
ME 120: for Loops in Arduino Gerald Recktenwald
October 24, 2021 gerry@pdx.edu

1 Overview

This document describes the for loop structure used in Arduino sketches. The syntax of a for loop
is described and a series of simple example programs is used to demonstrate how for loops work.
The article ends with a practical example of using a for loop to average a sensor reading.

Your Arduino code can have as many (or as few) loops as you need. Remember that the loop

function is itself executed repeatedly. When using a for loop structure you are introducing an
additional form of repetition.

1.1 A Motivating Example

There are many computing tasks that require repetition.
A for loop is an iteration structure that is most often used when there is a known number of

repetitions to be performed. For example, if you want to blink an LED three times, you would
(most likely) create a for loop that repeats three times. The body of a loop would contain the
sequence necessary to blink the LED just once.

Another use of for loops is to evaluate of a mathematical formula with many terms that are
expressible in a pattern. For example, to add up a list of numbers when the length of the list is
known, use a for loop. A somewhat contrived example of this idea is the computation

S =

n∑
i=1

i

where the value of n is not known until the program executes. In this case the list of numbers to be
added is just the sequence of integers, 1, 2, . . . , n. The translation of that formula into code involves
a loop, as in the following code snippet.

int i, n, sum;

n = ... // The value of n is determined somehow

sum = 0;

for (i=1; i<=n; i++) {
sum = sum + i;

}

The summation is implemented with the loop structure that begins with the for statement. The
calculations to be repeated are contained inside the curly brackets { . . . }. This simple example is
intended to preview the discussion of for loop syntax, which is described in the next section.

A less contrived example is the averaging of a series of analog input measurements. That example
is described in § 5.1 beginning on page 7.

1.2 Our Plan

Like any code feature, we need to consider both the syntax and application of for loops. We start
with the syntax, which introduces some new notation and also uses the logical expressions found in

ME 120 :: for Loops 2

Starting
condition

Continuation
criterion

Change in i made
at the end of each
pass through loop

Loop body

Figure 1: Components of the counter specification in a for loop.

if constructs. Understanding the syntax of for loops is necessary. Understanding how a for loop
is used to implement an algorithm allows us to put that syntax to good use.

2 Syntax of a for Loop

In this section we describe the syntax of the the for loop structure. As a preview, consider Figure 1
which shows a for loop that prints out the first five integers, beginning with zero. The generic
structure of a for loop is

for (Starting condition; Continuation criterion; increment/decrement) {
Loop body

}
The Starting condition, Continuation criterion and the increment/decrement rule are ex-
pressions that the control how the loop counter changes on each pass through the loop. A loop
counter, is a C/C++ variable. Often the loop counter is an integer variable, and often it is a single
letter label like i, j, or k. However, the loop counter, starting condition, continuation criterion and
increment/decrement can use any numeric variable type including int, long, and float.

The Starting condition assigns the initial value of the loop counter. The Continuation

criterion is a logical statement that compares the loop counter to a value. The loop body is
executed only if the continuation criterion is met. The increment/decrement rule is the formula
for changing the loop counter on each pass through the loop. Table 1 gives some examples of
common combinations of starting conditions, continuation criteria, and increment/decrement rules.
Table 2 lists common examples of just the increment/decrement expression.

ME 120 :: for Loops 3

Table 1: Examples of rules for counters in a for loop. There are many possible different combinations
of starting conditions, continuation criteria, and increment/decrement rules. The expressions in this
table are common patterns.

Starting
condition

Continuation
criterion

Increment
decrement

rule Description

i = 0; i < 5; i++ Start with i=0. Continue as long as i is less than 5.
Increment i by one at the end of each pass through
the loop.

i = 1; i <= n; i+=1 Start with i=1. Continue as long as i is less than or
equal to the value stored in the variable n. Increment
i by one at the end of each pass through the loop.

i = 10; i > 0; i-- Start with i=10. Continue as long as i is greater
than 0. Decrement i by one at the end of each pass
through the loop.

i = 0; i < 8; i+=2 Start with i=0. Continue as long as i is less than 8.
Increment i by two at the end of each pass through
the loop.

Table 2: Common increment/decrement expressions used in for loops.

Expression Description

i++ Increment by 1 at the end of the loop

i-- Decrement by 1 at the end of the loop

i+=1 Same as i++

i-=1 Same as i--

i+=2 Increment by 2 at the end of the loop

i-=2 Decrement by 2 at the end of the loop

++i Increment by 1 at the beginning of the loop

--i Decrement by 1 at the beginning of the loop

ME 120 :: for Loops 4

3 Usage Cases for for Loops

The fundament purpose of a loop is to repeat an operation. The syntax of a for loop makes it the
obvious choice with an operation needs to be repeated a known number of times1. A for loop is
useful in the following situations

1. Repetition

• Compute the average of sensor input to reduce the effect of noise.

• Blink an indicator a specified number of times.

• Apply an actuator multiple times (think hammering a nail)

2. Striding through a list

• Turn on or off a set of switches or LEDs.

• Sample a sequence of analog inputs.

• Find the maximum (or minimum) value in an array.

• Sweep a servo through a sequence of positions.

4 Examples to Test Your Understanding

This section provides a series of very simple Arduino sketches to demonstrate how for loops work.
The sketches are designed to show how loops can be structured and are not meant to perform useful
functions. Study these examples to see how the body of the loop is controlled by the loop counter
expressions in the parentheses after the for key word. These example sketches also show how a for

loop inside the loop function interacts with the repeated execution of the loop function. Refer to
Section 5.1 for a scenario where a for loop performs a useful task.

Note to instructors and to students using these notes for self-study:
Explanations are given here to support instructors, or students doing self-study. It would be
best for students to study these codes, and predict the outcome of running the code before
consulting the notes in the right-hand column and before they use an Arduino to test their
understanding.

For students, I recommend using sticky notes to cover up the answers given for each exer-
cise. Predict the behavior of the for loop and then remove the sticky note to check your
understanding.

For students, I also recommend reviewing the examples multiple times over the course of
one or two or three weeks. For example, you can study the examples once or twice per week,
each time with the answer initially covered with the sticky notes.

Another study recommendation is to copy this code into the Arduino IDE. Manually typing
each sketch instead of using copy/paste will also help you learn better as well as giving you
practice fixing the small bugs that inevitably show up in code we write. During each study
session – remember to space them throughout one or two weeks – open the code in the
Arduino IDE and predict the output before running the sketch.

And of course you can alternate the study techniques to reading and predicted the results on
paper or with the Arduino IDE. There are two key ideas in this recommended study technique.
First, make an honest effort predicting the output before seeing the answer. Second, space
the study sessions over time, i.e., don’t cram your studying into one long session.

1In contrast, a while loop is better suiting to the case where the number of repetitions is not known in advance.

ME 120 :: for Loops 5

Loop 1

void setup() {

Serial.begin(9600);

}

void loop() {

int i = 0;

i = i + 1;

Serial.println(i);

}

What is the output of the code to the left?

Answer: This code continuously prints “1” to the Serial Mon-
itor. That is not likely to be the intent of the code developer.
The declaration int i = 0 resets the value of i every time the
loop function is executed.

Loop 2

int i = 0;

void setup() {

Serial.begin(9600);

}

void loop() {

i = i + 1;

Serial.println(i);

}

What is the output of the code to the left?

Answer: This code prints the integers 0, 1, 2, . . . and continues
until the reset button in pushed or the Arduino is disconnected
from its power supply. Each integer is on a separate line because
the println method of the Serial object is used.

If the reset button is pushed, the code begins executing again
by running setup once, and then calling loop indefinitely. This
causes the integers to be printed again, starting with 0, 1, 2, etc.

If the power to the Arduino is disconnected, the program stops
running. The next time the power is restored, the program re-
sumes as if the reset button had been pushed.

Loop 3

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<5; i++) {

Serial.println(i);

}

}

What is the output of the code to the left?

Answer: The integers from 0 through 4 are printed in a re-
peating pattern, i.e., 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4. . . .
Each integer is printed on a separate line.

Loop 4

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<5; i+=2) {

Serial.println(i);

}

}

What is the output of the code to the left?

Answer: The integers 0, 2, and 4 are printed in a repeating
pattern i.e., 0, 2, 4, 0, 2, 4, 0, 2, 4,. . . . Each integer is printed on
a separate line.

ME 120 :: for Loops 6

Loop 5

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<10; i++) {

i = 5;

Serial.println(i);

}

Serial.println("for loop over\n");

}

What is the output of the code to the left?

Answer: This code prints the number 5 indefinitely.
Each copy of 5 is on its own line. The message “for
loop over” is never printed because the for loop never
ends.

This code contains a programming bug: the loop
index i is changed in the body of the loop. In a while

loop it is often necessary to change the loop counter
in the body of the loop. In a for loop, the loop index
should only be changed inside the parentheses of the
for (...) statement.

Never change the loop index inside the body of a
for loop.

Loop 6

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<10; i++) {

Serial.println(i);

delay(100);

}

Serial.print("\nfor loop over: ");

Serial.print("i = ");

Serial.print(i);

delay(2000);

}

What is the output of the code to the left?

Answer: The integers 0, 1, 2, . . . 9 are printed, fol-
lowed by the message “for loop over: i = 10”.
Each integer, and the final message are printed on a
separate line. The pattern of integers, followed by the
text message, is repeated indefinitely. The calls to the
delay function slow the execution of the sketch to make
the output to the Serial Monitor easier to read.

Loop 7

void setup() {

Serial.begin(9600);

}

void loop() {

int i,n=3;

for (i=0; i<=n; i++) {

Serial.print(i);

Serial.print(" ");

}

for (i=n-1; i>0; i--) {

Serial.print(i);

Serial.print(" ");

}

Serial.println("Both loops finished");

delay(2000);

}

What is the output of the code to the left?

Answer: The pattern 0 1 2 3 2 1 pattern is
printed repeatedly, with Serial.print statements
that add text to a single line of output.
The Serial.println("\nBoth loops finished")

statement prints the message to make it clear that
the body of the loop function has finished. The \n

newline character advances the output to the next line
before printing the message.

Notice the combination of loop continuation criterion
and indexing rule for the second loop.

for (i=n-1; i>0; i--) { ... }

The (second) loop starts with the value of i = 2 (be-
cause n = 3 and stops when i = 1.

ME 120 :: for Loops 7

5 Application Examples

In this section for loops are used in more practical examples.

5.1 Average n Readings on an Analog Input Channel

In many practical situations, the voltage value on an analog input channel fluctuates. Sometimes
the fluctuations are large enough to cause trouble when the voltage reading is used in a subsequent
calculation or control decision.

For example, suppose a temperature sensor is influenced by air currents, and the reading of the
sensor is used to determine whether or not to turn on a heater. The fluctuations in the apparent
temperature reading are caused by the environment, and we want the decision to turn the heater
on and off to be made on the average temperature and not the fluctuations in temperature. This is
a situation where averaging the readings of the analog input channel would help2.

The averagen_demo sketch shows how a user-defined function called average_reading make an
user-specified number of readings on an user-specified analog input channel. The for loop in the
body of the average_reading function has a flexible continuation criterion, i<=nave, where nave

is the number of readings to be averaged.

2Of course, this also applies to a temperature sensor that has a digital interface such as I2C.

// File: averagen_demo.ino

//

// Demonstrate a user-defined function to average N readings on an

// analog input pin

// ---

void setup() {

Serial.begin(9600);

}

// ---

void loop() {

int n=15, photo_pin=1;

float reading;

reading = average_reading(photo_pin,n); // Average on analog input channel

Serial.println(reading); // Print the averaged reading

}

// ---

// Return the average of nave readings on a user-specficied analog input pin

float average_reading(int sensor_pin, int nave) {

int i;

float ave,sum;

sum = 0.0; // initial value of sum

for (i=1; i<=nave; i++) {

sum = sum + analogRead(sensor_pin);

}

ave = sum/float(nave);

return(ave);

}

Listing 1: Arduino sketch to demonstrate how to average N readings.

ME 120 :: for Loops 8

// File: average_compare.ino

//

// Compare average readings of two different sensors

// ---

void setup() {

Serial.begin(9600);

}

// ---

void loop() {

int n=15, photo_room_A=1, photo_room_B=1;

float reading_A, reading_B;

reading_A = average_reading(photo_room_A,n); // Average of photoresistor in room A

reading_B = average_reading(photo_room_B,n); // and room B

if (reading_A > reading_B) {

Serial.print("Room A is brighter than Room B: ");

}

Serial.print(reading_A);

Serial.print("\t");

Serial.println(reading_B);

}

// ---

// Return the average of nave readings on a user-specficied analog input pin

float average_reading(int sensor_pin, int nave) {

int i;

float ave,sum;

sum = 0.0; // initial value of sum

for (i=1; i<=nave; i++) {

sum = sum + analogRead(sensor_pin);

}

ave = sum/float(nave);

return(ave);

}

Listing 2: Arduino sketch to compare two sensors from average readings on each.

5.2 Reuse the Code

When we use more than one sensor, the average_reading function can be used for both sensors
without any change to the average_reading function. This example of code reuse shows the benefit
of writing general purpose code.

Consider an experiment (or perhaps a building control system) where the brightness of lighting
in two different rooms needs to be compared. Maybe the brightness is affected by the sun shining
through south-facing windows and either the window-shades or the air-conditioning controls need to
be adjusted. The code in the average_compare sketch shows how the average_reading function
is reused. Note that the loop inside average_reading is flexible enough that the average value for
each sensor could be made with a different number of readings, i.e., a different n.

ME 120 :: for Loops 9

// File: blinkn.ino

//

// Demonstrate how to blink an LED a variable number of times

int LEDred = 5;

int LEDyellow = 6;

// ---

void setup() {

pinMode(LEDred, OUTPUT);

pinMode(LEDyellow, OUTPUT);

}

// ---

void loop() {

int nRed=3, nYellow=2; // number of blinks for red and yellow LEDs

int dtRed=200, dtYellow=600; // duration of blink cycles for red and yellow

blinkLED(LEDred, dtRed, nRed);

blinkLED(LEDyellow, dtYellow, nYellow);

}

// ---

void blinkLED(int pin, int duration, int nrep) {

for (int i=1; i<=nrep; i++) {

digitalWrite(pin, HIGH);

delay(duration);

digitalWrite(pin, LOW);

delay(duration);

}

}

Listing 3: Demonstrate function that blinks an LED N times.

5.3 Variable Blinking

A blinking LED can be used to indicate the operating state of a sketch. The code to blink an LED
is well known, it would not be hard to incorporate that code into a sketch. However, consider the
case where either more than one LED or number of blinks are is used to indicate the state of the
system. In this case, a general-purpose function to blink an LED would be useful.

The blinkn sketch in Listing 3 contains a blinkLED function that blinks an LED a user-specified
number of times and at a user-specified rate.

5.4 A Countdown Timer with Blinking Warning Lights

Suppose you want to create a countdown timer for a game3. Each game (or maybe each round of the
game) has a time limit. You also want to include a warning that the countdown timer is about to
expire. The gameTimer sketch in Listing 4 shows one way to implement a 20 second countdown timer
(timeCounter). A yellow LED is flashed when the timer is 5 seconds (timeWarn) from expiring. A
red LED is flashed when the timer is 1 second (timeFast) from expiring. Both LEDs are turned on
when the timer has expired completely.

3An obvious variation to the approach used here would be to show the time remaining on a clock display.

ME 120 :: for Loops 10

// File: gameTimer.ino

//

// Simulate a countdown time for a game. Push the reset button to

// reset the timer. Flash a yellow LED for the first warning. Flash

// a Red LED when the timer is very close to expiring.

int LEDred = 5;

int LEDyellow = 6;

unsigned long start_time;

// ---

void setup() {

pinMode(LEDred, OUTPUT);

pinMode(LEDyellow, OUTPUT);

start_time = millis(); // Clock reading at start

}

// ---

void loop() {

int timeLeft, timeNow; // Time remaining and current time

int timeCounter=20000; // The timer cycle

int timeWarn=5000; // Time left when yellow LED flashes

int timeFast=1000; // Time left when red LED flashes

timeNow = millis() - start_time; // Current time

timeLeft = timeCounter - timeNow; // Time left on the counter

if (timeLeft <= 0) { // Both lights on when timer expires

digitalWrite(LEDyellow, HIGH);

digitalWrite(LEDred, HIGH);

} else if (timeLeft<timeFast) { // Almost done, flash red

blinkLED(LEDred, 100, 1);

} else if (timeLeft<timeWarn) { // Warning, flash yellow

blinkLED(LEDyellow, 100, 2);

}

}

// ---

void blinkLED(int pin, int duration, int nrep) {

for (int i=1; i<=nrep; i++) {

digitalWrite(pin, HIGH);

delay(duration);

digitalWrite(pin, LOW);

delay(duration);

}

}

Listing 4: Demonstrate a count-down timer that blinks yellow and then red LEDs as the timer is
about to expire.

