
ME 120: If-then-else structures in Arduino Gerald Recktenwald
May 22, 2021 gerry@pdx.edu

1 Making Decisions in Arduino Programs

It’s incredibly useful that computer programs allow devices respond to changing conditions: a light
comes on when it’s dark, the furnace comes on when it’s cold, a robot balances a load as it moves
over rough terrain. The ability to make decisions is called program logic, which means that the
program makes a choice based on some information. We are constantly making logical choices: if
I’m thirsty, get a drink; if I’m code, put on a jacket; if it’s dark, turn on a light.

The general term conditional execution refers to the logic that causes specific program statements
to be executed only when a prescribed condition is met. When a sequence of logical choices are
made, the program (and the system it controls) changes, or flows, from one state to the next. At all
times, the flow of execution is determined by a decision (or series of decisions) that depend on the
current set of data in the program. When the data changes, the flow of execution changes. The data
could come from external sensors or it could come from internally generated data such as system
clock that indicates the time elapsed since a prior event occurred.

Consider the situation depicted in Figure 1. A level of water in a tank needs to maintained.
Perhaps this is a pet dish, or a tank for livestock. Connecting an Arduino to a water level sensor
provides data to determine whether the water supply valve should be opened.

1.1 Introduction to Logic Structures

There are a handful of ways to make blocks of code execute only when prescribed conditions are met.
The most common conditional execution technique uses the basic “if” structure and its variants,
“if-else”, “if-else if”, etc. When there are several discrete choices, a “switch” structure can be
convenient. When a decision needs to be repeated a “while” structure is helpful. In the following,
we will concentrate on the if structure and its variants.

As programmers, we need to anticipate the sequence of events that might happen at a future
time when the program is running. We write code that tests for a condition and then executes an
appropriate set of actions when those conditions occur. Therefore, we need to consider two main
features, the logical test — “is condition A true” — and the response to those tests — “take action
X if condition A is true, otherwise take action Y”.

M

Arduino

Water
supply

Motorized
valve

Water
tankLevel

sensor
input

Actuator
output

Is the water
level too low?

Open the
valve

Do nothing

yes

no

Figure 1: Automatic filling of a water tank. Schematic of the hardware (left) and logic (right).

ME 120 :: if-then-else 2

1.2 True and False Values

Before making decisions, we need to establish a convention identifying whether a logic test is true or
false. Here, although logic is an important part of philosophy, we are not engaging deep philosophical
questions about the existence or meaning of truth. Rather, we merely need to establish a way to
designate the outcome of a test performed by the computer.

In a digital computer, the decision-making, no matter how complex, is reducible to one or more
yes/no decisions. The decision-making questions are called logical expressions and are discussed in
the next section.

When asking a question with digital logic, a “yes” answer is equivalent to True, and “no” is
equivalent to False. In other words, the outcome of a logical expression will be binary: true or
false, yes or no. For convenience, True and False are pre-defined Arduino values.

The values of True and False are the result of evaluating a logical expression and those values
can also be stored in variables. A boolean1 variable can take on only two states, True or False.
True is a boolean value equal to one or any value not numerically equal to zero. False is a boolean
value equal to zero. Ordinary numerical variables can also be used in logical expressions. When
interpretting a numerical value in a logical expression, the numerical value zero is considered to be
False, and any numerical value that is not zero (1, 2, 25, -13.23) is considered to be True.

1.3 Logical Expressions

A logical expression is at the core of any conditional execution. You can think of a logical expression
as a formula. However, unlike a numerical formula, which results in a numerical value, a logical
expression results in either True or False. Figure 2 shows a comparison between a numerical and
a logical expression. Note that in both cases the variables involved are integers (ints).

Logical expressions are created with the logical operators listed in Table 1. Most of the logical
operators take two operands. For example, the expression x < y is compares the magnitudes of the
operands x and y. The result of evaluating x < y is either True or False, depending on the values
currently stored in x and y.

The ! or “not” operator modifies the result of a logical expression to change the value of the
expression to its opposite. The ! operator takes only one operand, which is the logical expression
that it modifies. In Figure 2, the statement v = !w assigns a value to v that is the logical opposite
of what is stored in w. Thus, if True is stored in w, the expression v = !w stores False in v.

1Named after mathematician and logician George Boole. See, for example the Wikipedia article, https://en.
wikipedia.org/wiki/Boolean_data_type.

int x,y,z;

x = 3;

y = 2;

z = x/y;

Result: 1 is stored in z

int v,w,x,y;

x = 3;

y = 2;

v = x < y;

w = !v;

Result: 0 is stored in w

Figure 2: Contrast between numerical expressions (left) and logical expressions (right).

ME 120 :: if-then-else 3

Table 1: Logical operators.

Operator Meaning Example

== is equal to if (x==y) { ... }

!= is not equal to if (x!=y) { ... }

<= is less than or equal to if (x<=y) { ... }

>= is greater than or equal to if (x>=y) { ... }

< is less than if (x<y) { ... }

> is greater than if (x>y) { ... }

! not (unary operator) z = !x

1.4 Flow Charts
Start and stop

Code block

Junction

Decision

Directon of execution

Figure 3: Flow chart symbols.

A flow chart is a graphical tool for representing the se-
quence of operations in a computer code. Flow charts are
especially helpful in visualizing the sequence of steps in a
condition execution.

Think of a flow chart as a high level map of a program.
The computer code is represented by blocks connected by
arrows. Labels on the blocks are written in plain English
and use phrases to summarize a decision or a calculation.
Flow charts allow us to focus on the logic without getting
lost in syntax and other details of code.

Figure 3 shows the symbols used to create flow charts.
The rounded rectangles that designate start and stopping
points are simple markers. As their name suggest, the start and stop symbols identify the beginning
and end of an algorithm.

Code blocks are the major steps in the execution of the program. Think of a code block as a
chunk of code that achieves a specific task like turning on an LED, reading a sensor, or calculating
the desired speed of a motor. When translated to an Arduino sketch, the instructions in a code
block may take one or more lines of code.

Junctions indicate points where two or more streams of logic merge. Decision blocks represent
logical tests that determine which of two branches of code to execute. A decision block usually is
translated to an if statement. Arrows indicate the direction of the code, and connect divergent
branches at junctions.

Figure 4 shows two examples of flow charts. The flow charts make it possible to understand how
those codes work without needing to read an Arduino sketch. Of course, to create a useful program
the ideas expressed in the flow chart must ultimately be expressed in working code.

The flow chart on the left side of Figure 4 is for the familiar “blink” program that flashes an
LED on and off. The flow chart on the right side of Figure 4 is for a nightlight that turns on a light
when the ambient light level is low.

The night light program has one conditional execution feature. The ambient light level is com-
pared to a user-specified threshold value that determines whether the light is turned on or off. After

ME 120 :: if-then-else 4

Start

Intialize output pin

Turn output pin on

Wait

Turn output pin o�

Wait

Start

Intialize output pin and
set light level threshold

Turn output pin on
True

False

Turn output pin o�

Read ambient light level

Ambient
light < threshold

?

Figure 4: Flow charts for the “blink” program (left) and the “night light” program (right).

the decision block, the program loops back to the top, where the light level is measured again.
Flow charts can be used during code development, and as a method of documenting code after

it is finished. In the early stages of code development, especially when you are trying to figure
out the logical sequence necessary to achieve a goal, a flow chart can be a helpful way to organize
ideas. Unless you are a very experienced programmer and the steps in the program are fairly
straightforward, it’s usually much faster to sketch (and re-sketch) a flow chart than it is to write
and debug code line-by-line.

Flow charts are also useful for documenting code. Logical concepts can usually be expressed
more succinctly in a flow chart than in written English. When using flow charts to document code,
it is a good idea to make the flow chart compact enough to fit on a single page. That is not an
argument for using small fonts and cramming details into a small space. Rather, when creating a
flow chart to document a sketch, focus on the highest levels of logic and use plain English to express
ideas that may, in fact, take many lines of code.

2 if and Its Variants

There are several structures that use an if statement to initiate a logical decision. We will start
with the basic if structure, and then add options.

2.1 The Basic if Structure

The basic if structure allows a single block of code to be executed when a logical expression is True.
Figure 5 shows the syntax and flow chart for a basic if structure. In Figure 5, “test” represents
logical expression that results in a True or False value. The conditional execution block can
be one or more lines of code that are evaluated only if the test expression is True. Whether or not
the test expression is True, the program continues execution immediately after the closing brace
(“}”).

ME 120 :: if-then-else 5

if (test) {

conditional execution block

}

Conditional
execution
block

Test
?
False

True

Figure 5: Skeleton code and flowchart for a basic if structure.

Example 1 Warning for a floating point error

In standard numerical computation, attempting to take the square root of a negative number
causes an error. On an Arduino board, evaluating y = sqrt(x); when x < 0 causes a value of
NaN (not a number) to be store in x. The following code snippet shows how an if statement
could be used to generate a warning message when x becomes negative.

x = ...

if (x<0) {
Serial.println("WARNING: x is negative");

}

2

Example 2 Blink when input is below a threshold

Suppose you wanted a warning indicator when a voltage level on your system fell below a
threshold value. Perhaps the voltage was the output of a temperature sensor and the warning
light was used to show that the system temperature was too cold. The following code snippet
shows how an if statement could be used to blink an LED when the reading is lower than a
threshold. In this example, nothing happens when the reading is above the threshold.

threshold = ... // Set equal to a reasonable value

reading = analogRead(inputPin);

if (reading < threshold) {
digitalWrite(warningPin, HIGH);

delay(500);

digitalWrite(warningPin, LOW);

delay(500);

}

2

ME 120 :: if-then-else 6

2.2 The if-else Structure

The if-else structure implements and either-or kind of decision. Each of two outcomes has its own
block of code. If the test is true, code block 1 is executed. Otherwise, code block 2 is executed.

Compare the flow charts in Figure 5 and Figure 6. The flow chart for the if-else structure
makes it clear that when conditional block 1 (“if”-is-true block) is chosen, the code skips over
conditional block 2 (the else block).

if (test) {

conditional execution block 1

} else {

conditional execution block 2

}

Conditional
execution
block 1

Conditional
execution
block 2

Test
?

False

True

Figure 6: Skeleton code and flowchart for an if-else structure.

Example 3 Warning for a floating point error – version 2

We expand on Example 1 by adding and else block that allows the square root operation to
proceed, and to supply a default value for the case when x is negative.

x = ...

if (x<0) {
Serial.println("WARNING: x is negative");

y = 0.0;

} else {
y = sqrt(x);

}

2

Example 4 Turn on a warning light when input is below a threshold

In Example 2 an LED blinks once when a voltage level falls below a threshold value. Instead
of quickly blinking an LED, it may be more effective to leave a warning light on constantly as
long as the voltage is too low. The following code snippet shows one way to implement that
feature.

threshold = ...

reading = analogRead(inputPin);

if (reading < threshold) {
digitalWrite(warningPin, HIGH);

} else {
digitalWrite(warningPin, LOW);

}

2

ME 120 :: if-then-else 7

2.3 The if-elseif Structure

A second if can immediately follow an else statement. This gives two closely related structures:
the if-elseif and the if-elseif-else. The difference is subtle, but important.

The if-elseif structure creates two choices. Figure 7 shows the skeleton code and flow chart for
an if-elseif structure. Note that if both tests are False, neither code block is executed. Compare
the flowchart in Figure 7 to the flowchart in Figure 6 to see the important difference.

Example 5 uses a furnace control (a thermostat) as an example of how an if-elseif structure
could be used.

if (test1) {

conditional execution block 1

} else if (test2){

conditional execution block 2

}

Conditional
execution
block 1

Conditional
execution
block 2

Test 1
?

False

True

Test 2
?

False

True

Figure 7: Skeleton code and flowchart for a if-elseif structure.

Example 5 Furnace control with an if-elseif structure

Consider the logical decision-making used to turn on a furnace. The thermostat has a lower
temperature setting, say 18 ◦C, that determines whether heat needs to be added. The ther-
mostat also has an upper temperature setting, say 22 ◦C, that determines whether the room
temperature is warm enough that the furnace should turn off. Here is the logic for the thermo-
stat expressed in words.

If the temperature is less than 18 ◦C, turn on the furnace.

If the temperature is greater than 22 ◦C, turn off the furnace.

Otherwise, do nothing.

Figure 8 shows an incomplete Arduino sketch and the corresponding flowchart for implementing
the thermostat control with an if-elseif structure.

The furnace thermostat is a somewhat unusual example of a logic structure where the if-
elseif does not also have a closing else block. In most cases involving if-elseif, a closing
else block is a good idea, as is discussed in the next section.

2

ME 120 :: if-then-else 8

float Tlow = 18.0;

float Thigh = 22.0;

void loop() {

// Read temperature; details elsewhere

float T = getTemperatureReading();

if (T<Tlow) {

// Turn the furnace on

digitalWrite(heaterCircuitControl, HIGH);

} else if (T>Thigh) {

// Turn the furnace off

digitalWrite(heaterCircuitControl, LOW);

}

}

Turn furnace on

Turn furnace o�

T<Tlow
?

False

True

T>Thigh
?

False

True

Start

Set values of
Tlow and Thigh

Measure T

Figure 8: Incomplete Arduino code (left) and flowchart (right) for a thermostat

2.4 The if-elseif-else Structure

The if-elseif-else structure adds an important default condition to the the if-elseif structure.
The default condition handles cases when none of the if conditions are true.

Notice that in Example 5, no special action is taken when the temperature is between the limits
of Tlow and Thigh. For the furnace example, that either-or choice is OK. However, in many (if not
most) cases it is a good idea to also include an else block when if-elseif is used. Figure 9 shows
the skeleton code and flow chart for an if-elseif-else structure.

Example 6 extends the furnace control logic from Example 5 by adding indicator lights to display
the status of the furnace. In this case three states of the furnace are of interest: cooling on, heating
on, and furnace off. The furnace off condition is the goldilocks case of the temperature being neither
too hot or too cold.

Example 7 gives an example if-elseif-else structure along with three examples of how the
flow of execution depends on the data supplied to the test cases in the structure. Although the logic
in Example 7 is based on some arbitrary computations, it is important to understand how the flow
logic depends on the values of s and x.

Example 8 shows how an sequence of if-elseif-else statements can be used to create an
Arduino function to evaluate a piecewise continuous mathematical function. Study this example
carefully because (1) it is practical, and (2) because it shows that the sequence of tests (progressing
from small x to large x) means that on “greater than x1 and less than x2” type of test is necessary.

ME 120 :: if-then-else 9

if (test1) {

conditional execution block 1

} else if (test2) {

conditional execution block 2

} else {

conditional execution block 3

}

Conditional
execution
block 1

Conditional
execution
block 3

Conditional
execution
block 2

Test 1
?

False

True

Test 2
?

False

True

Figure 9: Skeleton code and flowchart for a if-elseif-else structure.

Example 6 Furnace control with Status Indicator Lights

Let’s extend Example 5 by adding indicator lights to show the status of the heating system.

If the temperature is less than 18 ◦C, turn on the furnace and turn on the blue LED
to indicate that the temperature is too cold.

If the temperature is greater than 22 ◦C, turn off the furnace and turn on the red
LED to indicate that the temperature is too warm.

Otherwise, turn on the green LED to indicate that the temperature is within the
dead band, i.e., the temperature is OK.

The furnace control and indicator lights would be implemented with an if-elseif-else struc-
ture, as shown in the following code snippet. Note that in addition to turning on the appropriate
indicator light, we have to be sure that the other indicator lights are off.

The following incomplete Arduino code uses the if-elseif-else structure. Creating the
corresponding flowchart is left as an exercise.

float Tlow = 18.0;

float Thigh = 22.0;

void loop() {

float T = getTemperatureReading(); // Read temperature; details elsewhere

if (T<Tlow) {

digitalWrite(heaterCircuitControl, HIGH); // Turn the furnace on

digitalWrite(blueLED, HIGH) // Turn on the blue LED

digitalWrite(redLED, LOW) // Make sure the red LED is off

digitalWrite(greenLED, LOW) // Make sure the green LED is off

} else if (T>Thigh) {

digitalWrite(heaterCircuitControl, LOW); // Turn the furnace off

digitalWrite(redLED, HIGH) // Turn on the red LED

digitalWrite(blueLED, LOW) // Make sure the blue LED is off

digitalWrite(greenLED, LOW) // Make sure the green LED is off

} else {

digitalWrite(greenLED, HIGH) // Turn on the green LED

ME 120 :: if-then-else 10

digitalWrite(redLED, LOW) // Make sure the red LED is off

digitalWrite(blueLED, LOW) // Make sure the blue LED is off

}

}

2

Example 7 Alternative flows through an if-elseif-else structure

Conditional execution allows a program to respond to changes in data. Figure 10 shows an
example if-elseif-else structure. The flow through the structure depends on the data, which
in this example are the values stored in s and x. The bottom half of Figure 10 shows possible
paths through this structure for different values of s and x.

2

Example 8 Creating a piecewise linear “hat” function.

An if-elseif-else structure can be used to evaluate a piecewise function. Consider the
“hat” function shown in Figure 11. The goal is to write the Arduino code that evaluates
y = f(x) for any x when f(x) is defined by the piecewise continuous “curve” in Figure 11.

We assume that a user specifies values of x1, x2, x3, y1 and y2. Those values define the
function, i.e., specify the shape of the hat. We also assume that the horizontal line segments
for x < x1 and x > x2 continue indefinitely.

A little algebra shows that the inclined line segments are defined by these formulas for f1(x)
and f2(x)

f1(x) =
y2 − y1
x2 − x1

x− y1x2 − y2x1

x2 − x1
(1)

f2(x) =
y1 − y2
x3 − x2

x− y2x3 − y1x2

x3 − x2
(2)

The following code snippet evaluates the piecewise function in Figure 11, using the formulas in
Equation (1) and Equation (2).

if (x<x1) {

y = y1;

} else if (x<x2) {

y = ((y2-y1)*x + y1*x2 - y2*x1)/(x2-x1);

} else if (x<x3) {

y = ((y1-y2)*x + y2*x3 - y1*x2)/(x3-x2);

} else {

y = y1;

}

For this use case (evaluation of a function), it would make sense to put the preceding code
snippet in a function that would return y for input values of x, x1, x2, y1 and y2.

2

ME 120 :: if-then-else 11

Base Code:

if (s<5) {

 x = x*x;

} else if (s<10) {

 x = x - 10;

} else {

 x = 0;

}

Serial.println(x);

if (s<5) {

 x = x*x;

} else if (s<10) {

 x = x - 10;

} else {

 x = 0;

}

Serial.println(x);

x = 25;
s = 1;

True

prints 625
(= 25*25)

Continue

if (s<5) {

 x = x*x;

} else if (s<10) {

 x = x - 10;

} else {

 x = 0;

}

Serial.println(x);

x = –5;
s = 7.35;

False

True

prints –15
(= –5 – 10)

Continue

if (s<5) {

 x = x*x;

} else if (s<10) {

 x = x - 10;

} else {

 x = 0;

}

Serial.println(x);

x = 3;
s = 12.2;

False

False

prints 0

Continue

Figure 10: An example if-else if-else structure. The bottom three examples show the paths
through the logic for different values of x and s. The base code is the same for all three
examples.

y2

y1

x1 x2 x3

f1(x) f2(x)

Figure 11: Hat function composed of piecewise continuous line segments

ME 120 :: if-then-else 12

3 To Do

• Add discussion and examples of using compound && and || operators in logical expressions.

• Add a summary section.

Exercises

1. What is the value of z after each of the following code snippets is executed?

a. x = 2;

y = 5;

z = 0;

if (x < y) {
z = y { x;

}

b. x = 2;

y = 5;

z = 0;

if (x > y) {
z = y { x;

}

c. x = 2;

y = 5;

z = 0;

if ((y-x)<= 3) {
z = y/x;

}

d. x = 2;

y = 5;

if ((y-x)<= 3) {
z = y/x;

} else {
z = 0.0;

}

2. Write the flow chart that corresponds to the following code snippet. Assume that redLED and
yellowLED are digital I/O pin numbers (between 0 and 13) and that those digital I/O pins
are connected to LED circuits for a red LED and a yellow LED, respectively.

v = analogRead(A0); // Value between 0 and 1023 corresponding

// the voltage on analog input pin A0

if (v<=100) {

digitalWrite(redLED, HIGH);

digitalWrite(yellowLED, LOW);

}

if (v>=900) {

digitalWrite(yellowLED, HIGH)

digitalWrite(redLED, LOW);

}

Is this code/logic an if-elseif structure, and if-elseif-else structure or something differ-
ent? If the preceding code snippet is in the loop function of an Arduino sketch, what happens
with the value of v is greater than 100 and less than 900?

3. Create a flow chart that uses an if-elseif-else structure for a modified version of the code
from preceding exercise. The modified code should implement the following logic

If v is less than or equal 100, turn on the red LED only.

If v is greater than or equal 900, turn on the red yellow only.

Otherwise, all LEDs should be off.

4. Write an Arduino code that implements the logic from the preceding exercise. Build a circuit
to test the code, using a potentiometer to create the input values.

5. Create a flow chart for the if-elseif-else structure that describes the thermostat code in
Example 6.

6. In Example 6, what happens when Tlow < T < Thigh? From a practical perspective this
behavior is desirable. Can you explain why?

ME 120 :: if-then-else 13

7. Create a flow chart for the if-elseif-else structure that evaluates the hat function in Ex-
ample 8.

8. Using the code in Example 8 as a starting point, write an arduino function called hatfun that
evaluates the hat function for any input values of x1, x2, x3, y1 and y2. Test your function
with the code on the following page. The values of x1, x2, and x3 can be chosen to give a
symmetric function, but are not required to produce a symmetry function.

void setup() {

float dx, x, xmin=-1.5, xmax=1.5, y;

float x1=-1.0, x2=0.0, x3=1.0, y1=0.0, y2=1.0;

Serial.begin(9600);

Serial.println("\nTest of hatfun\n\n x f(x)");

dx = 0.25;

for (x=xmin; x<=xmax; x+=dx) {

y = hatfun(x,x1,x2,x3,y1,y2);

Serial.print(x); Serial.print(" "); Serial.println(y);

}

}

