)1) FF((nn))

FF((nn)) FF((nn+1)+1)

0 10 1

1 11 1
=

n

• for n≥1, assuming an efficient way of computing matrix powers.

